
����������
�������

Citation: Rojas, H.A.; White, B.J.;

Amrine, D.E.; Larson, R.L. Predicting

Bovine Respiratory Disease Risk in

Feedlot Cattle in the First 45 Days

Post Arrival. Pathogens 2022, 11, 442.

https://doi.org/10.3390/

pathogens11040442

Academic Editor: Andrew Byrne

Received: 7 March 2022

Accepted: 3 April 2022

Published: 6 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pathogens

Article

Predicting Bovine Respiratory Disease Risk in Feedlot Cattle in
the First 45 Days Post Arrival
Hector A. Rojas, Brad J. White * , David E. Amrine and Robert L. Larson

Beef Cattle Institute, Kansas State University, Manhattan, KS 66506, USA; hectorrojas@vet.kssu.edu (H.A.R.);
damrine@vet.ksu.edu (D.E.A.); rlarson@vet.ksu.edu (R.L.L.)
* Correspondence: bwhite@vet.ksu.edu; Tel.: +17-85-532-4243

Abstract: Bovine respiratory disease (BRD) is the leading cause of morbidity in feedlot cattle. The
ability to accurately identify the expected BRD risk of cattle would allow managers to detect high-risk
animals more frequently. Five classification models were built and evaluated towards predicting the
expected BRD risk (high/low) of feedlot cattle within the first 45 days on feed (DOF) and incorporate
an economic analysis to determine the potential health cost advantage when using a predictive
model compared with standard methods. Retrospective data from 10 U.S. feedlots containing 1733
cohorts representing 188,188 cattle with known health outcomes were classified into high- (≥15%
BRD morbidity) or low- (<15%) BRD risk in the first 45 DOF. Area under the curve was calculated
from the test dataset for each model and ranged from 0.682 to 0.789. The economic performance for
each model was dependent on the true proportion of high-risk cohorts in the population. The decision
tree model displayed a greater potential economic advantage compared with standard procedures
when the proportion of high-risk cohorts was ≤45%. Results illustrate that predictive models may be
useful at delineating cattle as high or low risk for disease and may provide economic value relative to
standard methods.

Keywords: bovine respiratory disease; predictive modeling; economic analysis

1. Introduction

Bovine respiratory disease (BRD) remains the costliest disease in the American feedlot
industry costing between approximately $800 and $900 million annually [1]. Cattle arriving
to a feedlot are managed in groups and management decisions such as the administration
of antimicrobial metaphylaxis upon arrival is determined on the perceived risk of a high
percentage of cattle within a group developing BRD [2]. Feedlot decision makers use BRD
risk classification of high risk versus low risk to decide whether cohorts of cattle will or
will not receive metaphylactic treatment upon arrival to the feedlot. Many factors can
drive the perceived BRD risk of incoming cattle groups which can vary by personnel and
organizational policies. As a result, misclassifications may occur when determining BRD
risk classes. These misclassifications may negatively impact cattle health and ultimately
lead to increased expenditures towards treating health-related events.

Previous work has encouraged the use of operational feedlot data to predict BRD
health outcomes [3,4]. The ability to use feedlot data available at the time cattle arrive to
correctly predict and classify incoming cohorts of cattle into high- or low-risk groups would
allow for more judicial use of antimicrobials, potentially increase economic performance,
and allow personnel to focus their efforts on those cohorts expected to classify as high
risk. Previously investigated cohort risk factors such as average body weight, sex, quarter
of arrival, and cohort size have all been found to be associated with BRD morbidity
risk [5–7]. Pen housing conditions such as pen area and bunk space per head have also
been explored as risk factors for BRD [8]. The objective for this study was to assess the
ability of five different classification algorithms to accurately predict an incoming group
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of cattle’s risk classification (high/low) using commercial feedlot data during the first 45
days on feed (DOF). In addition, the economic performance of each model was evaluated
to determine if a potential health-cost advantage was present with the use of each models’
final model outputs.

2. Results
2.1. Descriptive Statistics

The study population data included 1733 distinct cohorts of cattle representing
188,118 individual animals. Each cohort was classified into a risk class category of high
or low based on BRD morbidity risk in the first 45 DOF in relation to a 15% cutoff. In
our training dataset there were 141 (10.85%) cohorts that were high risk and 1159 (89.15%)
cohorts that were low risk using the 15% cutoff. In the test dataset there were 47 cohorts
that were high risk (10.85%) and 386 cohorts that were low risk (89.15%). The mean BRD
morbidity in the first 45 days for all cohorts of cattle was 6.30%. The mean BRD morbidity
in the first 45 DOF for high-risk cattle was 27.07% and the mean morbidity for low-risk
cattle was 3.77%. A total of 1300 cohorts were partitioned in the training dataset, while
433 cohorts were partitioned in the test dataset. The prevalence of high-risk cohorts in the
training and test dataset was 10.85%, respectively.

2.2. Model Performance Diagnostics
2.2.1. Area under the Curve and Classification Accuracy

The accuracies and area under the curve (AUC) of the five classification models were
evaluated using the test dataset (Table 1). AUC was calculated using each model generated
ROC curve from the test dataset. AUC of the models ranged from 0.682 to 0.789 for decision
tree and random forest, respectively. Accuracy of the models ranged from 10.9% to 79.4%
for naïve Bayes and logistic regression, respectively.

Table 1. Final diagnostic performance estimates utilizing the test dataset for BRD morbidity risk
during the first 45 days on feed to classify cohorts as high or low risk for BRD development within
the first 45 days post arrival using a 15% cutoff at the optimum cutoff where 10.85% of the cohorts
had >15% BRD morbidity.

Performance Metric Logistic
Regression

Decision
Tree

Random
Forest

Naïve
Bayes

Linear
Discriminant

AUC 1 0.785 0.682 0.789 0.743 0.760

True Positives 40 21 42 47 37
False Positives 152 63 153 386 141
True Negatives 234 323 233 0 245
False Negatives 7 26 5 0 10

Accuracy% 63.3 79.4 63.7 10.9 61.4
Sensitivity% 85.1 44.7 89.4 100.0 91.5
Specificity% 60.6 83.7 60.6 0.0 57.8

PPV% 2 20.8 25.0 21.3 10.9 20.8
NPV% 3 97.1 92.6 97.9 DBZ 4 96.1
AUC 3 0.785 0.682 0.789 0.743 0.760

1 AUC—Area under the curve. 2 PPV—Positive Predictive Value. 3 NPV—Negative Predictive Value. 4 DBZ—
Division by zero (error).

2.2.2. Sensitivity and Specificity

Sensitivity between the classification models ranged from 44.7% to 100% (Table 1). The
highest sensitivity, 100%, was achieved using the naïve Bayes model. The lowest sensitivity,
44.7%, was achieved using the decision tree model. The model with the highest specificity
was the decision tree model at 83.7%. The model with the lowest specificity was the naïve
Bayes model at 0%.



Pathogens 2022, 11, 442 3 of 14

2.2.3. Positive/Negative Predictive Value

The model positive predictive value and negative predictive value with a 10.85%
prevalence of high-risk cohorts ranged from 10.9% to 25.0% and 92.6% to 97.9%, respectively
(Table 1). The model with the highest positive predictive value was the decision tree model
(25.0%); the model with the lowest positive predictive value was the naïve Bays (10.9%).
The model with the highest negative predictive value was the random forest (97.9%),
whereas the model with the lowest negative predictive value was the decision tree (92.6%).

2.3. Economic Results

The derived sensitivity and specificity for the control scenario was 83.75% and 59.79%,
respectively. The Net Health Cost Benefit and the difference from the control ($/animal)
were calculated for each of the five models. The difference from the control for each model
was variable depending on the proportion of high-risk cohorts to low-risk cohorts in the
population. As a result, the potential economic advantage/disadvantage of using a model
compared to not using a model (control) was volatile at different proportions of high-
risk cohorts to low-risk cohorts (Figure 1). In our study, logistic regression and random
forest models always offered a positive, but small, difference (higher $/animal) from the
control method across all possible prevalence of high-risk cohorts as they had a higher cost
per head advantage at all proportions of high-risk cohorts to low-risk cohorts. Decision
tree models had a positive difference from the control when the proportion of high-risk
cohorts to low-risk cohorts are below 45%. Naïve Bayes models had a positive difference
from the control when the proportion of high-risk cohorts to low-risk cohorts was above
approximately 83%. Linear discriminant models had a positive difference from the control
when the proportion of high-risk cohorts was above approximately 25%.

Figure 1. Estimated economic results ($/animal) of five classification models compared with a person
(control) classifying expected BRD morbidity risk of incoming cattle cohorts in the first 45 DOF
across varying proportions of high-risk cohorts to low-risk cohorts (0–100%). Gray line represents
the control ($0/animal). At any prevalence, if the difference from the control for a model is above
the control line ($0/animal) then it has a potential economic advantage relative to the control. If the
difference from the control for a model is below the control line ($0/animal) then it has a potential
economic disadvantage relative to the control.

3. Discussion

Protocols related to health management for cattle entering a feedlot are often based on
the expected risk class of disease within the group. Accurately predicting the health out-
come of incoming cohorts of cattle can serve to increase feedlot performance, efficiency, and
economic performance. Previous studies have incorporated cohort characteristics and risk
factors at arrival into predictive algorithms to accurately classify cohorts into classes related
to BRD morbidity [4,9]. However, these studies did not incorporate variables linked to pen
housing conditions such as pen and bunk space that previously have been investigated [8].
In this study we evaluated the diagnostic ability of five predictive algorithms to predict
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BRD morbidity risk (high or low) for cattle arriving to a feedlot within the first 45 days
post arrival using a 15% cutoff while incorporating previously associated risk factors for
BRD. We evaluated the predictive ability towards the outcome of interest of high/low BRD
morbidity risk in the first 45 DOF from the models that were produced from the use of
the variables in our analysis. The amount of BRD morbidity risk within a cohort that is
acceptable before management intervention differs among feedlot producers; therefore, an
economic analysis was performed to better determine if the predictive performance of any
of the five models would be economically beneficial compared with a person classifying
incoming groups of cattle high or low risk.

The AUC of each model’s receiver operating characteristic (ROC) curve was the metric
used to rank the predictive performance of each model. In general, an AUC of 0.5 describes
a model that has no discriminatory ability and serves as a model that has a 50% probability
of correctly classifying an observation. An AUC between 0.7 to 0.8 is acceptable, 0.8 to 0.9
is excellent, and more than 0.9 is outstanding [10]. In our study, the model with the highest
AUC is the random forest model at 0.79, with the range of AUC being 0.68 to 0.79 between
all models. This indicates the models’ performance ranged from poor to acceptable based
on AUC. The overall accuracy of each model was also calculated; however, evaluating
accuracy alone may be misleading when interpreting the final results in an imbalanced
dataset [11]. This was because the majority of the cohorts in the test data were classified in
the low-risk category (<15% were treated for BRD during the first 45 DOF). If a predictive
model classified every cohort as low risk it would have an accuracy of 89.1%. On the
surface, this appears to be an acceptable accuracy; however, when a model does not have
any discriminating ability and predicts all cohorts the same, the model is relatively useless.
As a result, AUC was used to rank the performance of each model as it avoids this bias and
allows us to better understand the predictive ability of our models.

The prevalence of high-risk cohorts in our dataset was 10.85% (188 high-risk cohorts
out of 1733 total cohorts). The PPV represents the proportion of predicted high-risk cohorts
that were truly high risk. The negative predictive values report the proportion of predicted
low-risk cohorts that are truly low risk. The PPV from our models ranged from 10.9% (naïve
Bayes) to 25% (decision tree), demonstrating that our final models have a low probability
of predicting positives (high risk) that are actual positives. In contrast, our models’ NPV
ranged from 92.6% (decision tree) to 97.9% (random forest), with one algorithm generating
a division by zero error (naïve Bayes). The naïve Bayes model had this error because the
model’s specificity was 0%, so it predicted every cohort to be positive (TP or FP). Four
of the five models created from this data perform well at predicting negatives (low risk)
that are actual negatives. As prevalence decreases, positive predictive value will increase
and the negative predictive value will decrease, and vice versa [12]. When evaluating the
PPV and NPV for each model the expected prevalence of the outcome of interest should
be considered.

Determining the practicality of each model’s usage in a feedlot setting requires both
knowledge of cohort-level feedlot data characteristics and predictive modeling. Feed-
lot producers generally use expected BRD risk to decide to give an incoming group of
cattle metaphylactic treatment to reduce cattle morbidity. Costs are associated with cor-
rectly/incorrectly administering metaphylaxis to incoming cohorts of cattle. The ability
to utilize a predictive model to predict the expected BRD risk of an incoming cohort may
aid feedlot operations in correctly administering metaphylaxis treatment and consequently
maximize profitability. Previous studies have utilized predictive analytic techniques to
attempt to predict an outcome of interest; however, these studies have not incorporated an
economic component in their model analysis [3,4,9]. We included a deterministic economic
approach to estimate a Net Health Cost Benefit cost for the use of each model when classi-
fying cohorts into high- or low-BRD morbidity risk. As a deterministic approach was used
to calculate costs, there is no randomness or variability in our results from potential factors
that may impact the population. This was not meant to represent a full-scale economic
analysis and only estimates the costs and potential benefits from associated treatments
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and use of metaphylaxis to mitigate BRD. Cohorts called high risk (positive) will receive
metaphylaxis and cohorts identified as low risk (negative) will not receive metaphylactic
treatment. The costs of a true negative, false negative, true positive, and false positive at
different proportions of high-risk cohorts were calculated to determine the costs associated
with each outcome. As a result, the calculations for these costs do not consider expenditures
related to additional factors related to feed costs, management costs, and other potential
costs that were not included.

The model that provided the greatest economic advantage was dependent on the
prevalence of high-risk cohorts in the population and the severity of BRD morbidity risk
within those high-risk groups. A lower prevalence of high-risk cohorts will favor models
that have a higher specificity. In contrast, a greater prevalence of high-risk cohorts will
favor models that have a higher sensitivity. Depending on the expected prevalence of
disease, managers can determine which specific is the best option and whether it is more
beneficial to use a model compared to not using a model.

In our study, sensitivity represents the model’s ability to correctly identify cohorts
that are high risk based on a selected cutoff; specificity represents the model’s ability to
correctly identify cohorts that are low risk on a selected cutoff. Determining which metric
to prioritize is dependent on the importance of minimizing false positives or false negatives
and the cost of each outcome. False positives with this data would be a cohort that was
truly low risk (<15% BRD morbidity 45 DOF) yet was predicted to be high risk. False
negatives would be a cohort that was truly high risk (≥15% BRD morbidity 45 DOF) yet
was predicted to be low risk. The costs and consequences for each type of error are different.
An increase in false positives may lead to additional unnecessary metaphylaxis treatment
costs that are administered to cohorts that are at low expected risk for BRD. In our study,
the cost of a false positive would be on average an extra $23.60 spent per animal for each
false-positive cohort that did not need metaphylactic treatment. False negatives may lead to
negative health outcomes as cattle would not receive metaphylaxis for respiratory disease
when they truly needed treatment. This misclassification can lead to increased health costs,
losses in performance, and potentially increased mortality. In our study, the cost of a false
negative was the loss of value of a sick animal compared with a healthy animal, which was
an estimated lost value of $151.18 per treated animal; the number of treated animals varies
based on estimated morbidity.

The decision tree model has the highest potential economic advantage compared to
other models when the proportion of high-risk cohorts present was ≤45%. For example,
when 5% of the cohorts entering the feedlot are high-risk cohorts the decision tree model
offers a potential $5/animal health cost advantage compared with human control. The
decision tree model had the highest specificity, which increases the model’s ability to
detect low-risk cohorts. Therefore, at this level of prevalence (5% high risk, 95% low risk)
the increased specificity of the decision tree was more valuable ($5/animal health cost
advantage) than the models with higher sensitivity. These results agree with a previous
study that reported that increasing diagnostic test specificity increased economic net returns
in comparison to increasing sensitivity [13]. However, in our study, the estimated health-
cost advantage of the decision tree compared with the human control decreased as the
proportion of high-risk cohorts increased. Once the prevalence of high-risk cohorts was
83% and above, the naïve Bayes model, which has the highest sensitivity, has an economic
advantage over the control. However, at this level of high risk, the cohorts’ feedlot managers
would likely not distinguish between high- and low-risk cohorts and would likely treat all
groups with metaphylaxis well before the proportion reaches 83%. The cost of using each
model was dependent on the prevalence of high-risk cohorts arriving to the feedlot, which
should be considered when determining the health-cost advantage to using these models
compared with a human.

A potential limitation may have been that the feedlots in our dataset only represented
Midwest feedlots and the data may not represent cohorts of cattle from all feedlots in terms
of the dates recorded, location, cattle types, and many other factors. Another limitation
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was that we did not have data indicating whether groups of cattle in our dataset had
received metaphylactic treatment. This could have impacted our outcome of interest, BRD
morbidity risk in the first 45 DOF, as we were not aware whether cohorts in either the
low- or high-risk category were previously mass treated. This could have affected what
expected risk cohorts were placed into at the 15% treatment cutoff as we do not know if
the percent of cattle treated for BRD in each cohort was affected by metaphylaxis. This
could potentially impact our results, by placing truly high-risk cattle into the incorrect
classification. For example, if a truly high-risk group of cattle was identified by feedlot
personnel and received metaphylactic treatment, then the overall percentage of cattle that
were treated for BRD within the first 45 days on feed in this cohort could have potentially
been lower than 15% due to metaphylaxis and they would not have been included in the
high-risk category in our study. As a result, there are likely cattle that are truly high risk
present in the low-risk category. The calculated sensitivity and specificity for our human
control was representative of a subset of data that was available and does not represent the
sensitivity and specificity for all feedlots. This was a small portion of data (n = 177 cohorts)
and the generalizability of this data most likely does not reflect all feedlots.

4. Materials and Methods
4.1. Data

Retrospective data from 10 Midwest feedlots were collected between January 2018 and
April 2020 and utilized for this study. A cohort was defined as a group of cattle purchased
and managed in a similar manner and housed together throughout the study period during
the initial 45 days on feed post arrival. Groups of cattle were procured by each feedyard
and no information on prior management or health prevention procedures were available
on the cattle cohorts. All data included in the study were collected on the animals at or
after feedyard arrival. Cohort- and individual-level variables were included in the dataset.
Cohort-level variables included: average arrival weight (total weight of all animals within
the cohort divided by the total head in that cohort), number of cattle in cohort at arrival,
arrival date quarter, and sex (steers, heifers, mixed gender). Individual-level data included
the total number of individual first treatments in each cohort for BRD within the first
45 DOF. Bovine respiratory disease incidence, our outcome, was defined as the number of
cattle that were treated at least once for BRD based on feedlot diagnosis within the first
45 DOF divided by the size of the cohort. The case definition for a BRD treatment was any
animal that received an antimicrobial treatment for BRD during the first 45 DOF. Cases
were limited to first BRD treatments only and any additional treatments were excluded
from analysis. If an animal was treated more than once, the first treatment record was
utilized. Cohorts with missing data for any of these variables were excluded from the
study population.

Pen housing variables were calculated for each cohort, including: pen area (sq. m),
bunk space available (m), pen area per head (sq. m), and bunk space per head (m).
Dimensions of each pen were measured utilizing the ‘ruler tool’ Google Earth Pro [14].
Pen area was calculated by measuring the square meters of each pen. This was done by
multiplying the length of the pen by the width of the pen if the pen shape was square
or rectangular. If the pen had an irregular polygonal shape, then the ‘polygon tool’ was
utilized to measure the area of the geometric shape of the pen. Linear bunk space was
recorded by measuring the length (m) of visible bunk in each pen. Pen area per head was
calculated by dividing pen area (sq. m) by the cohort size at arrival for each cohort. Bunk
space per head was calculated by dividing pen bunk space available (m) by cohort size at
arrival for each individual cohort. Cohorts without available pen housing measurements
were removed from the dataset. Cohorts that were housed in 2 or fewer pens within the
first 45 DOF were included for analysis. If a cohort was housed in 1 pen for the entirety of
the 45 DOF period then the dimensions of the 1 pen were used for analysis. If a cohort was
housed in 2 pens during the 45 DOF period then the dimensions of the second pen were
used for analysis, but only when the cohort was limited to <7 DOF in the first pen. Any
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cohorts that were moved between 3 or more pens during the first 45 DOF were excluded
from analysis.

4.2. Data Preparation

The cumulative percent of cattle receiving a first treatment for BRD within the first
45 DOF was calculated for each cohort. The primary study outcome was expected cohort-
level BRD risk classification (high or low risk) based on a treatment cutoff of 15% total
BRD morbidity within the first 45 days on feed that has previously been used in prior
research [13]. If 15% or more animals in a cohort were treated for BRD at least once in the
first 45 DOF, the cohort was classified as a high-risk cohort. If less than 15% were treated
for BRD during the first 45 DOF, then the cohort was classified as a low-risk cohort. A new
binary cohort-level variable was created to represent the cutoff and populated with a value
of 1 if BRD morbidity was greater than or equal to 15% or 0 if BRD morbidity was less
than 15%.

4.3. Data Partitioning

Models may become overfitted and provide inaccurate biased estimates when utilizing
a single dataset for training and testing the models. An overfitted model developed with a
single dataset may fail to predict new data sets accurately [15]. Multiple datasets are used to
avoid biased estimates and improve each model’s discrimination ability by evaluating final
diagnostic performance in a dataset independent of data used for model building phase.
Data were partitioned 75% into a training dataset (n = 1300) and 25% (n = 433) into a testing
dataset using the ‘tidymodels’ R package [16]. The data splitting process was stratified to
ensure that the training and test dataset produced the same frequency distribution of high-
and low-risk cohorts in each dataset. Each of the five individual models was created using
the training dataset and the final metrics for each model’s performance were obtained
using the testing dataset only once. A flow diagram of data preparation, partitioning, and
classification is shown in Figure 2.

Figure 2. Flowchart of data refinement, data partitioning, algorithm training, and classification model
algorithm evaluation.
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4.4. Recipe Creation

The ‘tidymodels’ R framework was utilized to create a recipe that defines a series
of data preprocessing tasks and develops a model specification formula [17]. Within the
recipe, BRD morbidity risk (high/low) in the first 45 days on feed was selected as the
outcome variable and predictor variables of interest were identified (Table 2). Variables
that were not meaningful in external application of the model such as pen ID, cohort ID,
and feedlot ID were excluded from analysis. An indicator (or dummy) variable was created
for each qualitative variable and converted into a matrix of dummy variables that are 0 or 1
for that categorical variable. This formula and training dataset were used across the five
models tested in our analysis.

Table 2. Description of predictor and outcome variables.

Variable Description

Cohort size at arrival Total animals in cohort upon arrival to the feedlot
Average arrival weight at arrival Total weight of all animals/cohort size at arrival

Arrival Date Quarter 1,2 Quarter of the year that cohort arrived (1,2,3,4)
Sex 1 Gender of the cohort (steer, heifer, mixed gender)

Total pen area (sq. m) Total area of the pen that cohorts were placed in
Bunk space length (m) Total length of bunk available in pen

Pen area available per head (sq. m) Total pen area/cohort size at arrival
Bunk space available per head (m) Bunk space length/cohort size at arrival

BRD morbidity risk 3 1 = total cohort BRD morbidity risk ≥ 15%
0 = total cohort BRD morbidity risk < 15%

1 Qualitative variables that were converted to quantitative variables as dummy variables. 2 1 (January, February,
Mar), 2 (April, May, June), 3 (July, August, September), 4 (October, November, December). 3 Binary outcome variable.

4.5. Classification Algorithms

Five commonly used predictive models were used to predict the BRD risk class of each
cohort of cattle. The models used were: logistic regression, decision tree, random forest,
naïve Bayes, and linear discriminant. Each individual predictive model was trained with
the training dataset. Evaluation of the model performance was performed using the test
dataset with the pre-defined cutoff (15%) for BRD morbidity risk within the first 45 days
after arrival as the outcome of interest.

Logistic regression is a statistical model used when the outcome variable is binary.
It describes the linear relationship between the outcome and the explanatory variables
using the logistic function to observe the effect of each variable on the probability of the
observed event of interest [18]. The predicted class selected is based on which class has the
highest probability. The ‘glmnet’ function in R was used to create the logistic regression
models [19].

Decision tree is a hierarchical classification machine learning model composed of
decision rules that recursively classify data from the training dataset through a series of
questions [20]. Each node in the tree contains a question regarding the predictor variables
and question nodes are added incrementally to increase separation of the training data into
their categories as effectively as possible [21]. Decision tree models were built using the
‘rpart’ R package [22].

Random forest is a classification machine learning algorithm that generates many
classification models and aggregates their results [23]. Random forest models operate as an
ensemble that consists of many individual decision trees that arrive at a class prediction.
The model’s prediction is determined by the most abundant class. The ‘ranger’ package
was used to create the random forest models [24].

Naïve Bayes is a classification algorithm that uses Bayes’ theorem of probability and
assumes independence among predictors in a given class [25]. Naïve Bayes models provide
a mechanism that uses the training data to estimate the posterior probability of each class
given a specific variable. The class with the highest posterior probability is the outcome of
the prediction. Naïve Bayes models were built using the ‘naiveBayes’ package [26].
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Linear discriminant is a classification algorithm that determines a hyperplane to maxi-
mize the separation of the projected means of classification [27]. Groups are specified by
the discriminant process and data points are classified by where they lie on the hyperplane.
Linear discriminant models were built using the ‘mda’ R package [28].

4.6. Resampling/Cross-Validation

A k-fold cross-validation resampling method was applied to the training dataset. The
goal of using cross-validation was to generate different versions of the training dataset to
estimate how well the models will perform with new data that was not used to train the
models. This helps to avoid overfitting and selection bias within each model [15]. In this
case, k-fold cross-validation splits the training dataset into k smaller subsets, or folds’, of
the data. Each model is trained using k-1 of the folds as training data and the model is
validated on the remaining part of the data as a test set. The performance metrics reported
by the k-fold cross-validation is the average of the values between all folds of the data [29].

The training data within all five classification models were evaluated with 10 distinct
folds. For each iteration, data from the training dataset were randomly partitioned (75%
(1300 cohorts out of the original 1733)) into 10 equally sized subsets (folds) of data. The
remaining 25% (433 cohorts out of the original 1733) were used as the test dataset. Strati-
fied sampling was done to ensure that each fold had the same frequency distribution of
the outcome.

4.7. Model Optimization/Tuning

Model optimization/tuning is performed to find a combination of hyperparameters in
a given machine learning algorithm that provides the best model performance. Hyperpa-
rameters have a direct impact with the model’s learning process and act as model settings
that can be adjusted to optimize the model’s performance [29]. A grid search was per-
formed to determine candidate tuning parameter values for each model. Some models have
more than one tuning parameter and in this case candidate parameter combinations values
are created. The resampling data was used to evaluate each parameter value combination
and obtain estimates of how well each candidate model performs. After evaluation, the
hyperparameter values that produce the best results in the grid search were selected and
used for analysis of the test dataset for final analysis of each model utilizing the cross-fold
validation dataset.

4.8. Model Evaluation

Final evaluation of the models was performed by allowing each algorithm to classify
predictions using the test dataset. Classifier predicted probabilities of BRD morbidity
risk of low or high were created for each distinct cohort for each classification model.
Receiver-operating characteristic (ROC) curves were created utilizing these probabilities
compared with known actual health outcomes using the ‘yardstick’ package in R [16].
ROC curves show the diagnostic ability of binary classification models and the trade-off
between sensitivity and specificity for every possible cutoff for a test [30]. The cutoff point
that was utilized from each generated ROC curve was the point where sensitivity and
specificity were maximized by calculating Youden’s index [31]. Youden’s index has a
range between 0 and 1, with the value of 1 indicating the test has perfect sensitivity and
specificity. Classification model performance was then evaluated using the final predicted
classes based on the cut point selected. Our primary metric for initial model comparison
is AUC, because it is a measure of the degree of separability and how well the model
can distinguish between classes using a range from 0 to 1, where a value of 0 indicates a
perfectly inaccurate test and a value of 1 indicates a perfectly accurate test [32]. Additional
metrics calculated and evaluated were true positives (TP), true negatives (TN), false positive
(FP), false negatives (FN), Positive Predictive Value (PPV), Negative Predictive Value (NPV),
sensitivity (Se), specificity (Sp), and accuracy. Figure 3 displays a flowchart describing how
a model would arrive at each diagnostic outcome and the calculations for each metric.
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Figure 3. Flowchart of diagnostic outcomes and calculations generated from predictive classification
models using cutoff of 15% BRD morbidity in the first 45 DOF.

4.9. Economic Analysis

An economic analysis was performed with the goal estimating a cohort-level Net
Health Cost Benefit (NHCB) for each predictive model and a control scenario that repre-
sented a person classifying expected BRD risk without the use of a model. This NHCB
was meant to represent the health costs associated with each model to predict expected
BRD risk. These health costs include expenses associated with the administration of BRD
treatment and the potential lost value from a morbid animal compared to a healthy animal.
The values for these costs were determined based on previous reports and averages from
the study population dataset (Table 3). BRD morbidity was defined as the number of cattle
within a cohort that were treated for respiratory disease at least once in the first 45 DOF. The
cost of a morbid animal was considered as $151.18 per head based on data from a previous
Texas A&M Ranch to Rail summary report [33]. This cost considered the return difference
from healthy animals compared to sick animals in medicine costs and ‘lost value’ due to
reduced efficiency, lowered gain, and reduced sale value. The cost of a single metaphylaxis
treatment ($23.60) was the average cost for a respiratory disease treatment reported in
a USDA NAHMS report [34]. The average cohort size (n = 109) was set as the average
cohort size in our study population dataset and was calculated by taking the total number
of animals in our study population and dividing it by the total number of cohorts in the
population (n = 188,118/1733). The proportion of high-risk cohorts served as a range that
represented the proportion of high-risk cohorts that could have potentially been present in
the data. For example, if this number was set as 0.25 then 25% of the cohorts in the dataset
would be expected to be high risk for BRD. The metaphylaxis efficacy was set at 0.5 (50%)
to represent the reduced morbidity after metaphylaxis treatment [35].
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Table 3. Variables included in the economic analysis to compare the cost benefit of using one of the
predictive models compared with the control scenarios.

Variable Value

Total number of lots 1 1733
Average cohort size 2 109

Cost of single metaphylactic treatment per animal 3 $23.60
Prevalence of high-risk cohorts (%) 0–100

Cost of morbid animal 4 $151.18
BRD morbidity% in true positives 5 27%
BRD morbidity% in true negatives 6 3%

Metaphylaxis efficacy 7 0.5
1 Total of number of cohorts in study population. 2 Average cohort size in study population. 3 Average cost per
animal to administer metaphylaxis (USDA 2013). 4 Average cost of a sick animal [33]. 5 Average morbidity in the
true positive (high-risk) cohorts in study population. 6 Average morbidity in the true negative (low-risk) cohorts
in study population. 7 Metaphylaxis efficacy set at 0.5 (50%) to represent reduced morbidity after metaphylaxis
treatment [35].

In this analysis there was a decision on whether an incoming cohort is going to receive
or not receive metaphylactic treatment; thus, a cohort could be true positive (had ≥15%
morbidity within the first 45 DOF and were predicted to be high risk) or a false positive
(predicted to be high risk and had <15% morbidity within the first 45 DOF). In our analysis
we varied the prevalence of high-risk cohorts (0–100) to represent feedlots with different
types of incoming cattle. The total number of diagnostic outcomes (TP, TN, FP, FN) were
calculated at each level of prevalence for each predictive model. A cost incorporating the
cost of metaphylaxis and lost value from a morbid animal was assigned to each diagnostic
outcome (TP, TN, FP, FN) to calculate the NHCB. The NHCB was then subsequently
divided by the average cohort size of animals in the study population (mean = 109) to
produce an average cost/benefit per animal for use of each model. Table 4 describes the
potential diagnostic outcomes generated from each model prediction with the associated
metaphylaxis decision that would be decided by feedlot management and the anticipated
financial result from the decision made. The NHCB was then subsequently divided by
the average cohort size of animals in the study population (mean = 109) to produce an
average cost per animal for use of each model. The formulas for the NHCB and cost of each
diagnostic outcome are shown below:

NHCB = TPcost + TNcost + FPcost + FNcost (1)

TNcost = $0 (baseline; no incurred costs) (2)

TPcost = (MC × (BRD45 × ME) × TC) − (CS × TC) (3)

FPcost = −(TC × CS) (4)

FNcost = −((BRD45 × ME) × MC × CS) (5)

TNcost, TPcost, FPcost, and FNcost represent the cost per animal of a true negative,
true positive, false positive, and false negative outcome, respectively. MC represents the
cost incurred from the lost value of a morbid animal compared with a healthy animal
($151.18). BRD45 represents the percent of cohorts in the population that are expected to
be high risk for BRD morbidity in the first 45 DOF and in our analysis could take a value
from 0 to 100. ME represents the metaphylaxis efficacy, estimated to be a 50% reduction in
morbidity. TC represents the average treatment cost for a single metaphylactic treatment
($23.60). CS represents the average size of a cohort (109).
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Table 4. Possible diagnostic outcomes associated with an economic analysis to evaluate the costs
associated with correct or misclassification of cohort-level risk of bovine respiratory disease in first 45
days on feed.

Diagnostic
Outcome Truth Model

Prediction
Metaphylaxis

Decision Financial Consequence

TP High risk High risk Treat

Animals that are truly high risk
are metaphylactically treated.

Treatment costs are incurred, but
expenses are saved by avoiding

lost value from potential
morbid animals.

FN High risk Low risk Do not treat

Animals that are truly high risk
are not treated. These animals are
expected to become morbid and

provide lower value compared to
healthy animals. The magnitude

of financial loss was dependent on
the prevalence of
high-risk cohorts.

FP Low risk High risk Treat

Animals that are truly low risk are
metaphylactically treated. These

animals are expected to be healthy,
but received treatment regardless,
so the incurred costs are only the

treatment cost of metaphylaxis for
animals in each cohort.

TN Low risk Low risk Do not treat

Animals that are truly low risk are
not metaphylactically treated.

This is the baseline cost that was
compared with all other outcomes.
Since animals are expected to be

healthy, and no treatment costs are
incurred, the value for this
outcome will always be $0.

A control scenario was included to represent a human classifying expected BRD risk
to incoming cohorts without the use of a predictive model. This was added in order to
compare the cost of using a model against standard methods to predict expected BRD risk.
A NHCB for a control scenario was also calculated to compare the economic output between
the model results and the control scenario. To achieve this, Se and Sp were calculated
from a subset of data (n = 177 cohorts) that included the actual risk status assigned to each
cohort by feedlot management. This Se and Sp were calculated by comparing the feedlot’s
classifications with the actual health outcomes for each cohort based on the 15% BRD
morbidity cutoff that was used in the modeling process. For example, if a feedlot classified
an incoming cohort as high risk and the percent of the cohort that was treated for BRD
once was 15% or greater, then it was called a TP. Diagnostic outcomes (TP, FP, TN, and FN)
were calculated based on these criteria. The NHCB was formulated in the same manner as
the costs for each model using the calculated sensitivity and specificity. A difference from
the control ($/animal) was calculated at each proportion of high-risk cohorts to low-risk
cohorts to compare the NHCB between the five models and the control. The control was
set at $0/animal and all models were compared with the control. If a model displayed a
value greater than $0/animal at any proportion of high-risk cohorts then that indicated
that there was a potential economic advantage to use the model relative to the control. If a
model displayed a value less than $0/animal at any proportion of high-risk cohorts then
that indicated that there was a potential economic disadvantage to use the model relative
to the control.
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5. Conclusions

The objectives of this study were to evaluate the diagnostic performance of five
classification models to classify incoming groups of cattle into high- and low-risk categories
based on the BRD morbidity within the first 45 DOF and evaluate the models using an
economic framework to determine whether the models were advantageous to a person
classifying expected risk. We used AUC to evaluate model performance as this metric
measures the models’ degree of separability between high- and low-risk cohorts. Using area
under the curve, the random forest model had the best performance with a value of 0.789
using the testing dataset. Although the random forest model had the highest AUC, it was
not always the best model to use economically. The economic performance of each model
was dependent on the prevalence of high-risk cohorts in the population. The decision tree
provided the greatest estimated economic benefit when the proportion of high-risk cohorts
was lower than 45% in the population. In addition to previously evaluated factors, this
study provides a new outlook using arrival and pen housing factors to classify cohorts into
risk categories. In order to further evaluate the true impact of these predictive models a
prospective study should be considered to validate the true diagnostics and costs of using
a predictive algorithm compared with current management strategies to determine the
expected BRD risk of incoming cohorts of cattle. In addition, more data, including new
predictor variables and observations of data, are needed to continue to refine the algorithms
and provide a better estimate of each model’s predictive performance.

Author Contributions: Conceptualization, H.A.R., B.J.W., D.E.A. and R.L.L.; Methodology, H.A.R.,
B.J.W., D.E.A. and R.L.L.; Software, H.A.R., B.J.W., D.E.A. and R.L.L.; Validation, H.A.R., B.J.W., D.E.A.
and R.L.L.; Formal Analysis, H.A.R., B.J.W., D.E.A. and R.L.L.; Investigation, H.A.R., B.J.W., D.E.A.
and R.L.L.; Resources, B.J.W., D.E.A. and R.L.L.; Data Curation, H.A.R., B.J.W., D.E.A. and R.L.L.;
Writing—Original Draft Preparation, H.A.R.; Writing—Review & Editing, H.A.R., B.J.W., D.E.A. and
R.L.L.; Visualization, H.A.R.; Supervision, B.J.W., D.E.A. and R.L.L.; Project Administration, B.J.W.,
D.E.A. and R.L.L.; Funding Acquisition, B.J.W., D.E.A. and R.L.L. All authors have read and agreed
to the published version of the manuscript.

Funding: This project was supported by Agriculture and Food Research Initiative Competitive Grant
no. 2019-67015-29845 from the USDA National Institute of Food and Agriculture.

Institutional Review Board Statement: No IRB or IACUC approval was utilized for this study as all
animal data were based on historical numbers retrieved from operational databases.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data used in this study were from cooperating entities and are not
available publicly due to confidentiality and anonymity agreements.

Conflicts of Interest: The authors declare that they have no conflict of interest.

References
1. Chirase, N.K.; Greene, L.W. Dietary Zinc and Manganese Sources Administered from the Fetal Stage Onwards Affect Immune

Response of Transit Stressed and Virus Infected Offspring Steer Calves. Anim. Feed Sci. Technol. 2001, 93, 217–228. [CrossRef]
2. Ives, S.E.; Richeson, J.T. Use of Antimicrobial Metaphylaxis for the Control of Bovine Respiratory Disease in High-Risk Cattle. Vet.

Clin. N. Am. Food Anim. Pract. 2015, 31, 341–350. [CrossRef] [PubMed]
3. Amrine, D.E.; White, B.J.; Larson, R.L. Comparison of Classification Algorithms to Predict Outcomes of Feedlot Cattle Identified

and Treated for Bovine Respiratory Disease. Comput. Electron. Agric. 2014, 105, 9–19. [CrossRef]
4. Babcock, A.H.; White, B.J.; Renter, D.G.; Dubnicka, S.R.; Scott, H.M. Predicting Cumulative Risk of Bovine Respiratory Disease

Complex (BRDC) Using Feedlot Arrival Data and Daily Morbidity and Mortality Counts. Can. J. Vet. Res. 2013, 77, 33–44.
5. Taylor, J.D.; Fulton, R.W.; Lehenbauer, T.W.; Step, D.L.; Confer, A.W. The Epidemiology of Bovine Respiratory Disease: What Is

the Evidence for Predisposing Factors? Can. Vet. J. 2010, 51, 1095–1102.
6. Cernicchiaro, N.; Renter, D.G.; White, B.J.; Babcock, A.H.; Fox, J.T. Associations between Weather Conditions during the First 45

Days after Feedlot Arrival and Daily Respiratory Disease Risks in Autumn-Placed Feeder Cattle in the United States. J. Anim. Sci.
2012, 90, 1328–1337. [CrossRef]

http://doi.org/10.1016/S0377-8401(01)00277-2
http://doi.org/10.1016/j.cvfa.2015.05.008
http://www.ncbi.nlm.nih.gov/pubmed/26227871
http://doi.org/10.1016/j.compag.2014.04.009
http://doi.org/10.2527/jas.2011-4657


Pathogens 2022, 11, 442 14 of 14

7. Hay, K.E.; Barnes, T.S.; Morton, J.M.; Clements, A.C.A.; Mahony, T.J. Risk Factors for Bovine Respiratory Disease in Australian
Feedlot Cattle: Use of a Causal Diagram-Informed Approach to Estimate Effects of Animal Mixing and Movements before Feedlot
Entry. Prev. Vet. Med. 2014, 117, 160–169. [CrossRef]

8. Hay, K.E.; Morton, J.M.; Clements, A.C.A.; Mahony, T.J.; Barnes, T.S. Associations between Feedlot Management Practices and
Bovine Respiratory Disease in Australian Feedlot Cattle. Prev. Vet. Med. 2016, 128, 23–32. [CrossRef]

9. Amrine, D.E.; McLellan, J.G.; White, B.J.; Larson, R.L.; Renter, D.G.; Sanderson, M. Evaluation of Three Classification Models to
Predict Risk Class of Cattle Cohorts Developing Bovine Respiratory Disease within the First 14 Days on Feed Using On-Arrival
and/or Pre-Arrival Information. Comput. Electron. Agric. 2018, 156, 439–446. [CrossRef]

10. Mandrekar, J.N. Receiver Operating Characteristic Curve in Diagnostic Test Assessment. J. Thorac. Oncol. 2010, 5, 1315–1316.
[CrossRef]

11. Menardi, G.; Torelli, N. Training and Assessing Classification Rules with Imbalanced Data. Data. Min. Knowl. Disc. 2014, 28,
92–122. [CrossRef]

12. Tenny, S.; Hoffman, M.R. Prevalence. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021.
13. Theurer, M.E.; White, B.J.; Larson, R.L.; Schroeder, T.C. A Stochastic Model to Determine the Economic Value of Changing

Diagnostic Test Characteristics for Identification of Cattle for Treatment of Bovine Respiratory Disease. J. Anim. Sci. 2015, 93,
1398–1410. [CrossRef] [PubMed]

14. Google Earth Pro. Google Version 9.159.0.0. Available online: https://earth.google.com/web/ (accessed on 1 December 2021).
15. Cawley, G.C.; Talbot, N.L.C. On Over-FItting in Model Selection and Subsequent Selection Bias in Performance Evaluation. J.

Mach. Learn. Res. 2010, 11, 2079–2107.
16. Kuhn, M.; Vaughan, D. Yardstick: Tidy Characterizations of Model Performance. Available online: https://CRAN.R-project.org/

package=yardstick (accessed on 1 December 2021).
17. Kuhn, M.; Wickham, H. Tidymodels: A Collection of Packages for Modeling and Machine Learning Using Tidyverse Principles.

2020. Available online: https://www.tidymodels.org (accessed on 1 December 2021).
18. Petrie, A.; Watson, P.F. Statistics for Veterinary and Animal Science, 3rd ed.; Blackwell Pub. Professional: Ames, IA, USA, 2013; ISBN

978-0-470-67075-0.
19. Friedman, F.; Hastie, T.; Tibshirani, R. Regularization Paths for Generalized Models via Coordinate Descent. J. Stat. Softw. 2010,

33, 1–22. [CrossRef]
20. Myles, A.J.; Feudale, R.N.; Liu, Y.; Woody, N.A.; Brown, S.D. An Introduction to Decision Tree Modeling. J. Chemom. 2004, 18,

275–285. [CrossRef]
21. Kingsford, C.; Salzberg, S.L. What Are Decision Trees? Nat. Biotechnol. 2008, 26, 1011–1013. [CrossRef]
22. Therneau, T.; Atkinson, B. Rpart: Recursive Partitioning and Regression Trees. Available online: http://cran.r-project.org/web/

packages/rpart/rpart.pdf (accessed on 1 December 2021).
23. Liaw, A.; Wiener, M. Classificatoin and Regression by RandomForest. R News 2002, 2, 18–22.
24. Wright, M.N.; Ziegler, A. A Fast Implementation of Random Forests for High Dimensional Data in C++and R. J. Stat. Soft. 2017,

77, i01. [CrossRef]
25. Webb, G.I. Naïve Bayes. In Encyclopedia of Machine Learning and Data Mining; Sammut, C., Webb, G.I., Eds.; Springer US: Boston,

MA, USA, 2016; pp. 1–2. ISBN 978-1-4899-7502-7.
26. Majka, M. Naivebayes: High Performance Implementation of the Naive Bayes Algorithm in R. Available online: https://CRAN.

R-project.org/package=naivebayes (accessed on 1 December 2021).
27. Koehler, G.J.; Erenguc, S.S. Minimizing Misclassifications in Linear Discriminant Analysis. Decis. Sci. 1990, 21, 63–85. [CrossRef]
28. Hastie, T.; Tibshirani, R. Mda: Mixture and Flexible Discriminant Analysis. Available online: https://CRAN.R-project.org/

package=mda (accessed on 1 December 2021).
29. Kuhn, M.; Johnson, K. Feature Engineering and Selection: A Practical Approach for Predictive Models; Chapman & Hall/CRC Data

Science Series; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: London, UK, 2020; ISBN 978-1-138-07922-9.
30. Gardner, I.A.; Greiner, M. Receiver-Operating Characteristic Curves and Likelihood Ratios: Improvements over Traditional

Methods for the Evaluation and Application of Veterinary Clinical Pathology Tests. Vet. Clin. Pathol. 2006, 35, 8–17. [CrossRef]
31. Youden, W.J. Index for Rating Diagnostic Tests. Cancer 1950, 3, 32–35. [CrossRef]
32. Safari, S.; Baratloo, A.; Elfil, M.; Negida, A. Evidence Based Emergency Medicine; Part 5 Receiver Operating Curve and Area

under the Curve. Emergency 2016, 4, 111–113. [PubMed]
33. McNeill, J.W. 2000–2001 Texas A&M Ranch to Rail—North/South Summary Report; Texas Agricultural Extension Service, Texas A&M

University: College Station, TX, USA, 2001.
34. United States Department of Agriculture. APHIS-VS: National Animal Health Monitoring System Beef Feedlot study 2011. Types

and Cost of Respiratory Disease Treatments in U.S. Feedlots. Info sheet 2013. Available online: https://www.aphis.usda.gov/
animal_health/nahms/feedlot/downloads/feedlot2011/Feed11_is_RespDis_1.pdf (accessed on 1 December 2021).

35. Avra, T.D.; Abell, K.M.; Shane, D.D.; Theurer, M.E.; Larson, R.L.; White, B.J. A Retrospective Analysis of Risk Factors Associated
with Bovine Respiratory Disease Treatment Failure in Feedlot Cattle. J. Anim. Sci. 2017, 95, 1521–1527. [CrossRef] [PubMed]

http://doi.org/10.1016/j.prevetmed.2014.07.001
http://doi.org/10.1016/j.prevetmed.2016.03.017
http://doi.org/10.1016/j.compag.2018.11.035
http://doi.org/10.1097/JTO.0b013e3181ec173d
http://doi.org/10.1007/s10618-012-0295-5
http://doi.org/10.2527/jas.2014-8487
http://www.ncbi.nlm.nih.gov/pubmed/26020916
https://earth.google.com/web/
https://CRAN.R-project.org/package=yardstick
https://CRAN.R-project.org/package=yardstick
https://www.tidymodels.org
http://doi.org/10.18637/jss.v033.i01
http://doi.org/10.1002/cem.873
http://doi.org/10.1038/nbt0908-1011
http://cran.r-project.org/web/packages/rpart/rpart.pdf
http://cran.r-project.org/web/packages/rpart/rpart.pdf
http://doi.org/10.18637/jss.v077.i01
https://CRAN.R-project.org/package=naivebayes
https://CRAN.R-project.org/package=naivebayes
http://doi.org/10.1111/j.1540-5915.1990.tb00317.x
https://CRAN.R-project.org/package=mda
https://CRAN.R-project.org/package=mda
http://doi.org/10.1111/j.1939-165X.2006.tb00082.x
http://doi.org/10.1002/1097-0142(1950)3:1&lt;32::AID-CNCR2820030106&gt;3.0.CO;2-3
http://www.ncbi.nlm.nih.gov/pubmed/27274525
https://www.aphis.usda.gov/animal_health/nahms/feedlot/downloads/feedlot2011/Feed11_is_RespDis_1.pdf
https://www.aphis.usda.gov/animal_health/nahms/feedlot/downloads/feedlot2011/Feed11_is_RespDis_1.pdf
http://doi.org/10.2527/jas2016.1254
http://www.ncbi.nlm.nih.gov/pubmed/28464093

	Introduction 
	Results 
	Descriptive Statistics 
	Model Performance Diagnostics 
	Area under the Curve and Classification Accuracy 
	Sensitivity and Specificity 
	Positive/Negative Predictive Value 

	Economic Results 

	Discussion 
	Materials and Methods 
	Data 
	Data Preparation 
	Data Partitioning 
	Recipe Creation 
	Classification Algorithms 
	Resampling/Cross-Validation 
	Model Optimization/Tuning 
	Model Evaluation 
	Economic Analysis 

	Conclusions 
	References

