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Abstract: Urbanization trends have changed the morphology of cities in the past decades. Complex
urban areas with wide variations in built density, layout typology, and architectural form have
resulted in more complicated microclimate conditions. Microclimate conditions affect the energy
performance of buildings and bioclimatic design strategies as well as a high number of engineering
applications. However, commercial energy simulation engines that utilize widely-available mesoscale
weather data tend to underestimate these impacts. These weather files, which represent typical
weather conditions at a location, are mostly based on long-term metrological observations and fail to
consider extreme conditions in their calculation. This paper aims to evaluate the impacts of hourly
microclimate data in typical and extreme climate conditions on the energy performance of an office
building in two different urban areas. Results showed that the urban morphology can reduce the
wind speed by 27% and amplify air temperature by more than 14%. Using microclimate data, the
calculated outside surface temperature, operating temperature and total energy demand of buildings
were notably different to those obtained using typical regional climate model (RCM)–climate data or
available weather files (Typical Meteorological Year or TMY), i.e., by 61%, 7%, and 21%, respectively.
The difference in the hourly peak demand during extreme weather conditions was around 13%. The
impact of urban density and the final height of buildings on the results are discussed at the end of
the paper.

Keywords: urban microclimate; extreme weather conditions; energy performance; urban areas;
CFD simulations

1. Introduction

According to the UN [1], about 55% of the world’s population live in cities, and this number is
projected to increase to over 67% in 2050. In developed countries (Europe and Northern America),
the urban population is even higher (78%) and expected to increase to 81% in 2050 [2]. This rapid
urbanization has resulted in more complex urban morphologies with a wide range of built density,
layout, and forms. This complexity in urban morphologies has created several challenges in designing
bioclimatic buildings that support the progression toward climate-resilient urban neighborhoods.
Global energy consumption in urban areas is more than 70% [3] as a result of the convoluted
microclimate conditions in cities, with most of this driven by the demands of the building sector [4].
Office buildings (including 23% of nonresidential buildings) are responsible for more than 48% of the
annual energy demand (heating and cooling) in urban areas [5,6]. It is commonly accepted that urban
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microclimate conditions have a significant impact on urban climates [7,8], urban comfort [9,10], and
the energy performance of buildings [11,12]. At the urban microscale level, the average wind speed is
lower, with more complex flow patterns as compared to rural areas [13]. Moreover, due to the urban
heat island (UHI) effect, the average air temperature is higher in urban areas [14]. The fluctuations
in wind speed and air temperature affect a wide range of engineering applications in urban areas
and buildings.

Hence, these impacts tend to be underestimated when energy performance simulation (EPS)
studies adopt widely-available climatic data such as weather files with an EPW (EnergyPlus Weather
file) format. These weather files are usually based on locally recorded weather data for typical years,
such as the Typical Meteorological Year (TMY) and the Weather Year for Energy Calculation (WYEC),
to represent the long-term average climate conditions at a location [15]. However, these weather
files fail to represent local microscale data and extreme weather conditions, which can introduce
large peak loads and cause higher total energy demand on average [16]. Due to the budget and
time limitations of construction projects, it is not possible to generate weather datasets by means
of Computational Fluid Dynamics (CFD) simulations or long-term local measurements for a whole
urban area with hourly time-step. On the other hand, architects and urban designers frequently make
use of commercial building energy simulation tools in the early stage design process; thus, it would
be helpful if they could adopt more design-based methods and user-friendly procedures based on
existing simulation engines. Hence, researchers and energy experts need to develop a method to
normalize widely-available weather files in regular EPS tools based on local microclimate conditions in
relation to the urban morphology. These normalized weather files can be easily adopted by designers
to obtain more accurate estimations of microclimate conditions and, consequently, more reliable energy
demand calculations.

The novelty of this paper is that it investigates the fluctuations of seven main climate variables
(wind speed, wind direction, air temperature, air pressure, relative humidity, global radiation, and
cloud coverage) at microscale with an hourly time-step to generate microclimate weather data through
a comprehensive CFD study coupled with energy performance simulations. Moreover, a detailed
comparison is made between mesoscale weather files and microclimate data in terms of surface
temperature, operative temperature, and energy demand. The paper is structured as follows: First,
the numerical model and adopted weather datasets are discussed thoroughly; then, the inputs and
setting for CFD and energy performance simulations are presented in the Methodology section. Third,
the results of the CFD simulations and generated microclimate weather data for energy simulation
are discussed in Section 3.1. Using fifteen sets of 24-h continuous weather data, the results of surface
temperature, operative temperature and energy demand for both urban models are assessed. Finally,
a summary of the main findings, with the focus on urban design strategies, is presented in the
Conclusions section.

2. Background

It is crucial to develop a method that considers microclimate data in both typical and extreme
conditions in regular EPS studies as it affects several engineering applications in buildings. In
this regard, there have been some attempts to develop a multiscale method that takes into account
microscale data by comparing the results of high-resolution metrological mesoscale models (such
as Weather Research and Forecasting (WRF) model [17] and remote sensing methods [18]) at the
near-surface ground level [19,20]. These models [21] have usually focused on non-urban areas or have
not focused on evaluating the energy performance of urban areas, and consequently, they cannot be
directly applied in the current commercial BES tools. A comprehensive review on the main approaches
for modeling and simulating urban areas and microclimate conditions can be found in [22]. There
are several challenges in modeling and simulating urban microclimate conditions, even though it is
commonly accepted that urban morphology has a major impact on microclimate conditions [23]. To
overcome the limitations and complexities of modeling urban microclimates, experimental methods
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(for models with low temporal and spatial resolutions) [24], mathematical/analytical methods [25],
numerical methods [26] or a combination of these methods [27] have usually been adopted in the
current literature. Numerical methods, due to their flexibility and accuracy in predicting local-scale
phenomena in urban areas, have been widely used to study microclimate conditions and urban
wind comfort [28]. Several research works have adopted numerical methods to study microclimate
conditions by means of computational fluid dynamics (CFD) with detailed approaches (for small-scale
cases or a limited number of iterations) [29] or with more simplified approaches (for larger urban areas
and a higher number of iterations) [30]. It is commonly accepted that the urban geometry or form
can change microclimate conditions [31]. Thus, most studies have used generic configurations [32] or
real-site cases [33] as urban areas, and some have adopted a combination of these models [34]. The
main factors in the urban microclimate that have been investigated include air temperature [35], surface
temperature [36], solar radiation [37], wind flow variations [38], and air humidity [39]. Many works
have studied the UHI effect on the energy performance of buildings [40,41] and its impacts on higher
cooling demand in cold regions and lower heating demand in hot–arid regions [42,43] in urban areas.

Except for a few studies [44], research on wind flow at the urban scale is mostly limited to urban
comfort studies [45]; these have evaluated a limited range of constant average values [46] or urban
wind at the pedestrian level around buildings regardless of energy demand simulations [47]. There
are several studies which have used coupled CFD–BES models to evaluate microclimate conditions
considering wind and temperature variations [48]. However, in these studies urban areas are mostly
defined as a shading object or obstacle on the building in the regular energy simulation engines. In other
words, the fluctuations of the local microclimate data are ignored in the process of urban morphology
modeling and weather data generation. Particularly in regions with several frequent extreme wind
conditions, these impacts can induce undesired variations in the average and peak energy loads. In this
regard, this paper aims to evaluate the microclimate conditions of two detailed urban areas by means
of CFD simulations with an hourly time-step to assess the outside surface temperature, operative
temperature, and total energy demand of buildings. The urban models represent the major high- and
low-density areas of Stockholm. The surface temperature, operative temperature, and energy demand
of the buildings in the urban models were evaluated adopting fifteen 24-h continuous weather data
based on typical and extreme wind conditions out of three sources, including a regular TMY file, a
synthesized metrological regional climate model (RCM)–climate dataset, and microclimate data, using
the results of the CFD simulations.

3. Methodology

This section gives an overview on the urban models as well as energy performance evaluations.
Section 3.1 discusses the process of generating two high-density and low-density urban models
to represent major urban morphologies of Stockholm. Section 3.2 presents the adopted methods
to generate hourly RCM–climate weather datasets for typical and extreme conditions in additions
to extracted TMY-based weather files. Finally, the defined computational domain and boundary
conditions of CFD simulations and EPS inputs are presented in Section 3.3.

3.1. Modeling Urban Areas

Two simplified urban models in two areas with high and low densities were generated based on
a technique called “building modular cell” (BMC), in accordance with a comprehensive parameter,
namely, urban density (including layout density, building form, and height). The BMC technique is
based on an 8 × 8 × 8 m cube as the basic module. Using this module, thousands of building forms
and urban areas were generated and verified to assess the impacts of urban morphology on energy
demand and microclimate conditions. The generated and verified urban morphologies are hypothetical
configurations based on statistics out of real urban areas such as various site coverages, overall forms,
and urban patterns. In this study, based on major urban morphology parameters, three urban layouts
were selected out of this database to be considered as urban models. For a more detailed description of
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this technique, readers are referred to [49]. These urban models consist of eight building blocks as urban
roughness and a public green space in the top-left corner of the model. For the high-/low-density urban
models, total site coverage of 87.5% and 35.8% are defined to generate seven building blocks around
the central twelve-story buildings. These models were generated using a Grasshopper algorithm with
similar streets (width = 30.9 m) and urban canopies (width = 6 m) between buildings (40% of the
total area of the site is open spaces). The total area of each model is 24,000 m2 with similar physical
properties. The distinct forms of buildings in each model with rectangular geometries are designed to
identify complex wind flow and air temperature profiles around them. The number of urban models
is limited to two due to required computational power for hourly-resolution CFD simulations for
three days. Figure 1a,b shows the 3D visualization of low-density (LD) and high-density (HD) urban
models in this study. The schematic section of the defined layers of the generated urban areas (based
on definitions in [13]) is illustrated in Figure 1c.
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Figure 1. 3D visualization of generated urban models in this study: (a) low-density urban model
(LD), (b) high-density urban model (HD), (c) schematic section of the generated urban models: RSL:
roughness sublayer; SL: surface layer; UBL: urban boundary layer; ISL: inertial sublayer, ML: mixed
layer; FA: free atmosphere.

3.2. Weather Data Sets

For metrological weather data, three 24-h continuous data were generated based on a method
introduced by Nik [50] to synthesize typical and extreme weather files based on the outdoor temperature,
to be used in energy simulations. In this method, the representative and extreme months using
Finkelstein–Schafer statistics are selected and verified for hygrothermal simulations [51]. In this paper,
a similar logic was adopted based on the wind speed as the main indicator, instead of temperature to
synthesize meteorological years with typical and extreme high and low wind speeds. In addition to
wind speed, four other climate variables, including air temperature, wind direction, global radiation
(direct and indirect), and cloud coverage, were combined to create weather data with an hourly time
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step. Thus, these typical and extreme weather conditions are divided into three sets of typical, high,
and low wind speeds and synthesized for the 30-year period of 2010–2039, considering six weather
scenarios simulated by the RCA4 regional climate model (RCM) with a spatial resolution of 12.5 km.

To consider microclimate conditions with the minimum number of simulations, one typical and
two extreme days were selected from each extreme year. In this regard, 24-h continuous data with
typical average wind speed from the year with typical average wind speed, to be called ‘typical wind
speed’ or ‘TWS’ (19 February), 24-h continuous data with the highest average wind speed from the
year with the highest wind speed, to be called ‘highest wind speed’ or ‘HWS’ (13 January), and 24-h
continuous data with the lowest average wind speed from the year with the lowest wind speed, to be
called ‘lowest wind speed’ or ‘LWS’ (4 October), were collected.

These weather datasets were used as inputs for boundary conditions in the CFD simulations in
each hour. In a parallel process, the same period with a similar approach and method were extracted
out of TMY weather files with EPW format for EnergyPlus [52] to evaluate the accuracy of the widely
available weather files for energy simulation. Thus, three 24-h continuous data in the same dates were
generated out of the TMY files for Stockholm. For example, in low wind conditions, the weather data of
4 October were extracted. The weather data in these three days in the RCM and TMY files are notably
different. In other words, typical and extreme low and high wind conditions in the TMY file occur
on different days. Thus, to examine the accuracy of the TMY file in predicting typical and extreme
conditions, the same logic used to generate RCM files was adopted to extract three other weather files
based on absolute typical and extreme low and high wind conditions out of TMY files. These three 24-h
continuous data based on the TMY file for typical wind speed or ‘TMY-Typ’ (14 September), the highest
wind speed or ‘TMY-Max’ (13 January), and the lowest wind speed or ‘TMY-Min’ (17 November) were
generated. In total, six 24-h continuous weather data out of TMY files as well as three weather datasets
from synthesized datasets as mesoscale data were generated. Figure 2 shows the boxplot of wind
direction frequency in the generated RCM and TMY weather data. The typical and extreme low and
high weather data out of RCM data were used as inputs for simulating microclimate conditions by
means of CFD calculation, which resulted in three microclimate datasets (Section 3.1). Table 1 shows
the details of each generated weather data in this study.
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Table 1. The details of fifteen generated weather datasets in the study for energy performance
simulations (EPS); mesoscale data: regional climate models (RCM) and typical meteorological year
(TMY), microscale data: micro in typical and extreme low and high wind conditions.

Wind
Speed Types Date Scale Generated Weather

Data STDV Min Average Max

Typical
TWS 02.19

Meso (1) RCM–TWS 0.37 9.91 10.61 11.06

Micro
(2) Micro-TWS (LD) 0.22 0.11 0.43 0.9

(3) Micro-TWS (HD) 0.2 0.08 0.39 0.8

Meso (4) TMY–TWS 2.62 1 4.58 8.2

EPW-TYP 09.14 Meso (5) TMY–TYP 0.93 0.5 1.65 3.1

Extreme
low

LWS 10.04

Meso (6) RCM–LWS 0.28 0.16 0.56 1.14

Micro
(7) Micro-LWS (LD) 0.26 7.6 8.12 8.33

(8) Micro-LWS (HD) 0.29 5.31 5.82 6.36

Meso (9) TMY–LWS 0.28 0.2 0.57 1.2

EPW-Min 11.17 Meso (10) TMY-Min 0.2 0 0.25 0.5

Extreme
high

HWS 01.15

Meso (11) RCM–HWS 0.48 12.21 13.14 14.02

Micro
(12) Micro-HWS (LD) 0.3 7.98 8.57 9.16

(13) Micro-HWS (HD) 0.2 6.45 6.95 7.29

Meso (14) TMY–HWS 0.45 12.2 13.53 14

EPW-Max 01.13 Meso (15) TMY-Max 4.46 6.2 12.55 18

3.3. CFD and EPS

The calculations in this study are divided into two sections: CFD simulations and EPS. For
CFD simulations, in each urban model, ninety-nine calculation points were defined to simulate wind
speed and air temperature in different locations of the site. These calculation points are located in
eleven critical locations of each model, and in each location, nine points from 2 m to 66 m level are
defined. The average values of all calculation points are considered as the local microclimate wind
speed, air temperature, relative humidity, and air pressure for each hour in the roughness sublayer. To
simulate turbulent flow conditions, the standard k-ε turbulence model was applied. In this model, k
represents the turbulent kinetic energy equation and ε represents dissipation of kinetic energy [53].
The adopted model was validated through hundreds of iterations using ANSYS Fluent, Autodesk
CFD, and measured data for the numerical models in an earlier work of the authors [49]. In this
study, σk, σε, C1ε, C2ε, and Cµ as adjustable dimensionless values are set to 1, 1.30, 1.44, 1.92, and
0.09, respectively. To consider buoyancy effects, the Boussinesq approximation was applied, and the
turbulent Prandtl number (Prt) was considered as 1.0. The standard wall functions for the turbulent
flow were considered next to the wall, and heat transfer by radiation was balanced with the heat
transfer by convection using a radiation model based on true view factors calculation for geometries.
Figure 3 illustrates the considered computations domains for the urban models. For each urban model,
wind speed, wind direction, air temperature, global radiation (direct and indirect), and cloud coverage
were applied to the defined boundary conditions (top and lateral) in each hour. The average values of
all ninety-nine calculation points for wind speed, air temperature, air pressure, and relative humidity
were considered as the microclimate data in each hour based on the adopted weather datasets. The
results were used to generate three microclimate condition weather data as discussed in the previous
section, including ‘Micro-TWS’, ‘Micro -LWS’, and ‘Micro -HWS’ for typical, extreme low, and high
conditions, respectively.
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(a) plan view of computational domain; (b) section view of computational domain; (c) HD urban area.

For energy performance simulations (EPS), cooling and heating demand were defined as the sum
of the latent and sensible cooling and heating energy of the central twelve-story building through
a validated approach in the earlier work of the authors [54]. Each floor consists of a private office
zone and a shared space zone. The urban areas were in Rhinoceros/Grasshopper and converted to
EnergyPlus models using Diva-for-Rhino and Archsim [55]. The sum of cooling and heating demand
was calculated considering heat transfer through external surfaces of the central building as well as
internal heat sources and infiltration through windows for fifteen 24-h continuous day weather data.
Table A1 shows the parameters and variable considered for EPS based on the optimal values for both
urban models.

Figure 4 illustrates the workflow of the paper from generating weather data to the analysis of the
results. At the first step, based on the method introduced by Nik [50], the weather data were developed
based on the typical and extreme weather conditions of Stockholm. Then, the urban models were
generated in Rhinoceros/Grasshopper based on building modular cells or ‘BMC’ [42]. The models
were transferred to Autodesk CFD using Autodesk Inventor to define computational domains and
boundary conditions. Adopting mesoscale weather data, the hourly CFD simulations were run for
three 24-h continuous days using wind speed, wind direction, air temperature, global radiation, relative
humidity, and cloud coverage as the inputs. The urban models were converted to thermal zone using
Diva-for-Rhino and Archsim for EnergyPlus engine. Then, the outside surface temperature, operative
temperature, and total energy demand of the central building in each urban model were evaluated
with an hourly time-step.
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4. Results and Discussion

This section presents an overview of the main findings of the paper in two sections. The results
of CFD simulations for microclimate conditions are presented and discussed for wind speed and air
temperature in Section 3.1. Then, based on the acquired data, three 24-h continuous weather data are
generated based on the adopted synthesized mesoscale weather datasets. In Section 3.2, all generated
weather datasets (RCM, Micro, and TMY data for TWS, LWS, and HWS conditions) are applied to
the thermal model of the urban areas to simulate the hourly outside surface temperature, operative
temperature, and the sum of the energy demand of the central building in each case.

4.1. CFD Simulations

Figure 5 shows the hourly air temperature and wind speed out of CFD simulations as microclimate
data normalized by input values acquired out of RCM weather datasets. It is clear that the average
wind speed in all hours in both urban areas is lower than the input value, while the air temperature in
all weather conditions is mostly higher than the input values. The variations of air temperature in all
three weather conditions are lower with similar trends, while the fluctuations of average wind speed
due to its nature are considerably higher. Due to lower wind flow distribution in the urban fabrics of
the HD model, the normalized wind speed is notably lower compared to that of the LD model. In
the LD area, the approaching flows towards the windward buildings are distributed into the adjacent
urban canopy axis and are directed toward other canopies. The lateral wind flows into the urban area
in the LD are lower than into the denser urban area. In HD, higher WS and more intense turbulences
are observed in the main streets compared to canopies. During other hours of the day in the HD area,
a larger amount of flow approaches the eastern parts of the site, particularly when input wind speed is
lower than 1 m/s. In cases where input wind speed is higher than 1 m/s, a stagnation point occurs at
the façade and rooftop of the windward buildings as obstacles which direct the flow over the urban
area at the higher heights and results in higher T at lower surfaces.
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Figure 5. Normalized hourly air temperature (T) and wind speed (WS) at microscale as a function
of mesoscale data (as inputs for CFD simulations). Typical wind speed (TWS): 19 February; lowest
wind speed (LWS): 4 October; and highest wind speed (HWS): 15 January. HD: High density; LD:
Low density.

The approach flow toward windward buildings with a high input wind speed (TWS and HWS) is
distributed into the windward canopies in both urban models. However, due to high input wind speed
magnitude, the approach wind is blocked by the windward buildings, and a large amount of flow
skims over the top of the urban areas, instead of being distributed into the urban fabric. This causes
lower average wind speed differences and ∆T between different locations in HD compared to the LD
model. Moreover, in the denser urban areas, the blockage effect is notably higher. Consequently, the
average wind speed in the main streets and canopies is lower compared to LD at the near-ground
surfaces. The buoyancy effect in the hours with wind speed lower than 1 m/s is much higher compared
to high wind speeds in HWS and TWS, particularly in the urban canopies. Due to this high buoyancy
effect, upward vortices occur in the canopies, which can cause lower air temperature by heat removal
and thermal circulations. In the HD urban area, average wind speed out of all calculation points is
considerably higher than in the LD area due to the channeling effect at urban canopies. In additions
to urban comfort, this can affect total energy demand of the central building by changing average
temperature (adjacent air to wall and surface) and heat transfer through walls, windows or infiltrations.

The hourly results of CFD simulations (wind speed, air temperature, air pressure, and relative
humidity) were used to generate three weather data files to represent the typical and extreme high
and low wind conditions in EPS. Here, air temperature at the microclimate level in most hours was
amplified by urban morphology. Moreover, wind speed magnitude at the microclimate level was
dampened in all hours of the day by urban morphology. Figure 6 illustrates the boxplot of Micro,
RCM, and TMY wind speed and air temperature based on the generated weather datasets. The
fluctuations of both wind speed and air temperature in each weather dataset imply the importance
of considering microclimate data in EPS. The distribution of the wind speed and air temperature as
two main influencing variables on the EPS notably differs from RCM data and particularly the TMY



Buildings 2019, 9, 189 10 of 19

weather file as the most frequent weather data in the regular energy simulations. In the next section,
adopting all generated weather data, the BPS results are presented.
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TWS: 19 February; LWS: 4 October, HWS: 15 January; TMY-Typ: 14 September; TMY-Min: 17 November,
and TMY-Max: 13 January. HD: High density; LD: Low density.

4.2. Energy Performance Simulations (EPS)

This section presents the results of the EPS out of Micro, RCM, and TMY weather data. For this
purpose, the hourly outside surface temperature (Ts), operative temperature (TO), and energy demand
(heating and cooling) of the central building in both urban areas are presented. Figure 7 shows the
hourly Ts (average of all surfaces) of the central building based on the adopted weather data. In TWS,
average Ts adopting Micro data in LD (21.2 ◦C) and HD (20.8 ◦C) urban areas was 22% and 11% higher
than with RCM data, while the average Ts adopting the regular TMY file was 61% and 39% in the LD
and HD areas, respectively, which is higher compared to Micro data. Moreover, the average Ts in
typical conditions in TMY data (TMY-Typ) was 89% and 82% higher than that of Micro data. These
notable Ts differences between TMY data and local microclimate data cause a high level of uncertainty
in energy demand calculations. It can be noted that Ts in typical conditions considering microclimate
data is higher on average compared to other regular weather files. In LWS, average Ts adopting Micro
data (LD: 16.5 ◦C, HD: 15.1 ◦C) was slightly higher compared to the results with RCM and TMY data
in LD (8%) and HD (6%) areas. The extreme low wind conditions in TMY (TMY-Min) showed a 28%
and 26% lower Ts compared to adopting Micro data in LD and HD areas, respectively. According to
the results, the average Ts in LD areas was higher than in HD areas due to higher heat removal by
upward vortices of wind in the canopies around the central buildings, as it was clear at CFD contours.

This is due to the higher buoyancy effect in the canopies around the central building in the HD
area with the low-speed approaching wind. The Ts difference between extreme low wind conditions in
the local microclimate data and TMY-Min indicates that it is lower compared to that in TWS conditions.
This can be due to differences between reference wind speed and wind direction in the RCM data
used for CFD simulations. In HWS, microclimate data (LD: 10.5 ◦C, HD: 9.8 ◦C) caused over 19%
and 13% higher average Ts compared to the results with RCM or TMY data in LD and HD areas,
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respectively. The extreme wind conditions in TMY (TMY-Max) showed about 87% and 77% lower
average Ts compared to considering microclimate data in the simulation process. In both typical and
extreme conditions, the average and peak Ts in LD areas were higher than in HD areas due to upward
vortices in the northern and southern canopies around the central building. Moreover, the windward
canopies amplify the approaching wind magnitude toward the center of the site, which also causes
lower air temperature by heat removal. This air temperature is adjacent to the outside surface of the
central building by changing the Ts magnitude through convection heat transfer.
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Figure 7. Hourly Ts of all elevations of the central building in the LD and HD areas adopting fifteen
weather datasets. TWS: 19 February; LWS: 4 October, HWS: 15 January; TMY-Typ: 14 September;
TMY-Min: 17 November, and TMY-Max: 13 January. HD: High density; LD: Low density.

The outside Ts differences between adopting Micro data for running EPS compared to RCM or
TMY data induced higher heat transfer rates and, consequently, a higher indoor temperature. Figure 8
shows the hourly TO of the central buildings (average of all thermal zones) in LD and HD areas. The
results of the TO were notably affected by the defined temperature set points of the Heating, Ventilation,
and Air Conditioning (HVAC) system in the building (Section 3.3). In TWS, average TO adopting
Micro data is over 1% and 3% higher than the results with RCM data in LD and HD areas, respectively.
However, considering Micro data, the average TO is about 4% and 1% lower than the regular TMY
file. The results showed over 7% lower TO considering Micro data compared to the typical conditions
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of TMY data (TMY-Typ) in both areas. In response to higher Ts in LWS conditions, the average TO
is slightly higher (about 1%) adopting Micro data compared to the RCM and TMY data. The TO
difference between Micro and TMY-Min data is a little bit higher, equivalent to 4%. A similar trend
can be observed in the HWS conditions, where the average TO is about 2% higher considering Micro
data compared to the Meso, TMY, and TMY-Max. A slightly difference in TO results causes notable
variations in calculating indoor thermal comfort and the total energy demand of the buildings. By
considering extreme microclimate conditions in the simulation, average TO in all cases are higher
compared to other regular weather datasets. Moreover, in response to higher outside air temperature
and Ts in most hours of the day, the average TO in LD areas with similar conditions is higher than in
HD areas.
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Figure 8. Hourly average To of the central building in the LD and HD areas adopting fifteen weather
datasets. TWS: 19 February; LWS: 4 October, HWS: 15 January; TMY-Typ: 14 September; TMY-Min:
17 November, and TMY-Max: 13 January. HD: High density; LD: Low density.

Figure 9 illustrates the boxplot of total energy demand (cooling and heating) of the central building
in LD and HD areas adopting fifteen weather datasets. In TWS, Micro data compared to RCM data
showed 2% and 6% lower energy demand in LD and HD, respectively, while compared to the TMY file
on the same day, energy demand adopting Micro data was about 18% and 13% higher. These results
indicate the high uncertainty in using regular TMY files to calculate energy demand for typical days.
In LWS, average daily energy demand considering Micro data was 17% and 21% lower compared to
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the adopted RCM data in LD and HD areas. A similar trend and absolute values can be observed
compared to the regular TMY file. However, the extreme low wind conditions in TMY (TMY-Min)
showed 58% and 50% higher energy demand compared to Micro data in LD and HD areas, respectively.
Interestingly, in HWS, energy demand adopting Micro data was 10% and 14% lower compared to RCM
data and 10% and 13% lower compared to the regular TMY file. Adopting TMY-Max, results showed
15% and 18% higher energy demand compared to Micro data. The reason for lower energy demand in
almost all cases using Micro data compared to RCM data (as input for the CFD simulations) was higher
average outdoor air temperature and consequently higher Ts and TO. Moreover, energy demand in LD
areas in almost all cases was higher than HD areas due to the heat removal in the canopies by higher
wind speed around the central building.
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Figure 9. Boxplot of total energy demand (cooling and heating) of the central building in LD and
HD areas adopting fifteen weather datasets. TWS: 19 February; LWS: 4 October, HWS: 15 January;
TMY-Typ: 14 September; TMY-Min: 17 November, and TMY-Max: 13 January. HD: High density; LD:
Low density.

The hourly peak demand in extreme conditions adopting Micro data differed from RCM and TMY
files. For example, in LWS, the hourly peak energy demand adopting Micro data (695.3 kWh) was
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10%, 11%, and 13% lower compared to Meso, TMY, and TMY-Max, respectively, in the LD areas. These
values in the HD areas were 4%, 2% and 15% (peak demand ith Micro data is 750.4 kWh). In HWS, peak
energy demand with Micro data (1279.6 kWh) in the LD area was 6%, 5%, and 14% lower compared to
Meso, TMY, and TMY-Max data, respectively. In the HD area, Micro data showed 1216.1 kWh peak
demand, which was 12%, 11%, and 5% lower compared to Meso, TMY, and TMY-Max data. The peak
load directly affects the efficiency of HVAC systems and consequently the total energy performance of
the buildings, particularly during long-lasting extreme conditions. Table 2 integrates the comparison
between microscale, mesoscale, and TMY data in percentages. In this table, negative values show
reduction and posotive ones indicate higher values of the parameters at microscale compared to the
two other sources. The integrated results showed that in response to higher Ts and TO, the total energy
demand of the building showed higher values by considering the Micro data in the simulations.

Table 2. The comparison between Micro data with RCM data and the TMY file based on percentages.

Weather
Condition at
Microscale

Urban
Area

RCM TMY (Typ, Min and Max)

ED Ts To ED Ts To

TWS
LD −2% +22% +1% −18% −61% −4%

HD −6% +11% +3% −13% −39% −1%

LWS
LD −17% +8% +1% −58% +28% +4%

HD −21% +6% +1% −50% +26% +4%

HWS
LD −10% +19% +2% −15% +87% +2%

HD −13% +13% +2% −18% +77% +2%

4.3. Limitations

Typical and extreme wind speeds in Stockholm in this study occur mostly during the cold season
(January, February, September, October, and November); thus, the heating demand was the major
energy demand affecting the calculations. Due to heavy calculation loads, the urban models in this
study were simplified to only represent some major urban morphologies in Stockholm with extreme
high and low built density. To limit the number of uncertainties in the CFD simulations, all buildings
in these urban models have rectangular layouts and flat roof shapes. More detailed urban models
are required to explore more sophisticated microclimate conditions. Results may vary by taking into
account circular forms, different roof geometries, and more complex overall forms. Moreover, detailed
moisture boundary conditions and moist air are not considered in the heat transfer models in the CFD
simulations due to the high number of iterations.

5. Conclusions

In this study, the impacts of the urban microclimate conditions on the main influencing climate
variables in the energy performance of the buildings were investigated, and the acquired microclimate
data were taken into account in the calculation of outside surface temperature, operative temperature,
and energy demand in comparison with other regular weather data files. Two urban models with a
total area of 24,000 m2 with low and high density were generated to represent the urban morphology of
Stockholm. These urban models had a twelve-story building in the center of the site, seven surrounding
buildings, and one public green space. The building density, site coverage, final height, and overall
form of each model was different to include the most influencing interactions of climatic variables in the
CFD simulations. The inputs for CFD simulation were based on three synthesized mesoscale weather
data for typical and extreme low and high wind conditions in Stockholm developed by Nik [43]. The
interactions of wind flow and air temperature were evaluated at the micro level using ninety-nine
defined calculation points in eleven locations of each model in nine height levels. The average values
of wind speed, air temperature, air pressure, relative humidity, and heat flux out of these calculation
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points were used to generate three weather data with an hourly time-step for typical and extreme low
and high wind conditions.

The generated weather data along with nine other weather datasets based on mesoscale
metrological models and TMY file for EnergyPlus were adopted to study the overall energy performance
of the buildings. In total, fifteen 24-h continuous weather data were developed and adopted to assess
the energy performance of the central building in each urban area. According to the results, wind
speed gets dampened and the air temperature gets amplified over 27% and 14% in both urban areas,
respectively. Moreover, air pressure, relative humidity, and heat flux in the models are notably affected
by microclimate conditions. In the low-density urban area, the average wind speed and turbulence
intensity were lower compared to the high-density area. Moreover, air temperature in most hours
was higher in the urban areas with lower density; however, in the dense urban area, due to the
higher buoyancy effect in the low wind speeds, air temperature notably reduced by heat removal. By
generating three weather datasets considering the fluctuations of these variables, the average and peak
outside surface temperature and operative temperature showed over 67% and 7% higher magnitude,
respectively, compared to other regular weather files. In response to higher surface and operative
temperature, the average and peak energy demand of the central building in both urban areas showed
over 21% variations. Moreover, due to the higher temperature in LD areas in both typical and extreme
wind conditions, the central building in this area showed lower energy demand compared to the HD
area. Furthermore, a reason for lower energy demand in the warmer urban areas was the periods in
which typical and extreme wind conditions occur. All fifteen weather data were during colder seasons.

This work provided more evidence on the impacts of the microclimate conditions data on the
average and peak energy performance of buildings by taking into account hourly microclimate data.
Moreover, the simulations were conducted during several typical and extreme conditions, where
notable differences were observed in extreme weather conditions compared to regular weather files.
The developed method to generate hourly microclimate weather data for typical and extreme conditions
has the possibility to reduce the calculation load while increasing the accuracy of the results. The
generated weather datasets can represent microclimate conditions for noncomplex areas and can be
adopted to normalize widely available weather files for Stockholm or cities with a similar climate
for energy simulation studies. The database of the results, in addition to indicating the impacts
of considering microclimate conditions on energy performance of buildings, can be used to design
engineering applications such as HVAC systems based on more accurate estimations. The results can
also initiate further investigations on the topic by considering more climate variables with an hourly
time-step. As future research, more detailed urban models should take into account the detailed
impacts of urban form on the microclimate conditions. Moreover, verifying the method with measured
data in real urban areas is also targeted by the authors.
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Nomenclature

BPS Building performance simulation HD High density
BMC Building Modular Cells LD Low density
CC cloud coverage LWS low wind speed
CFD computational fluid dynamic RCM regional climate model
TMY EnergyPlus Weather file RH Relative humidity
ED Energy demand TWS Typical wind speed
GR global radiation T Temperature [◦C]
HWS high wind speed Ts Surface temperature
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Appendix A

Table A1. The main variables applied in the energy performance simulations.

Variables Description Value Unit

Loads

People 0.2 p/m2

Schedule behavior As a simple office

Equipment 12 w/m2

Schedule behavior As a simple office

Lights 12 w/m2

Illumination 500 lux

Dimming continuous -

Schedule behavior As a simple office -

Conditioning

Heating (Set point: 20) 100 w/m2

Cooling (Set points: 25) 100 w/m2

Humidity control No -

Fresh air 2.5 L/s/person

Fresh air 0.3 L/s/zone area m2

Sensible recovery ratio 0.7 -

Heat recovery None -

Scheduled None -

Buoyancy driven flow 18–30 C

Rel. Humidity 80% -

ACH 0.2 -

Hot water

Peak flow 0.03 m3/h/m2

Supply Temp 65 C

Main Temp 10 C

Schedule behavior As a simple office -

Construction

External walls
Reinforced concrete,

plaster, insulation, mortar,
composite facade

U = 0.4
polystyrene insulation

according to NBC 19 Iran
W/m2K

Internal walls Bricks, plaster, plaster U = 0.7
No insulation W/m2K

Roof
Reinforced concrete,

plaster, insulation, cement
mosaic

U = 0.30
polystyrene insulation

according to NBC 19 Iran
W/m2K

Frame Stainless steel U = 0.9 W/m2K

Glass

Low-E U = 1.70 (0.30) W/m2K

SHGC 0.2 -

Shading None -

Projection Factor 50% -

Glazing

North facade 25% 9* (2*2) win

South façade 15% 5* (2*2) win

West façade 8% 3* (2*2) win

East façade 8% 3* (2*2) win
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