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Abstract: Feedlot mortality negatively affects animal welfare and profitability. To the best of our
knowledge, there are no publications on predictive models for weekly all-cause mortality in feedlot
cattle. In this study, random forest models to predict weekly mortality for cattle purchase groups
(n = 14,217 purchase groups; 860,545 animals) from arrival at the feeding location (Day 1) to Day
42 and cumulative mortality from Day 43 until slaughter were built using records, weather, and
transport data available at the time of purchase. Models were evaluated by calculating the root mean
squared error (RMSE) and accuracy (as defined as the percent of purchase groups that had predictions
within 0.25% and 0.50% of actual mortality). The models had high accuracy (>90%), but the RMSE
estimates were high (range = 1.0% to 4.1%). The best predictors were maximum temperature and
purchase weight, although this varied by week. The models performed well among purchase groups
with low weekly mortality but performed poorly in high mortality purchase groups. Although
high mortality purchase groups were not accurately predicted utilizing the models in this study, the
models may potentially have utility as a screening tool for very low mortality purchase groups after
arrival. Future studies should consider building iterative models that utilize the strongest predictors
identified in this study.

Keywords: predictive modeling; feedlot health; random forests; mortality; beef cattle

1. Introduction

From 1994 to 2011, feedlot mortality has remained steady at around 1% [1]. Feedlot
mortality has negative effects, including decreased animal welfare and reduced profitabil-
ity [2]. For each percentage increase in mortality, added costs due to lower average daily
gain and feed conversion ratio are estimated to amount to 1 USD/head [3]. A potential way
to lower beef cattle mortality is to make management changes that may improve animal
health, including the adjustment of processing procedures, preconditioning cattle, and
improving the monitoring of high-risk groups of cattle [4,5]. One tool that can be used to
improve the identification of cattle at-risk of mortality is predictive modeling, which is a
statistical modeling method that can be used to predict future events [6]. Previous studies
focused on building predictive models for bovine respiratory disease (BRD) morbidity [7,8],
the number of days on feed (DOF) to first treatment [9], and identifying cattle that did not
finish the production cycle normally after BRD treatment [10]. However, to the best of our
knowledge, no previous studies developed predictive models for all-cause mortality in
beef cattle.

Ideally, cattle mortality can be predicted as early as possible so that interventions can be
promptly implemented. Previously, we showed that weather parameters and demographic
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factors measured on the day of purchase are associated with cumulative BRD mortality in
the first 60 days on feed [11]. In addition, Amrine et al. 2019 [8] built predictive models for
the BRD risk category and included multiple predictors, including weather variables pre-
and post-arrival at a feeding location, and found that models that included information
from the sale barn had similar accuracy compared to models built with lot arrival data.
However, it is unknown if purchase data can be used to predict weekly all-cause mortality.
Accurately predicting which groups of cattle are at risk of high mortality as early as the
day of purchase may have benefits over only using information available when cattle
arrive at the feeding location. Predictions of mortality risk generated at purchase can guide
transportation and processing procedures, allowing for earlier intervention in groups of
cattle that are expected to have high mortality shortly after arrival at a feeding location. For
example, antimicrobials can be better utilized to target groups of animals with high-risk
animals after arrival at the feedlot [4].

The objective of this study was to build a series of random forest models to predict
weekly mortality from arrival at a feeding location (Day 1) to 42 days on feed (DOF)
(Day 42) and cumulative mortality from Day 43 to slaughter in purchase groups from one
large commercial beef cattle feeding system based on records, weather, and transport data
available at the time of purchase.

2. Results
2.1. Descriptive Statistics

Descriptive statistics for the full sample are presented in Tables 1 and 2. The training
dataset contained 9967 purchase groups and the test dataset contained 4250 purchase
groups. Ninety-eight percent of deaths were attributed to BRD. Most of the purchase groups
were all steers, contained all calves or both calves and yearlings (versus all yearlings), and
had weaned animals. The majority of purchase groups were purchased in winter, were
purchased from the Southern United States (US) or were from mixed sources, and were
purchased from the auction or had a mix of auction/contracted animals.

Table 1. Descriptive statistics of categorical variables in purchase-group level data from a large
commercial beef feeding operation in the Midwestern United States (n = 14,217 purchase groups).

Variable Category n(%)

Sex Female 285 (2.0)
Male 13,932 (98.0)

Age Calf and mixed 11,173 (78.6)
Yearling 3044 (21.4)

Weaned status Unweaned and mixed 2082 (14.6)
Weaned 12,135 (85.4)

Purchase season Spring 4476 (31.5)
Summer 2091 (14.7)

Fall 2973 (20.9)
Winter 4677 (32.9)

Geographic origin Canada or North US 227 (1.6)
South US or mixed 13,990 (98.4)

Source Auction and mixed 13,588 (95.6)
Contracted 629 (4.4)

Purchase year 2015 992 (7.0)
2016 4441 (31.2)
2017 5273 (37.1)
2018 3508 (24.7)
2019 3 (0.02)
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Table 1. Cont.

Variable Category n(%)

Day of week purchased Monday 1777 (12.5)
Tuesday 2936 (20.7)

Wednesday 3486 (24.5)
Thursday 3176 (22.3)

Friday 1962 (13.8)
Saturday/Sunday 880 (6.2)

Week of month purchased Days 1–7 3376 (23.8)
Days 8–14 3624 (25.5)
Days 15–21 3503 (24.6)

Day 22 until EOM 3714 (26.1)
Precipitation Yes 573 (4.0)

No 13,644 (96.0)
Mortality 0% 4131 (29.1)

0% to ≤2% 3007 (21.2)
2% to <5% 3532 (24.8)

≥5% 3547 (25.0)

Table 2. Descriptive statistics of numerical variables in purchase-group level data from a large
commercial beef feeding operation in the Midwestern United States (n = 14,217 purchase groups).

Variable Mean (SD)

Average purchase weight (kg) 307.8 (57.2)
Head (Number of cattle per purchase group) 60.6 (49.2)

Shipping distance (km) 510.5 (302.6)
Relative humidity 0.69 (0.14)

Windspeed (km/h) 10.6 (6.1)
Maximum temperature (Celsius) 15.1 (12.5)

2.2. Model Results

The optimal random forest mtry parameters (number of randomly selected predictors
to choose from at each split in the trees) identified from the grid search were 2 (Weeks 1–4
and Week 6) and 3 (Week 5 and Day 43 to slaughter). The optimal number of trees (which
are pooled to form a forest of which predictions are made) for the models were 1000, 1000,
1300, 1300, 1300, 1500, and 1000 for Weeks 1–6 and for Day 43 to slaughter, respectively.
The mean and median DOF was 100.5 days and 82 days, respectively. The final models
included 17 variables, as described in Table 3.

Table 3. Description of predictors used in random forest models predicting all-cause mortality among
purchase groups of feedlot cattle.

Predictor Description Coding 1

Age Age of purchase group 1 = Calf and mixed, 2 = Yearling

Weaned status Weaning status of purchase
group 1 = Mixed and unweaned, 2 = Weaned

Sex Sex of purchase group 1 = Heifer, 2 = Steer

Origin Geographic region where
purchased

1 = Canada or north US, 2 = South
or mixed

Average purchase
weight

Average purchase weight of
purchase group Continuous

Month Month purchased 1 = January, 2 = February, . . .
12 = December

Day of week Day of week purchased 1 = Monday, 2 = Tuesday, . . .
6 = Saturday/Sunday

Week of month Week of month purchased 1 = Days 1–7, 2 = Days 8–14, 3 = 15–21,
4 = Day 22 until end of month
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Table 3. Cont.

Predictor Description Coding 1

Season Season when purchased

1 = Spring (March, April, May),
2 = Summer (June, July, August),

3 = Fall (September, October,
November), 4 = Winter (December,

January, February)

State

State where purchased, states
with small sample size

grouped together based on
location and form regions

1 = CO, 2 = FL, GA, AL, MS, SC, 3 = ID,
NV, OR, UT, CA, WY, MT, 4 = IL, OH,

WI, 5 = IA, 6= KS, 7 = KY, 8 = MN,
9 = MS, AR, 10 = NE, 11 = ND, 12 = OK,

TX, 13 = SD, 14 = TN, 15 = N/A
(Canada)

Source Purchase source 1 = Auction and mixed, 2 = contracted

Shipping distance

Distance from purchase
location to

backgrounding/feedlot
location

Continuous

Head Number of cattle in purchase
group Continuous

Relative humidity Humidity on purchase day Continuous
Windspeed Windspeed on purchase day Continuous
Maximum

temperature
Maximum temperature on

purchase day Continuous

Precipitation Precipitation on purchase day 0 = There was no precipitation,
1 = There was precipitation

1 Variables inputted in the final models in the format presented in this table.

Overall weekly model results are presented in Table 4. The accuracy of the models
was highest for Week 1 and decreased as weeks increased. Accuracy was very high for
Week 1–Week 6 (>90%) but was much lower for Day 43 to slaughter (<70%). Overall, the
most important predictor variables were maximum temperature and purchase weight.

Table 4. Description of root mean squared error (RMSE), accuracy, and variable importance of
random forest models predicting all-cause mortality among purchase groups of feedlot cattle in
weeks after arrival at a feeding location (n = 4250 purchase groups).

Model RMSE
1

Accuracy
within
0.25%

Accuracy
within
0.5%

Most
Important
Variable

2nd Most
Important
Variable

3rd Most
Important
Variable

Week 1 0.009 96.16% 96.38% Max
temperature Windspeed Shipping

distance

Week 2 0.011 93.86% 94.26% Max
temperature

Purchase
weight

Season
(Winter)

Week 3 0.013 92.66% 93.06% Purchase
weight

Region
(Southern US)

Region (NW
US)

Week 4 0.01 92.00% 92.56% Number of
cattle

Purchase
weight Windspeed

Week 5 0.009 91.46% 92.21% Weaned status Purchase
weight

Region
(Midwestern

US)

Week 6 0.01 91.76% 92.14% Purchase
weight Age Month

(September)
Day 43 to
slaughter 0.041 63.51% 66.96% Purchase

weight
Max

temperature Age

1 RMSE reported in decimals. To convert to % mortality, multiply by 100. Max = Maximum; NW = Northwestern.
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Tables 5 and 6 describe average model performance (RMSE and accuracy) when
stratified by different purchase group characteristics. In general, the models performed
worse in high mortality purchase groups (>2% mortality) and in purchase groups with
high-risk characteristics. For example, the models performed worse in purchase groups
with calves and mixed groups compared to purchase groups with only yearlings. Model
accuracy (the ability of the model to predict mortality within 0.25% of actual mortality)
was low for purchase groups with high weekly mortality (Table 6). Model performance,
as measured by root mean squared error (RMSE), among high mortality purchase groups
(>5%) was best in the Week 4 and Week 5 models and worst in the Week 1 model. However,
even in the best performing weeks for high mortality purchase groups, the RMSE estimates
were high (0.083 and 0.081 for Week 4 and Week 5, respectively). RMSE estimates can
be interpreted on the scale of outcome (% mortality) by multiplying by 100. Therefore,
an RMSE of 0.083 indicates that the predicted mortality deviated, on average, 8.3% from
observed mortality. The models had high accuracy and low RMSE estimates for purchase
groups with low weekly mortality (0% to ≤2%).

Table 5. Mean RMSE 1 of random forest models predicting all-cause mortality among purchase
groups of feedlot cattle in weeks after arrival at a feeding location in test dataset stratified by purchase
group characteristics (n = 4250 purchase groups).

Variable Category Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Day 43 to
Slaughter Average

Sex Female (n = 82) 0.027 0.030 0.009 0.007 0.007 0.005 0.041 0.018
Male (n = 4, 168) 0.008 0.010 0.013 0.010 0.009 0.010 0.041 0.014

Age Calf and mixed
(n = 3338) 0.010 0.011 0.013 0.010 0.010 0.011 0.044 0.016

Yearling (n = 912) 0.007 0.008 0.013 0.006 0.008 0.007 0.027 0.011
Weaned
status Unweaned 2 (n = 627) 0.013 0.018 0.023 0.018 0.015 0.019 0.068 0.025

Weaned (n = 3623) 0.008 0.009 0.010 0.007 0.008 0.008 0.035 0.012
Purchase
weight 3 ≤255.8 (n = 1067) 0.013 0.015 0.015 0.013 0.010 0.009 0.050 0.018

255.8 to ≤302.1
(n = 1063) 0.004 0.010 0.011 0.008 0.008 0.013 0.043 0.014

302.1 to ≤346.5
(n = 1061) 0.008 0.008 0.012 0.010 0.010 0.010 0.040 0.014

>346.5 (n = 1059) 0.009 0.009 0.013 0.006 0.009 0.007 0.029 0.012
Purchase

season Spring (n = 1299) 0.100 0.013 0.012 0.009 0.007 0.006 0.039 0.027

Summer (n = 608) 0.007 0.004 0.009 0.009 0.010 0.008 0.032 0.011
Fall (n = 909) 0.012 0.013 0.015 0.012 0.013 0.016 0.044 0.018

Winter (n = 1434) 0.006 0.009 0.013 0.009 0.008 0.008 0.055 0.015
Geographic

origin
Canada or North US

(n = 58) 0.002 0.002 0.006 0.003 0.005 0.003 0.027 0.007

South US or mixed
(n = 4192) 0.009 0.011 0.013 0.010 0.009 0.010 0.041 0.015

Source Auction and mixed
(n = 4061) 0.009 0.011 0.013 0.01 0.010 0.010 0.042 0.015

Contracted (n = 189) 0.002 0.002 0.004 0.005 0.004 0.003 0.016 0.005
Head ≤27 (n = 1078) 0.015 0.017 0.021 0.014 0.015 0.017 0.070 0.024

27 to ≤53 (n = 1058) 0.007 0.011 0.010 0.009 0.008 0.008 0.030 0.012
53 to ≤77 (n = 1058) 0.004 0.005 0.007 0.009 0.005 0.005 0.023 0.008

>77 (n = 1056) 0.004 0.004 0.007 0.005 0.004 0.005 0.021 0.007
Purchase

year 4 2015 (n = 318) 0.014 0.011 0.014 0.014 0.016 0.014 0.054 0.020

2016 (n = 1369) 0.009 0.011 0.013 0.011 0.010 0.012 0.047 0.016
2017 (n = 1030) 0.010 0.011 0.011 0.007 0.008 0.008 0.034 0.013
2018 (n = 1030) 0.004 0.010 0.014 0.009 0.008 0.008 0.037 0.013
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Table 5. Cont.

Variable Category Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Day 43 to
Slaughter Average

Weekly
mortality 0% 0.001 0.003 0.003 0.003 0.003 0.002 0.026 0.006

0% to ≤2% 0.012 0.011 0.011 0.010 0.010 0.011 0.013 0.011
2% to <5% 0.031 0.027 0.030 0.028 0.027 0.029 0.012 0.026

≥5% 0.122 0.109 0.119 0.083 0.081 0.098 0.086 0.100
1 RMSE reported in decimals. To convert to % mortality, multiply by 100. 2 Unweaned and mixed purchase
groups. 3 Average purchase weight (kg). 4 The year 2019 was omitted from table due to small sample size (n = 2
purchase groups).

Table 6. Accuracy within 0.25% of weekly mortality from random forest models predicting all-cause
mortality among purchase groups of feedlot cattle in weeks after arrival at a feeding location in a test
dataset stratified by purchase group characteristics (n = 4250 purchase groups).

Variable Category Week 1 Week 2 Week 3 Week 4 Week 5 Week 6

Day 43
to

Slaugh-
ter

Average

Sex Female (n = 82) 92.7% 89.0% 92.7% 89.0% 96.3% 93.9% 78.1% 90.2%
Male (n = 4168) 96.2% 94.0% 92.7% 92.1% 91.4% 91.7% 63.2% 88.8%

Age Calf and mixed
(n = 3338) 96.3% 93.8% 92.0% 91.3% 90.5% 90.6% 61.9% 88.1%

Yearling (n = 912) 95.6% 94.0% 95.1% 94.7% 94.9% 95.9% 69.5% 91.4%
Weaned
status Unweaned 1 (n = 627) 94.3% 91.2% 86.8% 86.3% 83.9% 85.5% 57.3% 83.6%

Weaned (n = 3623) 96.5% 94.3% 93.7% 93.0% 92.8% 92.9% 64.5% 89.7%
Purchase
weight 2 ≤255.8 (n = 1067) 95.2% 93.1% 90.1% 89.5% 88.6% 89.6% 56.8% 86.1%

255.8 to ≤302.1
(n = 1063) 96.6% 93.7% 92.9% 92.6% 91.1% 91.1% 61.4% 88.5%

302.1 to ≤346.5
(n = 1061) 96.9% 94.2% 92.7% 91.0% 91.2% 90.8% 65.5% 88.9%

>346.5 (n = 1059) 95.9% 94.5% 95.0% 95.0% 95.0% 95.7% 70.4% 91.6%
Purchase

season Spring (n = 1299) 96.9% 95.2% 94.7% 94.8% 93.8% 93.6% 62.1% 90.2%

Summer (n = 608) 96.9% 95.6% 92.3% 91.1% 87.2% 90.5% 63.5% 88.2%
Fall (n = 909) 94.7% 91.0% 89.6% 88.7% 88.9% 87.8% 65.6% 86.6%

Winter (n = 1434) 96.1% 93.7% 93.0% 91.9% 92.8% 93.2% 63.5% 89.2%
Geographic

origin
Canada or North US

(n = 58) 98.3% 96.6% 89.7% 93.1% 93.1% 96.6% 70.7% 91.2%

South US or mixed
(n = 4192) 96.1% 93.8% 92.7% 92.0% 91.4% 91.7% 63.4% 88.7%

Source Auction and mixed
(n = 4061) 96.2% 93.8% 92.5% 91.9% 91.3% 91.7% 62.9% 88.6%

Contracted (n = 189) 95.2% 95.8% 96.8% 94.7% 94.7% 94.2% 77.3% 92.7%
Head 3 ≤27 (n = 1078) 98.3% 97.3% 96.0% 96.9% 95.7% 96.3% 65.8% 92.3%

27 to ≤53 (n = 1058) 96.2% 94.8% 93.2% 92.2% 91.9% 92.2% 61.0% 88.8%
53 to ≤77 (n = 1058) 96.0% 92.6% 92.1% 91.3% 91.5% 91.9% 64.5% 88.6%

>77 (n = 1056) 94.0% 90.6% 89.3% 87.5% 87.7% 86.7% 62.8% 85.5%
Purchase

year 4 2015 (n = 318) 94.0% 90.6% 89.9% 85.9% 86.2% 87.4% 60.1% 84.9%

2016 (n = 1369) 95.8% 93.4% 92.6% 91.8% 91.8% 92.3% 68.0% 89.4%
2017 (n = 1030) 96.9% 94.4% 92.5% 93.1% 91.8% 91.0% 64.4% 89.2%
2018 (n = 1030) 96.2% 94.8% 93.9% 92.6% 92.0% 93.6% 57.4% 88.6%
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Table 6. Cont.

Variable Category Week 1 Week 2 Week 3 Week 4 Week 5 Week 6

Day 43
to

Slaugh-
ter

Average

Weekly
mortality 0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

0% to ≤2% 2.9% 0.6% 7.4% 5.2% 5.8% 2.7% 95.0% 17.1%
2% to <5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 38.8% 5.5%

≥5% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0%
1 Unweaned and mixed purchase groups. 2 Average purchase weight (kg). 3 Head is the number of cattle in
the purchase group at time of purchase. 4 The year 2019 was omitted from table due to small sample size (n = 2
purchase groups).

In sensitivity and specificity analyses to assess the model’s ability to accurately detect
purchase groups with low mortality (0% to 0.25% or 0% to 0.50%), Weeks 3–5 had the best
balance of sensitivity and specificity, although specificity was low (Table 7). The Week 1
model had low specificity because the models performed poorly at identifying the few
purchase groups that had higher mortality. The Day 43 to Slaughter model had 100%
specificity because there were no purchase groups with low mortality, which the models
accurately predicted.

Table 7. Sensitivity and specificity 1 of detecting low mortality (0% to 0.25% mortality or 0% to 0.50%
mortality) purchase groups of feedlot cattle in weeks after arrival at a feeding location (n = 4250
purchase groups) 2.

Ability to Detect Purchase Groups with 0–0.25% Mortality

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Day 43 to
slaughter

Sensitivity 98.3% 83.2% 69.1% 69.6% 71.6% 82.8% 0.0%
Specificity 9.8% 33.6% 51.7% 51.2% 56.8% 30.1% 100.0%

Ability to Detect Purchase Groups with 0–0.50% Mortality

Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Day 43 to
slaughter

Sensitivity 98.3% 83.2% 69.2% 69.7% 71.7% 82.8% 0.0%
Specificity 10.1% 34.5% 53.6% 53.0% 58.7% 30.6% 100.0%

1 Sensitivity was calculated as the percent of low mortality (0% to 0.25% mortality or 0% to 0.50% mortality) in
purchase groups that were accurately predicted to have low mortality. Specificity was calculated as the percent
of purchase groups that did not have low mortality that was accurately identified as not having low mortality.
2 Additional details of the models are presented in Tables 4–6.

3. Discussion

Predicting feedlot mortality risk at the time of purchase could help determine when
changes in processing or management are needed for certain purchase groups. For example,
purchase groups that are high-risk may be sent to a backgrounding facility or may have
modified processing procedures that can reduce stress [5]. Intervening right after purchase
is ideal since it is one of the earliest points for intervention. Likewise, identifying purchase
groups that are low-risk could be beneficial for personnel management as-well-as judicial
antimicrobial administration. Therefore, our objective was to build all-cause mortality
predictive models using data available at the time of purchase.

Random forest models for weekly mortality of beef cattle after arrival at a feeding
location were built using cattle records, weather information, and transport data available
at the time of purchase. Even though the models had high accuracy (>90%), the RSMEs
were large when considering the scale of weekly percent mortality at a feedlot. In order
to illustrate this, mortality in the first 30 days of the feeding period averaged 0.40% and
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0.35% in heifers and steers, respectively, in a study by Vogel et al. 2015 [12]. Therefore, an
RMSE of approximately 1%, as reported in some of our models, would be a large margin
around the actual percent mortality. The models performed more poorly among purchase
groups with high weekly mortality. There are several possible reasons for this finding.
One major reason is that predictions generated from predictive models tend to favor the
majority class, and predictions are shrunk towards the sample mean [13]. Since the average
overall weekly mortality was close to 0%, the predictions were shrunk towards 0%, and
the models tended to under-predict for high-mortality purchase groups. In general, the
models also performed worse for purchase groups with characteristics associated with a
higher risk of morbidity and mortality. For example, purchase groups with known risk
factors for mortality such as calves (versus yearlings), unweaned calves, lower average
arrival weight, calves purchased from auctions, and calves purchased in the fall had less
accurate predictions compared with their lower-risk counterparts [11,14–16]. This is also
likely due to shrinkage towards the sample mean and consistent with under-prediction of
mortality risk.

Predictions were less accurate as the weeks progressed, likely because the predictions
were farther and farther away from the data used to generate them, and there were inter-
vening events and treatments. For example, transport, processing, co-mingling with other
purchase groups, weather after arrival, and treatments all affected mortality risk and were
not included in the prediction models [5,11,14]. Cattle processing is of concern because the
perceived risk on arrival can influence how cattle are processed. High-risk cattle were more
likely to receive metaphylaxis and potentially other preventative measures, which affects
mortality risk.

In the groups that had 0% mortality, random forest models were highly accurate (100%)
with low RMSE values (range of 0.001 to 0.003) for Week 1 through Week 6. Although
models were less accurate at identifying groups with greater than 0% mortality, there could
be significant utility in models that accurately identify groups at low risk of mortality
(0%). For example, fewer personnel can be allocated to monitoring low-risk groups. How-
ever, this will lead to an increased number of false negatives and decreased sensitivity
(i.e., high-risk groups identified as low-risk). The models with the best balance of sensitiv-
ity and specificity for detecting low mortality purchase groups (0–0.50% mortality) were
models for Weeks 3–5.

Although the models performed relatively poorly on high-mortality groups, the results
still have utility in that models performed well on low mortality purchase groups (0% to
0.25% mortality or 0% to 0.50% mortality), and they demonstrated the relative predictive
ability of data at different time points. The strongest predictors can inform future studies
aimed to build predictive models for mortality. It is interesting to note that the strongest
predictors varied by week. In earlier weeks, the maximum temperature was a strong
predictor, but in later weeks purchase weight became more important. Higher temperatures
contribute to heat stress, which increases the risk of morbidity and mortality [11,17]. The
predictive ability of the maximum temperature on the day of purchase may decrease over
time since the weather conditions have likely changed after arrival at the feeding location.
Purchase weight, which was consistently a strong predictor but increased in importance
as weeks progressed, was also consistently associated with morbidity and mortality in
multiple studies [7,11,14,16]. Age (calf and mixed purchase groups versus yearling only
purchase groups) was a strong predictor in later weeks. Age is a rough proxy for body
weight, but calves also may have a higher risk of morbidity and mortality after arrival
at a feeding location compared to yearlings because they have not been exposed to as
many pathogens over time, making them more susceptible [18,19]. The region was a strong
predictor in Weeks 3–5. Studies found a significant association between the region of
origin and morbidity and mortality in beef cattle [15,16,20]. This could be due to increased
shipping distances from farther regions, which may increase transportation stress [21]. Of
note, in the weeks with the highest sensitivity and specificity for detecting low mortality
purchase groups (Weeks 3–5), the strongest predictors were purchase weight, number of
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cattle in the purchase group, region, and weaned status. Future studies should incorporate
these predictors in models with consideration of their varying predictive ability over time.

To the best of our knowledge, the present study is the first to attempt to build predictive
models for all-cause mortality. Other studies that have built models for predicting BRD
morbidity and the probability of not finishing the production cycle also had difficulty
producing accurate predictions [9,22] or had very inconsistent accuracy based on factors
such as DOF and arrival weight [7]. However, Kayser et al. 2019 [23] built models with high
predictive accuracy for BRD incidence using feeding behaviors, so it is possible that feeding
behaviors could be a useful predictor for mortality since BRD is a major cause of death in
feedlot cattle [24]. Several potential predictors for BRD were discussed in a narrative review
by Wisnieski et al. 2021b [25]. The review highlighted complete blood counts, acute phase
protein concentrations, and data from precision livestock farming technologies as predictors
that should be evaluated further for their predictive ability [25]. In addition, predictions
also can be improved by building models that include more information after arrival at a
feeding location and update daily or weekly with new estimates. Babcock et al. 2013 [7]
found that including daily morbidity data after arrival improved morbidity predictions for
cohorts of cattle that were determined to be high-risk at arrival. Similar to our findings, the
authors found that the models generally performed better for low-risk cohorts.

There are several limitations of this study. One limitation is that purchase-group
level data were used throughout the analysis, but purchase groups were combined into
different lots at the feeding location. However, at the time of purchase, it was unknown
which purchase groups would be combined into lots, so the analysis reflected real-life
management practices. This could have lowered the predictive ability of the models
because lot-level factors, such as the degree of co-mingling of purchase groups into lots,
can affect disease risk [26]. In addition, only one feeding operation was utilized for the
analysis. The results cannot be generalized outside of the study population without further
validation. However, there were several feeding locations in different states. The results
of this study can be used to guide future predictive models that incorporate multiple
feeding operations.

In summary, records, weather, and transport data available at the time of purchase
produced predictions for weekly mortality among purchase groups with wide error margins.
The models performed poorly among high-risk purchase groups, underestimating their
mortality risk, which indicates that the models would not accurately identify high-risk
purchase groups for additional health interventions. However, the models performed
well for low-mortality purchase groups; therefore, the models could potentially serve as
a screening tool to identify low mortality purchase groups. Model accuracy decreased
as weeks progressed, however, the sensitivity and specificity of the models to detect low
mortality purchase groups were highest in Weeks 3–5. Future studies should consider
utilizing some of the strongest predictors that were identified in this study and build daily
or weekly risk models that can incorporate more information as days on feed increase. In
addition, future studies can investigate the use of different modeling strategies, such as
building separate models for low versus high-risk purchase groups or building predictive
models to identify categories of mortality risk (quartiles or quintiles of mortality).

4. Materials and Methods

Animal use approval was not needed because the data were ascertained through an
existing dataset. All data management and statistical analyses were performed in Stata
version 14.2 (StataCorp, College Station, TX, USA) and R version 3.6.0 (R Foundation for
Statistical Computing, Vienna, Austria).

4.1. Data Sources

Information on demographics, purchase and backgrounding locations, and health
outcomes were obtained through an existing operational data system from a large commer-
cial feeding operation located in the midwestern United States. The unit of analysis was
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the purchase group, which was defined as animals that are purchased, grouped, and then
transported together to the backgrounding or feedlot location. Prior to data cleansing, the
dataset included 14,631 purchase groups. The dataset included all purchase groups from
November 2015 to January 2019. More details about the feeding system are described in
Wisnieski et al. 2021a [11].

Weather information only on the purchase day was used in the models. Weather
information on the purchase day was downloaded using the DarkSky application program
interface (API) with the “dark sky” package in R [27,28]. Daily weather data included
wind bearing, apparent temperature minimum and maximum, temperature minimum
and maximum, precipitation accumulation, precipitation type, ultraviolet (UV) index, dew
point, humidity, and wind speed. The latitude and longitude of the purchase location and
the backgrounding or feedlot location were downloaded for each purchase group through
the MapQuest API with the “mqgeocode” command in Stata [29,30].

4.2. Data Partitioning

The full dataset was partitioned into test (30%) and training (70%) datasets and
balanced based on quartiles of the outcome (% cumulative mortality for the entire feeding
period) using the “caret” package in R [31].

4.3. Data Processing

Pre-processing and exploratory data analysis were completed using the training
dataset. Pre-processing included visually assessing variables using histograms and box
plots for unusual observations, checking for missingness, bivariable analyses with the
outcome, and multicollinearity assessment [13]. The full list of variables considered for
inclusion is presented in Supplementary Table S1. Variables with a large amount of missing
data or were highly correlated (r > 0.90) with another variable were dropped. In total,
16 variables were dropped. Levels of categorical variables with sparse categories were
combined. There were very few purchase days with precipitation; therefore, precipitation
was treated as a binary categorical variable (0 = there was no precipitation, 1 = there was
precipitation). Observations that were missing any of the final variables listed in Table 3
were dropped. The test data were processed the same as the training data. After processing,
the final dataset included 14,217 purchase groups, consisting of 860,545 animals.

4.4. Random Forests

Random forests are a tree-based ensemble method that constructs a multitude of
decision trees. The forest’s predictions are calculated by averaging the individual trees’
predictions. The ensemble nature of random forest models makes understanding the
relationships between predictors and outcomes impossible; however, random forest models
are specifically designed to optimize predictions. Random forests can be used for either
classification of categorical data or for regression [32]. For this analysis, regression was used
since the outcome was defined as percent mortality. The training dataset was used to build
7 random forest models: 6 models for weekly mortality from arrival at a feeding location
(Day 1) to Day 42 and one model for cumulative mortality from Day 43 to slaughter, using
the “caret” package in R. For each model, mortality was defined as the number that died
during that time period/total number in purchase group at the time of purchase. One
tuning parameter for random forests is mtry, which is the number of randomly selected
variables to choose from at each split. For each model, five values of mtry between 2 and
17 were tested with approximately equal increments; then, the optimum mtry value was
narrowed down to a more precise value using the “bestTune” model output [32]. For each
random forest, at least 1000 trees were used. The number of trees increased from 1000 until
the performance of the model leveled off [32]. RMSE values, which measure (on average)
how far the residuals are from 0, were calculated for each model through five-fold cross-
validation (CV) to evaluate model performance [32]. Finally, the 7 random forest models
were tested for predictive ability on the test dataset. Accuracy was calculated as the percent
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of purchase groups that were correctly classified within 0.25% and 0.50% percent of actual
weekly mortality. RMSE values and accuracy within 0.25% were reported by purchase
group characteristics to assess if the models performed better in certain sub-groups of cattle.
Lower RMSE values indicate that predictions have smaller deviations from the observed
values. RMSE can be interpreted on the scale of mortality by multiplying RMSE values by
100. Variance importance was also reported in order to determine which variables were the
strongest predictors. Variables with high importance are used more by the model to make
predictions compared to variables with low importance.

In order to further examine the ability of the models to detect low mortality purchase
groups, sensitivity and specificity were calculated to evaluate the ability of the models to
detect purchase groups with 0% to 0.25% and 0% to 0.50% weekly mortality. Sensitivity was
calculated as the percent of low mortality purchase groups that were accurately predicted
to have low mortality. Specificity was calculated as the percent of purchase groups that did
not have low mortality that was accurately identified as not having low mortality.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pathogens11040473/s1, Table S1: Description of predictors
considered in random forest models predicting all-cause mortality among purchase groups of
feedlot cattle.
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