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Abstract: Building energy performance tools are widely used to simulate the expected energy
consumption of a given building during the operation phase of its life cycle. Deviations between
predicted and actual energy consumptions have however been reported as a major limiting factor
to the tools adopted in the literature. A significant reason highlighted as greatly influencing the
difference in energy performance is related to the occupant behaviour of the building. To enhance the
effectiveness of building energy performance tools, this study proposes a method which integrates
Building Information Modelling (BIM) with artificial neural network model for limiting the deviation
between predicted and actual energy consumption rates. Through training a deep neural network for
predicting occupant behaviour that reflects the actual performance of the building under examination,
accurate BIM representations are produced which are validated via energy simulations. The proposed
method is applied to a realistic case study, which highlights significant improvements when contrasted
with a static simulation that does not account for changes in occupant behaviour.
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1. Introduction

An increasing number of governments around the world have set a target for reducing carbon
emissions and enhancing the energy efficiency of buildings. For example, Australia specified that
it plans to reduce 50%–52% of its emissions per capita by 2030 [1], with emissions from buildings
expected to be significantly reduced due to advanced integration of technology [2]. In the UK and
Germany, the government targets emission reductions of up to 80% by the year 2050 [3,4].

Around 40% of the total emissions worldwide come from buildings [5]. Currently, embodied
energy in buildings constitutes anywhere between 30%–60% of the total share of the lifecycle of typical
buildings [6–8]. Such significant environmental concerns have led to the adoption of certain measures
to enhance the sustainability of the built environment. Common strategies adopted in the building
sector include the use of low-carbon materials [9], recycling [10] and optimising the planning operations
of construction [11]. For governments to achieve set targets, there is a need to place emphasis on
the delivery of energy efficient buildings, through adoption of current advances in energy efficiency
measures proposed for buildings [12].

Buildings are complex in nature. This complexity arises due to the integration of various systems,
including structural, exterior envelopes, heating, cooling and ventilation systems, along with electrical,
communication and plumbing systems, that all need to operate in conjunction with one another [13].
Heat loss in a building predominantly occurs due to energy leakage from the building’s envelope [14].
For the purpose of the discussion presented in this paper, the focus will be on the assessment of the
performance of the energy systems in buildings. A challenging issue in building performance is the
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deviation between predicted building system performance, and realistic energy consumption that
occurs during the operation phase of the building [15]. To close this gap and ensure a reliable system
is delivered for building performance, it is necessary that the design envisaged at the initial stage of
building construction is truly represented in the final outcome once the building is operating [16]. To do
so requires an understanding of the management of data that can be collected during the operation of
the building, which can then be analysed to determine how well the building system designs reflect
the actual performance capacity of the systems installed [17]. Performance evaluation for operating
buildings is often associated with the type of measurements taken (i.e., what sensors are used to collect
the data?), the implications of the data (i.e., what are the impacts of the data on decisions made?), and
the feedback mechanism adopted (i.e., how is the data utilised to continually monitor the performance
of the building to ensure that it complies with the generated designs?) [18].

Deviations between predicted and actual building performance leads to inefficiencies in terms
of cost and energy consumption: van Dronkelaar et al., (2016) reported a 15%–80% discrepancy in
total energy between design and building performance [19], while Knight et al., (2008) indicated a 22%
difference between actual and predicted performance in university buildings [20]. A case study by The
Carbon Trust, (2012) indicated that an extra £10/m2 in annual operating energy costs resulted due to
the performance gap between predicted and actual performance of the building [21]. The evolving
nature of the world paved the way for the introduction of various capacity-extending technology,
including automated sensors [22], artificial intelligence (AI) [23], and digital models, including building
information modelling (BIM) [24]. The integration of all the latter is the topic of various discussions on
the practical and research arenas [25]. As a result, this work presents the first steps into an integrated
implementation via a systematic platform for building performance management, which makes use of
sensors, AI and BIM.

As indicated in [26], significant deviations between predicted and actual building performance
is mostly attributed to the dynamic nature of the behaviour of building occupants, leading to a 40%
difference between actual and predicted performance. The challenge thus lies in simulating real-world
behaviour of occupants and reflecting their actions on the building system being monitored [27]. One
way of handling this, as suggested by Samarasinghe, (2016), is to observe real-world data, rather
than attempt to model each individual relationship in theory [28]. This paper proposes a technical
method for integrating several key tools to enhance the monitoring of the performance of buildings.
The focus is on enhancing the prediction of occupant behaviour to reflect the actual energy use
of the building. BIM and AI are integrated within the proposed framework to predict the energy
consumption of the building, with the results then contrasted with data collected from sensors and
system logs present in the building. The work presented in this paper is organised as follows: first, a
literature review on relevant elements of the proposed method, including existing building performance
deviation assessment techniques, use of AI in building performance and adoption of BIM for building
performance measure, is examined. Next, the framework developed is explained. A case example for
a realistic project in Australia is then presented. Finally, results obtained from the implementation of
the proposed framework are discussed.

An assessment of building performance involves collecting data on the energy performance and
emissions of building systems, by monitoring water consumption, gas consumption and electricity
consumption [29]. When using real data from sensors to match with simulated data in buildings, the
presence of multiple sources makes it difficult to match data from these sources. In a bid to handle
this challenge, Wang et al., have proposed the merging of data from sensors and external databases
through a building identifier [30]. When it comes to building performance, a great deal of research
has been conducted in the realm of building performance management and the use of technology for
enhancing the management of constructed facilities. In this section, the literature review is divided
into three main areas, namely facility management and energy efficiency in building performance, use
of AI in building performance and BIM for the management of building performance.
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1.1. Management of Building Performance

Effective building management through performance monitoring is essential for ensuring minimal
environmental impact of the buildings [31]. Extensive research has been conducted on zero carbon
and energy buildings, green buildings and passive houses, where the building performance is a critical
object for ensuring that the required energy and carbon targets are met [32].

State of the art tools for building performance management reported in the literature rely on the
integration of complex engineering system with computer simulations [33]. The approaches mostly
monitor the thermal and energy behaviour of the building.

Attia et al. highlighted that there is a need to address computational issues and the lack of
standard system approaches on the use of building performance optimisation tools in zero energy
building design [34]. An assessment tool for building performance was proposed in [35] which relies
on a multi-criteria decision-making approach. In [36], multi-objective optimisation was combined
with building energy simulation models in order to optimise building specification so that its annual
performance in terms of energy consumption is minimised. In [37], the stochastic behaviour of
occupants and its impact on the building performance was captured via an occupancy simulator.

An uncertainty analysis was carried out on an office building in [38], as part of examining the
impact of different physical uncertainties in building performance, considering thermal comfort and
energy requirement. In [39] an online building performance tool for fault detection and diagnostics in
buildings was developed. Dynamic thermal simulation was adopted for assessing building envelope
refurbishment in [40]. Optimisation approaches were also proposed in the literature for the determining
the trade-off between energy consumption and occupant comfort. In [41], design of windows for
low energy consumption and high visual comfort was established via an optimisation approach.
In [42] retrofits for buildings which are optimal in energy consumption, occupant comfort and heritage
conservation was proposed.

1.2. AI in Buildings

The use of AI in design and construction of buildings has been discussed previously in the
literature. A study by [43] investigated the use of AI for safety planning during construction.
Yousefi et al. proposed an AI-based framework for predicting causes of delay in construction [44].
Azari et al. utilised AI for guiding the choice of materials that minimise the environmental impact of
building envelopes [45].

In terms of applications of AI for building assessment and performance monitoring, [46] used
neural networks to predict annual thermal and electrical energy use of buildings. Similarly, [47] adopted
deep neural networks for space exploration in building designs that minimise the amount of energy
required to operate the buildings. Deep learning techniques were also applied to predict building
energy consumption in [48]. Genetic algorithm was used for predicting the energy performance of
residential buildings in [49]. Cooling loads for buildings were predicted using deep learning method
in [50]. Support vector machine was deployed by [51] for predicting next day electricity consumption
in buildings. In [52], data-driven models were contrasted for predicting retrofit energy savings, in
building retrofit projects. In [53], machine learning was adopted to predict energy consumption based
on insulation thickness and envelop materials of a building.

1.3. BIM in Building Performance

BIM is a process for delivering construction projects on a digital platform [54]. Its use has
been highlighted in the building and construction literature, through its applications for design, cost
estimation and sustainability analysis [55]. In terms of building performance, several studies are
present in the literature which elaborate on its main use. A comprehensive review was presented in [56]
on the applications of BIM in facility operation. The use of building performance analysis software
tools for assessing their suitability as BIM-based sustainability analysis methods was examined in [57].
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A study of the barriers preventing the integration of BIM with building performance management
tools was conducted in [58], where the authors found that building performance needs to be standardised
to enable effective utilisation of automated tools for capturing building performance. In [59], BIM
was adopted for instantaneous energy and exergy calculations in the early design stage of the
project. In a similar context, [60] examined the use of BIM and BPS tools to facilitate energy-efficient
buildings. A standardised approach for integrating information from BIM and BPS tools, via Industry
Foundation Classes (IFC) schema was proposed in [61]. In [62], acoustic performance monitoring via
use of semantic rule checking was implemented for a building model. A BIM-based performance
optimisation framework was developed in [63]. The use of open standards to enhance interoperability
for performance-based design was proposed in [64]. An IFC-based framework for use of BIM to
perform energy performance management analysis was developed in [65]. Building performance
modelling for sustainable design using BIM was discussed in [66].

1.4. Motivation of the Study

A considerable discrepancy between predicted and actual consumption of energy in buildings
was found in a number of studies. In some cases, the difference was as large as the actual consumption
being three times higher than that of the predicted consumption [67]. Differences were attributed to
the choice of material during the construction stage, technical variations caused by workmanship and
the disregard of occupant behaviour in energy simulation models [68]. In particular, [69] concluded
that the impact of the behaviour of building occupants on the performance of the building in terms
of energy consumption can be drastic. As a result, the work presented herein primarily focuses
on occupant behaviour prediction, where an intelligent framework that enhances the behavioural
prediction of occupants, based on integrating BIM with deep neural networks for the calculation of
energy consumption of a building, is proposed.

2. Technical Framework

Figure 1 displays the overall framework developed for monitoring the building performance
so that deviations in predicted and actual measures are minimised. The first phase of the proposed
framework involves setting up the sensors/log systems used to track and monitor the actual building
performance. This enables the collection of building data in real-time. An as-built digital representation
of the building is then developed, which incorporates all systems that are required to run the building,
including the heating, ventilation and air conditioning (HVAC) system, water system and lighting.
The BIM file is built with certain occupant behaviour profiles defined to assess the impact on the overall
energy consumption. Examples of parameters that define occupant behaviour profiles for a HVAC
system include type of system that is operating, whether the system is turned on or off, the temperature
set for the system, and any open/close windows in the room examined. Concurrently, the machine
learning AI algorithm is formulated to yield optimum user occupant behaviour profiles which minimise
the deviations from the actual building performance. The AI component is composed of a series of
artificial neural networks (ANNs) that are trained to predict energy profiles. Such energy profiles
are generated to yield the least deviations between real performance and predicted performance of
the actual building systems utilised in the building. The deviation in performance is tracked and
detected via use of process simulation that is run in BIM: optimum occupant behaviour profiles that
are generated via the ANNs are input into the BIM file in order to run necessary energy simulations to
validate the estimates of energy use of the building system. Once the results are validated, they are
plotted on the performance graph; predicted performance is labelled as “baseline” in Figure 1, and this
is then contrasted with the data collected from the sensors (i.e., the line labelled “Actual” in the graph
in Figure 1). The BIM model thus acts as a reference module for assessing the energy consumption of
the building based on occupant behaviour predictions made in the ANN.

The neural networks are developed to help generate consumption levels in the building that
align with actual performance measures, based on a set of input that defines the characteristic of the
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occupant behaviour. At each time step assessed, once the output of the ANNs is passed on to BIM for
carrying out the simulations, the generated energy profile is contrasted with the actual performance of
the building. If the output of the neural network indicates a significant deviation from the actual data
collected, the input that defines the occupant behaviour is varied to try to bridge the gap between
actual performance and baseline (i.e., predicted) design. In Figure 1, this is indicated by a test of
comparison that is conducted against a threshold value. It is stipulated in the framework developed
that a change in the occupation behaviour due to the results obtained from the neural networks is
instigated only when it helps in reducing the energy consumption of the building. This is defined in
the threshold limit based on which the deviations are assessed. The next section describes in detail
the composition of the neural networks developed. Via a set of algorithmic approaches developed to
automatically extract data generated from the neural networks and parametrically embed them in the
BIM module, the simulations are re-run in BIM to validate the outcome of the ANNs. As indicated in
Figure 1 model training of the ANNs is based on a combination of its historic performance and the
real-time updates obtained from the sensors/system logs within the building.

Figure 1. Framework developed for building performance modelling.

There is a need to provide current practitioners with an easy-to-access framework that can be used
in the early design phase of a building to assess the energy performance and determine the energy
requirements. As a result, Insight360 was adopted in the proposed framework in this study, as its
use has been labelled as efficient and effective in the literature to simulate the energy requirements
of a building [70]. In addition, Insight360 utilises the EnergyPlus simulation engine to carry out
the simulations [71]. Alternative tools exist in the research community, including eQUEST [72] and
OpenStudio [73].

3. Artificial Neural Networks

In this study, ANNs are adopted as an effective computational framework for modelling the
consumption rates of various systems adopted in the building. Their function is based on imitating
the biological networks constituting animal brains [74]. Key aspects that underpin the structure of an
ANN include the input layer, hidden layers incorporated, output layer, weights and the activation
function utilised to map the input, going in the neurons, into a suitable range for the output. The initial
step adopted in developing the ANN, is the normalisation of the data via a linear transformation,
where the impact of the magnitude and range of variation in input data is minimised through
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normalisation. The second step involves dividing the data into a training and validation data set
(70%–30% respectively), to enable the derivation of the optimum weights and biases of the ANN.
The definition of the number of layers comprising the ANN constitutes the third step, where the
architecture of the network is defined via choice of the number of neurons in each layer. The input
variables need to equal the number of neurons in the input layer, whereas four neurons are modelled
for the outer layer. The overall framework of ANNs developed in this research is shown in Figure 2.
In particular, the ANN developed in Figure 2 corresponds to that used for predictions made relating to
the HVAC system adopted. For the purpose of maintaining the brevity of the discussion, the focus of
the developed ANN is only on monitoring the HVAC system, though the framework can easily be
extended to encompass other systems too. In this case, a single ANN would need to be developed and
trained for each of the building systems analysed.

In the case of Figure 2, there exist five neurons as input, three hidden layers each composed of
24 neurons, and a single layer comprised of four neurons as output. The input neurons correspond
to factors that can help predict the impacts of the behaviour of occupants. Neighbouring buildings
include the energy consumption data of near-by houses, as it was indicated in [75] that neighbouring
houses tend to have similar energy consumptions. BIM simulations conducted for establishing the
energy consumption of the modelled project are also adopted as an input. It is important to note that
the type of building systems that consume energy are defined within the BIM file. Initially, baseline
conditions are considered in the BIM model. Once the output is generated from the neural network, it is
adopted to modify conditions of the simulation model in BIM, and this in turn becomes an input for the
subsequent run of the neural network. This process is repeated up until the deviations between baseline
and actual performance is deemed to be negligible. Historical energy bills of the associated building
form an input to the neural network developed. In terms of historical bills, the main information that is
related to its inclusion as an input in the neural network is the past energy consumption of the building.
Past trends in energy consumption can be of high relevance when predicting the existing energy
consumption, as indicated in [76]. The number of occupants and outside temperature conditions of the
building examined have also been indicated as factors that help predict the behaviour of occupants in
buildings and have therefore been included as input to the neural network.

The output produced by the neural network is a prediction of specific parameters that define the
occupant behaviour. Such predictions are thus recommendations for the best settings to adopt on
the implemented systems so that the smallest deviations between actual and predicted performance
result. Examples modelled in the neural network developed in Figure 2 for estimating the behaviour
of occupants relative to the HVAC system deployed in the building, include the period of time that
windows are left open and indoor temperature settings [77].

In order to ensure that the ANN prediction error is minimised, two main error components
are targeted, namely systematic errors and random errors. In systematic errors, the main factors
influencing the degree of the error are related to the architecture of the ANN [78]. Modifying the
number of neurons making up the neural network during the testing process is carried out to minimise
the systematic error. Random errors on the other hand are related to the differences between parameters
and their measured values [79]. Random errors therefore mostly reflect the difference between actual
and predicted energy consumption rates, which are very complex to minimise in building performance
assessment as discussed in [27,80]. For the ANNs developed in this study, the tanh function is adopted
as the activation function given its fast convergence rate [81].

The prediction capacity of the ANNs is further enhanced, via use of a gradient-based decent
approach [82]. Weights within the network are updated based on back propagation, which involves
carrying the error from the output layer to the input layer so that total error in the ANN is minimised [74].
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Figure 2. Neural network layers.

Random Forest

Random forest (RF) is a supervised learning approach, where multiple data trees are created and
merged to get an enhanced prediction [83]. In this paper, RF is adopted due to its ability in revealing
the most important input variables when predicting a given output variable. In particular, the wrapper
aspect of the RF [84] (Hastie et al., 2009) is utilised to indicate which of the input factors are strongly
associated with the predicted output (in this case the energy consumption loads).

4. Case Study

The application of the proposed framework is conducted on a family house building project,
located in Sydney, Australia. The house is a two-storey building, with a total space of 280 m2 and a
ceiling height of 2.4 m, as displayed in Figure 3. As mentioned above, to maintain the brevity of the
discussion, the framework is applied to predict occupant behaviour that leads to the least deviations in
the performance of the cooling and heating system. Energy consumption in the house was monitored
for a duration of 12 months. In Sydney, Australia, December-March is the heat season.

Occupant behaviour is typically represented by setting indoor temperature, and schedule of
appliances, lighting and HVAC systems. As a result, during the energy consumption simulations
for the cooling and heating systems, the temperature is fixed at a specific temperature for a certain
duration during the day and night. The windows are assumed to be open for a certain percentage
of the time in which rooms are occupied and non-occupied. Certain behavioural profiles are also
modelled in the neural network trained, including the alteration of the operating period of the systems
during occupied and non-occupied hours and varying the percentage of time that windows are left
open/closed. Heating and cooling set point temperatures are defined as 21 and 27 ◦C respectively.
Occupant behaviour is assumed as defined by the behavioural profile in Table 1. It is important to note
that the information given in Table 1 is used to generate the baseline BIM simulations, which are in
turn used as input in the neural network.

The sensors utilised in the case study are listed as follows:

i. H22 HOBO Energy Logger; used for assessing the performance of the HVAC system installed
in the building; data is logged every five minutes

ii. Onset HOBO UX100 Temp/RH; used for monitoring the indoor environmental quality by
determining comfortable temperatures indoors; data is logged every 15 min.
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Table 1. Initial occupant behaviour assumed.

Factor Action

Cooling

Window Windows shut during unoccupied time; windows open 15% of
occupied time

Operation Temperature 21

Number of occupants 3

System Refrigerated cooler—Mitsubishi SEZ-KD bulkhead air conditioner

Heating

Window Windows shut during unoccupied time; windows open 10% of
occupied time

Operation Temperature 27

Number of occupants 3

System Heat pump system—Stiebel Eltron WPL 25 AC/WPL 25 ACS

The physical properties of the building are displayed in Table 2. The BIM file for the building
is generated in Revit, after which it is sent to Insight360 [85] (Autodesk, 2019) for performing the
energy performance analysis and simulation, including thermo-physical properties of the building,
and the resulting HVAC energy consumption analysis. It is important to note that the location of the
building needs to be specified before conducting the energy simulation in Revit to ensure that the sun
path and the respective building orientation is accounted for in the energy analysis. Once the results
from Insight360 are generated, they are then passed on to the neural network of Figure 2 in order to
predict the most appropriate occupant behaviour parameters that result in smallest deviation in energy
consumption, as contrasted with actual monitoring data obtained for the HVAC system of the building.

Figure 3. Case example model.

Table 2. Building materials for case study.

Component U-Value (W/m2K)

Internal Walls—partition wall, 10 mm plasterboard with 90 mm steel frames 0.54
External Walls—rendered brick 0.29
Concrete floor—150 mm 0.41
Gabbled tile roof 0.29

The time period of analysis is discretised into quarters. Throughout each time period, the occupant
behaviour predictions made by the ANN, combined with the simulations conducted in BIM are used
to generate the baseline (predicted) curve shown in Figure 1. The data from the sensors within the
building are used to plot to the actual performance curve in Figure 1.
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5. Results

5.1. Recommendations by ANN

Before presenting the results of the application of the framework proposed in Figure 1 to the case study
of Figure 3, a summary is first presented here: the test data R2 for the developed ANN, with 72 hidden
neurons and 4 neuron output is given as 0.991. The training time of the network is given as 4.4 min.

The analysis of the heating and cooling energy requirements is conducted over a specified number
of periods; after several computational experiments, it was revealed that the best period for assessment
of the overall consumption power in the building is one that is assessed every quarter, in line with
how the energy consumption billing system is set up in Australia [86]. Table 3 displays the recorded
average energy consumption, as assessed by the ANN and the actual sensors, at each quarter. For each
quarter, the corresponding occupant behaviour recommended by the ANN is displayed in Table 4.

As can be noticed from Table 3, during the 1st quarter of the year (JAN—MAR), the cooling system
is operating at its highest capacity due to the hot weather, and the recommended occupant profile,
displayed in Table 4, corresponds to: (i) windows open for 10% and 55% of the time when occupants
are not present during day time and night time respectively; (ii) windows open for 0% and 5% of the
time when occupants are present during day time and night time respectively; (iii) the cooling system
to be set at 19 ◦C and 21.5 ◦C during the day and night times respectively; and (iv) the heating system
is not utilised for 98% of the quarter.

During the 3rd quarter (JUL—SEP), the heating system is operating at its highest capacity (Table 3),
while the cooling system is disengaged for 95% of the quarter. Aspects revealed in the optimum
profile of Table 4 corresponding to the latter period for the heating system include: (i) windows are
open for 25% and 3% of the time when occupants are not present during day time and night time
respectively; (ii) windows open for 45% and 0% of the time when occupants are present during day
time and night time respectively; (iii) the heating system is set at 25 ◦C and 28 ◦C during the day and
night time respectively.

In Figure 4 the average percentage deviation across each analysed quarter of the year between:
(i) the ANN results and the actual performance of the HVAC system; and (ii) the conventional building
simulations and actual performance of the HVAC system is examined. In Figure 5 the overall average
percentage deviation across the whole year is plotted for both the proposed ANN approach and the
conventional static simulation. Conventional building performance simulations are conducted by
assuming the static behaviour of occupants, based on the parameters reported in Table 1, without
varying the occupants’ behaviour across the year. As can be seen, in Figure 4, the ANNs always
report a lower deviation from actual performance, contrasted with the static simulation approach
which does not account for the changing behaviour of occupants. In Figure 5, the ANNs report an
average 10.4% deviation from actual HVAC performance, compared to 33.5% for the conventional
simulation approach.

Table 3. Recorded average energy consumption by HVAC system, as assessed by the ANN and the
actual sensors, at each quarter.

Recorded Average Consumption (kWh/m2)

1st Quarter 2nd Quarter 3rd Quarter 4th Quarter

Heating
system

Actual system 4 33 25 5
Predicted via ANN 6 35 28 3

Cooling
system

Actual system 41 12 15 29
Predicted via ANN 44 9 7 33
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Table 4. Optimum occupant behaviour recommended by neural network to minimise deviations in
building HVAC performance.

Recorded Average Consumption

System
Recommendation

1st Quarter
(JAN—MAR)

2nd Quarter
(APR—JUN)

3rd Quarter
(JUL—SEP)

4th Quarter
(OCT—DEC)

Heating system
Recommendations

Disengaged for
99% of the time

Window day no
occupants: 35%

Window day no
occupants: 25%

Disengaged for
90% of the time

Window night no
occupants: 10%

Window night no
occupants: 3%

Window day with
occupants: 65%

Window day with
occupants: 45%

Window night with
occupants: 10%

Window night with
occupants: 0%

System
temperature day:
25 (operating for
140 h)

System
temperature day:
25 (operating for
310 h)

(operating for
System
temperature night:
28 140 h)

System
temperature night:
28 (operating for
310 h)

Cooling system
Recommendations

Window day no
occupants: 10%

Disengaged for
90% of the time

Disengaged for
99% of the time

Window day no
occupants: 10%

Window night no
occupants: 55%

Window night no
occupants: 55%

Window day with
occupants: 0%

Window day with
occupants: 15%

Window night with
occupants: 5%

Window night with
occupants: 15%

System
temperature day:
19 (operating for
360 h)

System
temperature day:
19 (operating for
234 h)

System
temperature night:
21.5 (operating for
360 h)

System
temperature night:
21.5 (operating for
360 h)

Figure 4. % deviation from actual performance of HVAC system, for ANN and static conventional
simulation at each period.
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Figure 5. Average % deviation from actual performance of HVAC system, for ANN and static
conventional simulation.

5.2. Sensitivity Analysis

A sensitivity analysis is conducted by modifying the number of inputs that are adopted in
the developed ANNs. As can be seen in Table 5 the percentage error in predictions made are
assessed to range from a maximum of 51% to a minimum of 10.4%. The analysis starts with only
considering the outside temperature as input for both the heating and cooling systems’ predictions.
The input neurons are then increased successively to incorporate additional inputs shown in Table 5.
Only input combinations with significant results are displayed. The percentage prediction error tends
to successively decrease as additional input is incorporated for both the cooling and heating systems,
though certain parameters have a larger influence on improving the prediction of the neural network
(see for instance outdoor temperature). This result is an indication of the necessity of incorporating
all the assessed factors that impact the occupant behaviour when predicting the resulting energy
consumption. The maximum number of factors impacting the occupants’ behaviour is modelled as
five in the trained neural network, in line with what has been proposed in the literature (Clevenger and
Haymaker, 2006, 2006; Toftum et al., 2009; Yan et al., 2015). Additional factors can be incorporated, and
these could increase the prediction accuracy of the ANN, though it should be noted that increasing
the number of input factors does not always correlate to an increase in accuracy, as was revealed in
(Paterson et al., 2017).

Table 5. Sensitivity analysis in terms of neural network input features.

Input Modelled Average Prediction Deviation
from Actual Performance

Outdoor temperature 44%

Outdoor temperature and Historical Bills 38%

BIM Simulation 51%

Neighbouring houses 31%

BIM Simulation and Neighbouring houses 23%

BIM Simulation, Neighbouring houses and outdoor temperature 17%

Number of occupants 42%

Number of occupants and outdoor temperatures 20%

Number of occupants, outdoor temperatures and BIM simulation 15.6%

Number of occupants, outdoor temperatures, BIM Simulation,
Neighbouring houses and Historical Bills 10.1%
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5.3. Results of Random Forest Examination

A random forest analysis is conducted to assess the importance of each examined input variable
shown in Table 1, on the output (i.e., energy consumption load prediction). The results of running
the RF, where the training and testing process on the sample is repeated multiple times, to ensure the
generalisation of the performance of the RF learner, is displayed in Table 6. The table suggests that
the neighbouring buildings, BIM simulation and historical bills all have a significant influence on the
predicted temperature that the cooling system should be set at during the occupied period. For the
heating output, all the previous features mentioned for the cooling system are also imperative though
this time, the outside temperature has a much bigger influence on the occupant profile predicted for
the heating system. For the RF analysis conducted on both the cooling and heating system occupant
output, the input features in the ANN, through their impacts on the time for which the windows are
left open during the occupied period and non-occupied periods and the temperature set indoors.

Table 6. Impact of neural input features on the predicted occupant behaviour profile.

Input Feature Impact on Cooling
Occupant Profile

Impact on Heating
Occupant Profile

Neighbouring buildings 61.12 ± 0.23 92.78 ± 0.78
BIM simulation 81.32 ± 1.21 95.09 ± 1.77
Number of occupants 31.12 ± 1.32 39 ± 1.11
Outside temperature 42.43 ± 0.43 51.28 ± 0.91
Historical bills 78.23 ± 1.37 86.23 ± 0.98

6. Conclusions

The automated framework proposed herein, which dynamically accounts for the influence of
occupant behaviour in buildings on energy consumption, was examined through a realistic case
example. For the developed ANNs, input features include the choice of the system made (through
use of an as-built BIM model), neighbouring houses’ energy consumption, historical bills of the
corresponding building under examination along with the number of occupants present in the room.
The output neurons correspond to factors that model certain aspects of the occupants’ behaviour,
including the temperature of the room occupied and period of time for which windows are open.
These are all factors which have been noted down in the literature as being imperative in impacting
the performance of HVAC systems in buildings.

The results of the example presented in the previous section leads to several insights. It was
demonstrated that the heating and cooling energy consumption can be predicted with an average of
10.4% deviation from the actual performance measured in the buildings. This approach thus eliminates
the need for running a separate simulation every time a change in occupant behaviour occurs, as the
ANN model will automatically re-run to predict the impacts on the cooling and heating energy loads,
in a matter of a couple of seconds. The results of the proposed building performance monitoring
method enable decision makers to: (i) schedule upcoming maintenance work required for the building
systems installed; and (ii) take steps to enhance the sustainability of their building by suggesting
alternative energy saving measures, to try to minimise the energy loads. The impact of the five main
variables used as input features on the output was also examined, with results indicating that outdoor
temperatures, energy consumption of neighbouring houses, historical bills and results of successive
BIM simulations all aid in predicting the occupant behaviour. Modelled profiles for occupant behaviour
are based on the temperature that the system is set at during the buildings occupied and non-occupied
periods, along with the time period for which windows are open. Such results are supported from an
engineering perspective since air flow through windows is a major cause for increased cooling and
heating loads imposed on the ventilation system in buildings [87].

The ANN approach was contrasted with conventional approaches that rely on performing a static
simulation, with results highlighting that the prediction of energy performance is on average 72%
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more accurate in ANNs. The system provides a comparative analysis of actual energy consumption vs.
simulated consumption. A diagnostic process whereby random and systematic fluctuations in energy
consumption are identified, based on examining individual factors relating to occupant behaviour
that induces a change in consumption levels, has thus been attempted by the work proposed herein.
By monitoring the performance gap, additional operational management measures can be taken to
enhance the effectiveness of the building’s consumption level. This would require calibrating energy
models to match with real-time data collected for buildings. The calibration of existing models has
been attempted in [88–90].

A number of limitations exist in the research presented herein. First, it is assumed that the
original building design is deemed to be efficient. As a result, only the deviation between actual and
simulated performance of the system was targeted, and the energy consumption of the system itself
is not minimised. Second, the framework needs to be tested on several case examples that resemble
various building shapes, sizes and building use classifications to ensure a robust method. These will
be the subject of future research by the author.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Australian Government. Australia’s 2030 Climate Change Target; Australian Government: Canberra, Australia, 2015.
2. Department of the Environment and Energy. Australia’s Emissions Projections 2017; Department of the

Environment and Energy: Canberra, Australia, 2017.
3. Committee on Climate Change. Reducing UK Emissions: 2018 Progress Report to Parliament; Committee on

Climate Change: London, UK, 2018.
4. Umweltbundesamt (UBA). Wirkung der Meseberger Beschlüsse vom 23.08.2007 auf die Treibhausgasemission in

Deutschland im Jahr 2020; UBA: Dessau-Roßlau, Germany, 2007.
5. UN Environment and International Energy Agency. Towards a Zero-Emission, Efficient, and Resilient Buildings

and Construction Sector, Global Status Report 2017; UN Environment and International Energy Agency: Paris,
France, 2017.

6. Lockie, S.; Berebecki, P. Methodology to Calculate Embodied Carbon of Materials; RICS: London, UK, 2012.
7. Nebel, B.; Alcorn, A.; Wittstock, B. Life Cycle Assessment: Adopting and Adapting Overseas LCA Data and

Methodologies for Building Materials in New Zealand; Ministry of Agriculture and Forestry: Wellington,
New Zealand, 2011.

8. Sartori, I.; Hestnes, A.G. Energy use in the life cycle of conventional and low-energy buildings: A review
article. Energy Build. 2007, 39, 249–257. [CrossRef]

9. Reddy, B.V.; Jagadish, K. Embodied energy of common and alternative building materials and technologies.
Energy Build. 2003, 35, 129–137. [CrossRef]

10. Hossain, M.U.; Poon, C.S. Comparative LCA of wood waste management strategies generated from building
construction activities. J. Clean. Prod. 2018, 177, 387–397. [CrossRef]

11. Feng, K.; Lu, W.; Chen, S.; Wang, Y. An Integrated Environment–Cost–Time Optimisation Method for
Construction Contractors Considering Global Warming. Sustainability 2018, 10, 4207. [CrossRef]

12. Allouhi, A.; El Fouih, Y.; Kousksou, T.; Jamil, A.; Zeraouli, Y.; Mourad, Y. Energy consumption and efficiency
in buildings: Current status and future trends. J. Clean. Prod. 2015, 109, 118–130. [CrossRef]

13. Manic, M.; Wijayasekara, D.; Amarasinghe, K.; Rodriguez-Andina, J.J. Building Energy Management Systems:
The Age of Intelligent and Adaptive Buildings. IEEE Ind. Electron. Mag. 2016, 10, 25–39. [CrossRef]

14. Nardi, I.; Lucchi, E.; De Rubeis, T.; Ambrosini, D. Quantification of heat energy losses through the building
envelope: A state-of-the-art analysis with critical and comprehensive review on infrared thermography.
Build. Environ. 2018, 146, 190–205. [CrossRef]

15. Corry, E.; Pauwels, P.; Hu, S.; Keane, M.; O’Donnell, J. A performance assessment ontology for the
environmental and energy management of buildings. Autom. Constr. 2015, 57, 249–259. [CrossRef]

http://dx.doi.org/10.1016/j.enbuild.2006.07.001
http://dx.doi.org/10.1016/S0378-7788(01)00141-4
http://dx.doi.org/10.1016/j.jclepro.2017.12.233
http://dx.doi.org/10.3390/su10114207
http://dx.doi.org/10.1016/j.jclepro.2015.05.139
http://dx.doi.org/10.1109/MIE.2015.2513749
http://dx.doi.org/10.1016/j.buildenv.2018.09.050
http://dx.doi.org/10.1016/j.autcon.2015.05.002


Buildings 2019, 9, 131 14 of 17

16. De Wilde, P. The gap between predicted and measured energy performance of buildings: A framework for
investigation. Autom. Constr. 2014, 41, 40–49. [CrossRef]

17. Xiao, F.; Fan, C. Data mining in building automation system for improving building operational performance.
Energy Build. 2014, 75, 109–118. [CrossRef]

18. National Physical Lab. Building Performance Measurement: Combined Results from Workshops; National Physical
Lab: London, UK, 2012.

19. Van Dronkelaar, C.; Dowson, M.; Burman, E.; Spataru, C.; Mumovic, D. A Review of the Energy Performance
Gap and Its Underlying Causes in Non-Domestic Buildings. Front. Mech. Eng. 2016, 1. [CrossRef]

20. Knight, I.; Stravoravdis, S.; Lasvaux, S. Predicting operational energy consumption profiles-Findings from
detailed surveys and modelling in a UK educational building compared to measured consumption. Int. J. Vent.
2008, 7, 49–57. [CrossRef]

21. The Carbon Trust. Carbon Trust Closing the Gap—Lessons Learned on Realising the Potential of Low Carbon Building
Design (No. CTG047). Available online: www.carbontrust.co.uk/buildings (accessed on 24 October 2017).

22. Clements, N.; Zhang, R.; Jamrozik, A.; Campanella, C.; Bauer, B. The Spatial and Temporal Variability of the
Indoor Environmental Quality during Three Simulated Office Studies at a Living Lab. Buildings 2019, 9, 62.
[CrossRef]

23. Hernández, J.L.; Sanz, R.; Corredera, Á.; Palomar, R.; Lacave, I. A Fuzzy-Based Building Energy Management
System for Energy Efficiency. Buildings 2018, 8, 14. [CrossRef]

24. Hammad, A.W.; Akbarnezhad, A.; Rey, D. Integrated Building Information Modelling. In Estimation of Input
Parameters Used in Site Layout Planning through Integration of BIM, Project Schedules, Geographic Information
Systems and Cost Databases; Bentham Science Publishers: Sharjah, UAE, 2017.

25. Soares, N.; Bastos, J.; Pereira, L.D.; Soares, A.; Amaral, A.R.; Asadi, E.; Rodrigues, E.; Lamas, F.B.; Monteiro, H.;
Lopes, M.A.R.; Gaspar, A.R. A review on current advances in the energy and environmental performance
of buildings towards a more sustainable built environment. Renew. Sustain. Energy Rev. 2017, 77, 845–860.
[CrossRef]

26. Tsanas, A.; Xifara, A. Accurate quantitative estimation of energy performance of residential buildings using
statistical machine learning tools. Energy Build. 2012, 49, 560–567. [CrossRef]

27. Clevenger, C.M.; Haymaker, J. The impact of the building occupant on energy modeling simulations.
In Proceedings of the Joint International Conference on Computing and Decision Making in Civil and
Building Engineering, Montreal, QC, Canada, 14–16 June 2006; pp. 1–10.

28. Samarasinghe, S. Neural Networks for Applied Sciences and Engineering: From Fundamentals to Complex Pattern
Recognition; Auerbach Publications: Boca Raton, FL, USA, 2016.

29. Bordass, B.; Cohen, R.; Standeven, M.; Leaman, A. Assessing building performance in use 3: Energy
performance of the Probe buildings. Build. Res. Inf. 2001, 29, 114–128. [CrossRef]

30. Wang, N.; Vlachokostas, A.; Borkum, M.; Bergmann, H.; Zaleski, S. Unique Building Identifier: A natural
key for building data matching and its energy applications. Energy Build. 2019, 184, 230–241. [CrossRef]

31. Aghemo, C.; Virgone, J.; Fracastoro, G.V.; Pellegrino, A.; Blaso, L.; Savoyat, J.; Johannes, K. Management and
monitoring of public buildings through ICT based systems: Control rules for energy saving with lighting
and HVAC services. Front. Archit. Res. 2013, 2, 147–161. [CrossRef]

32. Sayigh, A. Sustainability, Energy and Architecture: Case Studies in Realizing Green Buildings; Academic Press:
Cambridge, MA, USA, 2013.

33. Nguyen, A.-T.; Reiter, S.; Rigo, P. A review on simulation-based optimization methods applied to building
performance analysis. Appl. Energy 2014, 113, 1043–1058. [CrossRef]

34. Attia, S.; Hamdy, M.; O’Brien, W.; Carlucci, S. Assessing gaps and needs for integrating building performance
optimization tools in net zero energy buildings design. Energy Build. 2013, 60, 110–124. [CrossRef]

35. Soebarto, V.I.; Williamson, T.J. Multi-criteria assessment of building performance: Theory and implementation.
Build. Environ. 2001, 36, 681–690. [CrossRef]

36. Delgarm, N.; Sajadi, B.; Kowsary, F.; Delgarm, S. Multi-objective optimization of the building energy
performance: A simulation-based approach by means of particle swarm optimization (PSO). Appl. Energy
2016, 170, 293–303. [CrossRef]

37. Chen, Y.; Hong, T.; Luo, X. An agent-based stochastic Occupancy Simulator. Build. Simul. 2018, 11, 37–49.
[CrossRef]

http://dx.doi.org/10.1016/j.autcon.2014.02.009
http://dx.doi.org/10.1016/j.enbuild.2014.02.005
http://dx.doi.org/10.3389/fmech.2015.00017
http://dx.doi.org/10.1080/14733315.2008.11683798
www.carbontrust.co.uk/buildings
http://dx.doi.org/10.3390/buildings9030062
http://dx.doi.org/10.3390/buildings8020014
http://dx.doi.org/10.1016/j.rser.2017.04.027
http://dx.doi.org/10.1016/j.enbuild.2012.03.003
http://dx.doi.org/10.1080/09613210010008036
http://dx.doi.org/10.1016/j.enbuild.2018.11.052
http://dx.doi.org/10.1016/j.foar.2012.11.001
http://dx.doi.org/10.1016/j.apenergy.2013.08.061
http://dx.doi.org/10.1016/j.enbuild.2013.01.016
http://dx.doi.org/10.1016/S0360-1323(00)00068-8
http://dx.doi.org/10.1016/j.apenergy.2016.02.141
http://dx.doi.org/10.1007/s12273-017-0379-7


Buildings 2019, 9, 131 15 of 17

38. Hopfe, C.J.; Hensen, J.L.M. Uncertainty analysis in building performance simulation for design support.
Energy Build. 2011, 43, 2798–2805. [CrossRef]

39. Jradi, M.; Arendt, K.; Sangogboye, F.C.; Mattera, C.G.; Markoska, E.; Kjærgaard, M.B.; Veje, C.T.;
Jørgensen, B.N. ObepME: An online building energy performance monitoring and evaluation tool to
reduce energy performance gaps. Energy Build. 2018, 166, 196–209. [CrossRef]

40. Gourlis, G.; Kovacic, I. A study on building performance analysis for energy retrofit of existing industrial
facilities. Appl. Energy 2016, 184, 1389–1399. [CrossRef]

41. Ochoa, C.E.; Aries, M.B.C.; Van Loenen, E.J.; Hensen, J.L.M. Considerations on design optimization criteria
for windows providing low energy consumption and high visual comfort. Appl. Energy 2012, 95, 238–245.
[CrossRef]

42. Roberti, F.; Filippi Oberegger, U.; Lucchi, E.; Gasparella, A. Energy retrofit and conservation of built heritage
using multi-objective optimization: Demonstration on a medieval building. In Proceedings of the BSA
2015-Building Simulation Application, Bolzano, Italy, 4–16 February 2015.

43. Fang, W.; Ding, L.; Zhong, B.; Love, P.E.D.; Luo, H. Automated detection of workers and heavy equipment
on construction sites: A convolutional neural network approach. Adv. Eng. Inform. 2018, 37, 139–149.
[CrossRef]

44. Yousefi, V.; Yakhchali, S.H.; Khanzadi, M.; Mehrabanfar, E.; Šaparauskas, J. Proposing a neural network
model to predict time and cost claims in construction projects. J. Civ. Eng. Manag. 2016, 22, 967–978.
[CrossRef]

45. Azari, R.; Garshasbi, S.; Amini, P.; Rashed-Ali, H.; Mohammadi, Y. Multi-objective optimization of building
envelope design for life cycle environmental performance. Energy Build. 2016, 126, 524–534. [CrossRef]

46. Paterson, G.; Mumovic, D.; Das, P.; Kimpian, J. Energy use predictions with machine learning during
architectural concept design. Sci. Technol. Built Environ. 2017, 23, 1036–1048. [CrossRef]

47. Singaravel, S.; Suykens, J.; Geyer, P. Deep-learning neural-network architectures and methods: Using
component-based models in building-design energy prediction. Adv. Eng. Inform. 2018, 38, 81–90. [CrossRef]

48. Mocanu, E.; Nguyen, P.H.; Gibescu, M.; Kling, W.L. Deep learning for estimating building energy consumption.
Sustain. Energy Grids Netw. 2016, 6, 91–99. [CrossRef]
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