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Abstract: Demand-driven HVAC (heating, ventilation, and air conditioning) operation is essential in
occupant-oriented smart buildings, where the levels of heating, cooling, and ventilation are intelligently
regulated to avoid energy waste. Despite the great potential of building energy efficiency, one of the
remaining technical challenges is how to accurately estimate building occupancy information in real
time. In this paper, this design challenge is addressed. An advanced audio-processing technique is
adopted that minimizes the impacts of environmental sounds on the recorded voice sounds of humans.
Adopted mathematical modeling and signal processing procedures are elaborated in this work.
Experimental studies show that our proposed audio processing with background sound cancellation
algorithm improves the estimation accuracy of room occupancy quantity by approximately 11–12%,
which results in an averaged ventilation energy reduction of 3.54% compared to the case of not
applying background sound cancellation. The proposed audio-processing technique is promising to
achieve non-intrusive, cost-effective, robust, and accurate solutions for building occupancy estimation.

Keywords: energy efficient building; background noise cancellation; occupancy detection; acoustic

1. Introduction

According to U.S. Energy Information Administration (EIA) statistics, more than 39% of carbon
dioxide and 70% of electricity in the United States are consumed by buildings. Among various energy
sources of energy usage in buildings, HVAC (heating, ventilation, and air conditioning) equipment
accounts for up to 50% [1]. In fact, HVAC systems are typically sized to meet design full-loaded
heating and cooling conditions that historically occur only 1% to 2.5% of the time [2]. Thus, HVAC
systems are intentionally oversized most of the time. Heating and cooling equipment often operates at
their respective part-load efficiencies. In traditional buildings, occupants basically have no control
over building operations. Air-conditioning switches, temperature set points, and weekly schedules of
HVAC operation are usually pre-set by property management personnel. Regardless of the behaviors
and preferences of building occupants, this simple HVAC control method reduces the occupant
comfort and energy efficiency of the building system [3,4]. As the occupants lose control of their indoor
environment, their feelings of comfort are also degraded [5,6]. Consequently, this method has great
potential to realize significant energy savings and comfort enhancements by improving the control of
HVAC operations [3–6].

With rapid advances in smart cities [7], the Internet of Things (IoT) [8], and Li-Fi communication [9],
next-generation smart buildings are supposed dynamically to sense the number of occupants in each
room or thermal zone, then to adjust HVAC equipment accordingly. Moreover, these smart buildings
provide daily operational data for performance analysis and visualization. To enable these attractive
features, embedded and miniature environmental sensors are indispensable, such as motion sensors,
indoor air-quality sensors, surveillance cameras, and security sensors. According to a report from the
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U.S. Department of Energy (DOE) in 2017 [10], existing occupancy recognition and counting sensors
are still far from meeting the requirements of next-generation smart buildings. These requirements
in [10] include user-transparency, high accuracy, low failure rate, easy maintenance, low complexity,
good privacy protection, and low price. It is expected in [10] that the development of future occupancy
recognition and counting sensors will lead to drastic improvements in the way that HVAC systems
operate in buildings. For example, it was reported in [11] that 10–15% of building energy can be saved
using occupancy-driven HVAC operations. The researchers in [12] summarized existing occupancy
detection approaches and results in demand-driven commercial office buildings. Later, the study in [13]
revealed that energy savings can be 20–30% for occupancy-aware cooling in university residence halls.
In [14], the impacts of building occupancy on HVAC energy efficiency are analyzed from occupancy
transitions, variations, and heterogeneity. In [15], occupancy patterns of HVAC zones was incorporated
into the building management system in commercial buildings. When retaining the indoor thermal
comfort, a 38% reduction in heating energy was achieved in [15]. In order to calculate the number
of people in a thermal zone, several detection mechanisms are presented in the literature. Table 1
summarizes the advantages and drawbacks of each existing occupancy-detection mechanism.

Table 1. Advantages and drawbacks of each existing occupancy-detection mechanism.

Occupancy Detection
Mechanism Advantages Drawbacks

Passive infrared (PIR) Good privacy protection + occupancy
presence (and location) detection

No capability of occupancy counting +
limitation of line of sight

Ultrasonic Good privacy protection + no
limitation of line of sight No capability of occupancy counting

Radio-frequency
identification (RFID)

Low cost + easy installation +
fine-grained occupancy detection Poor privacy protection

Image/Video camera Fine-grained occupancy detection Poor privacy protection + limitation of
the line of sight + higher cost

Wi-Fi probe request Good privacy protection +
fine-grained occupancy detection

Need to carry a mobile device for Wi-Fi
communication

CO2 level Good privacy protection Influenced by environmental air flow
and HVAC settings

Acoustic recognition Low cost + intermediate occupancy
detection in quiet environments

False counting due to interference from
environmental sounds

Multiple hybrid types (e.g.,
PIR + CO2 + acoustic)

Potential to further improve the
accuracy of occupancy detection
through multi-model data fusion

Complex data processing algorithms +
higher cost + larger system size

Next, these existing occupancy-detection mechanisms are discussed individually. Since infrared
(IR) radiation emitted by human movement is collected and identified by passive infrared (PIR)
sensors [16,17], they are good at occupancy presence or absence detection in an area. In [16], multiple
PIR sensors worked with machine-learning algorithms to estimate the occupancy number in a space.
This system was implemented and tested in real office environments. In [17], to address the challenge
that PIR sensors cannot detect stationary objects, the researchers presented a new chopped PIR sensor.
The operating mechanism and experimental testing results were provided. Yet, these PIR sensors
cannot count the number of occupants, so they are incapable of performing occupancy recognition
and counting. Similarly, an ultrasonic sensor detects the presence of a building occupant by sending
ultrasonic waves into space and measuring its return speed [18,19]. In [18], an ultrasonic system was
created to estimate the occupancy status of rooms. The measurement results show that the ultrasonic
signal is significantly attenuated with the number of occupants in a space. In [19], a broadband
ultrasonic occupancy sensing system was presented with energy efficiency and scalability. It can detect
the occupancy presence or quantity using proper data training efforts.
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A direct line of sight is required between PIR sensors and building occupants, while ultrasonic
sensors are also suitable for situations where it is impossible to keep a line of sight. Radio-frequency
identification (RFID) tags are small, low-cost, and wearable devices to attach to building occupants [20,21].
In [20], in addition to adopting RFID technology to comfort building occupants, the authors also
proposed a conflict-resolution architecture (CRA) to avoid conflicts of occupants’ preferences. In [21],
an RFID system was tested for occupancy information monitoring towards demand-driven HVAC
operations. The average detection accuracy of the number of real-time occupants was located between
62–88%. Although with the use of RFID sensors it is very easy to achieve fine-grained occupancy
counting, occupants are often concerned about personal privacy. The resultant poor privacy protection
hinders its wide adoption in practice. With the help of computer vision algorithms, video cameras lead
to fine-grained occupancy information [22]. In [22], a camera-based people detection and behavior
classification system was developed and tested. Eleven classification models were built to analyze
the behaviors of building occupants. In [23], a vision-based system using static cameras was built.
Through video content analysis and multiple cascades of classifiers, the building occupancy count,
location and activities were detected. Yet, the drawbacks of using image/video camera include
poor privacy protection, limitation of the line of sight and higher cost. Wi-Fi probe request signals
have been also studied to predict indoor occupancy information [24,25]. In [24], a Wi-Fi-based
adaptive occupancy counting and tracking algorithm was proposed. Measured good occupancy
tracking was reported. In [25], the design and implementation of Wi-Fi-enabled mobile devices
were studied for fine-grained occupancy detection, tracking and counting. Despite the benefits of
good privacy protection and fine-grained occupancy detection, this approach needs each occupant
to carry a Wi-Fi device such as mobile phone or iPad. Furthermore, as the level of carbon oxide
indirectly reflects the number of occupants, many studies have been conducted to extract the number
of occupants [26,27]. In [26], the researchers measured carbon dioxide concentrations in 10 hospital
patient rooms. The combination of multiple CO2 sensors in different locations improves the accuracy
of occupancy estimate. In [27], CO2 and light sensors were selected and incorporated with a wireless
sensor network for room-occupancy detection. The light sensor can be mounted on a door frame,
and the prediction can be refined using CO2 sensors. The main drawback is that the level of carbon
dioxide fluctuates with HVAC operation and building status, such as unpredictable opening of doors
and windows, locations of CO2 sensors. Therefore, an accurate relationship between CO2 level and
occupancy number is not explicit. Acoustic-based occupancy estimation is another option. Yet, when
occupants in an HVAC area do not make sounds, or when indoor vocal sound mixes with outdoor
loud noise, the acoustic method causes the detection to fail.

In [28], acoustic energy calculation (i.e., short-time energy (STE)) was used to estimate the number
of people inside a room. The proposed STE approach is non-intrusive and protects the privacy of
building occupants. Yet, this work did not consider the interference of background noise. In [29], energy
mode and babble speaker count methods were proposed for crowd size estimation in a party-mode room
setting. Moreover, the impacts of distance between speakers and microphones were studied. In [30],
measurements were conducted in six churches to study the effects of occupancy on speech transmission
index values. The potential of energy savings based on occupancy-driven building operations was
not involved in [30]. Based on Gaussian mixtures and hidden Markov models, an audio-based room
occupancy analysis algorithm was developed in [31]. In [32], the researchers developed a networked
embedded acoustic-processing system, which includes acoustic event detection, feature extraction,
occupancy level models, etc. in order to estimate the occupancy level in buildings. In [33], the authors
discussed three on-going research projects, which try to use sound to reduce energy consumption
in buildings.

In order to take advantage of each single detection mechanism, researchers also perform multiple-
sensor deployments and multi-model signal processing [34–40]. In [34], PIR sensors, CO2 sensors,
temperature sensors, acoustic sensors, volatile organic compounds (VOC) sensors, and infrared cameras
were deployed in a test building. Then, the mathematical description of features was investigated
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and the validity of the occupancy level estimate was demonstrated. In this example, the accuracy of
occupancy detection was 84.59%. In [35], utilizing the spatial and temporal dependence of multiple
sensor points, a low computational complexity sensor-fusion algorithm was developed to predict the
occupancy status. Although this algorithm shows high-precision estimates of the presence or absence
of occupants, it cannot be used to calculate the number of occupants. In [36], the researchers proposed
an occupancy monitoring system using temperature, carbon dioxide concentration, door status, light,
sound, motion, and humidity sensors. Artificial neural network (ANN) algorithms were used for
multi-modal data fusion. In [37], a multi-sensor occupant detection system was developed with data
analytics and fusion capabilities. In [38], in order to realize the recognition of human occupancy,
multivariate sensors with a proposed feature extraction method and the most dominant sensor were
presented and discussed. In [39], the researchers presented a prototype of multi-functional wireless
sensor that includes five heterogeneous low-cost sensors and their system integration. The weakness
of this work is the lack of multi-modal data-fusion algorithms. In [40], various emerging information
technologies were reviewed and discussed. The authors pointed out the necessity and importance of
studying the interaction and co-optimization of smart buildings and information technologies. Yet,
this work did not present any specific multi-modal data fusion algorithm or case study. The inherent
flexibility of a hybrid solution creates ample opportunities for customization in different buildings
scenarios. However, the overheads of system cost, size, and design complexity are non-negligible.
From a research perspective, it is still necessary to continue to analyze and optimize each individual
occupancy-detection mechanism.

Even though previous studies in audio processing [28–33] have shown good prospects, these
works do not consider the impacts of environmental noise on the occupancy estimation performance.
Most audio-processing techniques for building occupancy estimation are suitable for outdoor quiet
places, such as office buildings or research laboratories. Environmental noises from nearby traffic
streets or farmers’ markets may overwhelm the interior sounds made by building occupants. In these
scenarios, it is necessary to further improve audio-processing algorithms to suppress outdoor noises
and to maintain indoor human sounds as the main acoustic signal for occupancy extraction. This is the
focus of this research. To deal with this challenge of background sound interference, a background
sound-cancellation algorithm is studied and adopted in this work to enhance the impacts of human
speech during acoustic-driven occupancy estimation. As there is no speech recognition or identification
computations involved in our flowchart, user privacy is well protected in this work. Experimental
results show that the proposed algorithm increases the average detection accuracy by approximately
11–12% in 10 typical noise environments, which results in a reduction of 3.54% in ventilation energy in
a case study of building energy simulation.

2. Proposed Audio-Processing Algorithms for Building Occupancy Estimation

2.1. Audio-Processing Algorithms without Considering Outdoor Sound Interference

Two assumptions have been made in our previous work [28]: (1) indoor sound recordings are
mainly human speech (excluding sounds from televisions, computers, music players, etc.); (2) the
outdoor sound level is much weaker than the indoor speech level. Based on the above two assumptions,
the noise from outside is considered as additive white Gaussian noise (AWGN) with a negligible
magnitude and small temporary variation. Then, dedicated acoustic-based room occupancy estimation
algorithms were developed for two distinct scenarios: meeting mode and party mode. In the meeting
mode, where meeting participants are assumed to speak one by one, so voice sound is not coincident
or mixed with each other, each speaker’s voice is first recognized through acoustic signal processing
and then summed up to obtain the total number of occupants. While the human voices are mixed
together in the party mode, it is extremely difficult to clearly identify each occupant’s voice. Instead,
a feature of STE is used to estimate the total number of occupants. STE is an important feature of signal
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energy within a short interval of time. The details of the audio-processing algorithm for party-mode
occupancy number calculation are elaborated in our paper [28].

2.2. Audio-Processing Algorithms with Consideration of Outdoor/Background Sound Interference

The presence of loud background noise is inevitable in some places, such as busy restaurants
or shopping malls. Therefore, the performance of the algorithm proposed in [26] is questionable.
The algorithm in [28] takes into account of the collected background noise as a part of human sounds.
As a result, the estimated number of occupants exceeds the actual number of occupants in these places.
In order to solve this shortcoming, background sound cancellation algorithms are studied and adopted.
Hence, clean acoustic signals with attenuated background noise are generated from raw noisy acoustic
signals. Consequently, this study only assumes that the indoor sound recordings are primarily human
speech (excluding sounds from televisions, computers, music players, etc.), rather than making two
assumptions as in [28].

Figure 1 shows an overview of our proposed audio-processing flow. Raw acoustic signals are
collected and recorded by microphones. Then, the raw acoustic signals are processed by the proposed
background sound cancellation algorithm (i.e., speech-enhancement algorithm) to obtain clean acoustic
signals. The clean acoustic signals are given for the STE analysis and to determine the estimated
number of occupants. Since the STE analysis does not identify or interpret human speech, only the
time-dependent acoustic energy spectrum is used for occupancy estimation, so the proposed work
helps to protect the privacy of building occupants. In this section, the background sound-cancellation
algorithm, which is also called the speech-enhancement algorithm, is derived and introduced.
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As been mentioned earlier, background noise severely overwhelms and corrupts human speech,
so the occupancy quantity obtained using the STE approach is overestimated. Therefore, researchers
investigate algorithms to detect the present noise level and to eradicate it efficiently. Due to their
non-stationary nature, high-level background noises are hard to accurately describe and model. Although
time-domain statistical models of probability distributions of speech and noise are attractive [41–43],
one of the major limitations of these statistical models is the need for a priori knowledge of speech or
noise [44]. Moreover, these statistical models mainly describe the long-term characteristics of speech
or noise, which do not accurately characterize and reflect short-term features. In the literature [45],
the researchers have found that Teager energy operator (TEO) could detect and model speech in an
analytical approach [46], so it does not depend on a priori knowledge of speech or noise. To date, there
have been a number of researchers to adopt the TEO method in human speech processing. On the other
hand, in the area of acoustic signal processing, wavelet packet transform is also found to be a useful
technique. For example, in [46], a speech-enhancement method was presented considering both the time
and scale dependency of wavelet thresholds. In [47], the researchers presented a speech-enhancement
algorithm using TEO and adaptive thresholds in the wavelet packet domain.

In this work, wavelet packet transform (WPT) and Teager energy operator (TEO) are used to reduce
speech distortion from high background-noise environments [48]. The presented algorithm in [48] is
based on two-dimensional TEO in the wavelet packet transform domain, where the human sound
is treated as amplitude or frequency modulated signals by noise signals. To overcome the challenge
of effective signal separation between human speech and noise, a state-of-the-art speech-and-noise
separation algorithm [48] is selected and adopted in this study, where an improved speech presence
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probability (SPP) estimator is established accordingly. Even though both independent and intersectional
2D TEOs have been developed in [48], for computational simplicity only intersectional ones are adopted.
The intersectional 2D TEO kernels with respect to the horizontal–vertical direction are modeled in [48] as,

TH{w(k, t)} =
{

∂w
∂k

}2
+

{
∂w
∂t

}2
− w

{
∂2w
∂k2 +

∂2w
∂t2

}2

The intersectional 2D TEO kernels with respect to the diagonal direction are modeled as,

TD{w(k, t)} = 2
{

∂w
∂k

}{
∂w
∂t

}
− w

{
∂2w
∂k∂t

+
∂2w
∂t∂k

}
Here w(k,t) is the wavelet packet transform coefficient. Frequency and time are represented as

k and t, respectively. The use of a contrast parameter s introduces the discrete form of nonlinear
2D versions:

T2,H(k, t, s) = 2w(k, t)
2
s − (w(k− ∆k, t)w(k + ∆k), t)

1
s − (w(k, t− ∆t)w(k, t + ∆t))

1
s

T2,D(k, t, s) = 2w(k, t)
2
s − (w(k− ∆k, t + ∆t)w(k + ∆k), t− ∆t)

1
s − (w(k− ∆k, t− ∆t)w(k + ∆k, t + ∆t))

1
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Here ∆t and ∆k are the time and frequency lag window parameters. Then, the outlines of the
energy distribution of 2D intersectional TEOs are modeled in [48] as,

S2,1(k, t, s) =

∣∣H(k, t) ∗ T2,H(k, t, s)
∣∣

max(|H(k, t) ∗ T2,H(k, t, s)|)

S2,2(k, t, s) =

∣∣H(k, t) ∗ T2,D(k, t, s)
∣∣

max(|H(k, t) ∗ T2,D(k, t, s)|)
Here H(k,t) is a low-pass filter and the operator * indicates a convolution operation. As harmonic

signals are represented as higher energy density and random noise is represented as lower-level
energy density in 2D TEOs, the energy density obtained from TEOs generally reveals whether speech
components exist or not [48]. In [48], the normalized outline of energy distribution for intersectional
TEOs is applied as SPP estimators. The introduction of the proposed 2D TEOs enables the detection of
speech components. Note this SPP estimation is computed without prior knowledge of speech and
background noise. Therefore, it is preferred for short-term acoustic signal processing for occupancy
count estimation. These 2D intersectional TEO-based SPP estimators are very sensitive to background
noise. To avoid the over-than-enough sensitivity for SPP estimation, two lag window parameters ∆k
and ∆t are used to derive the SPP values. SPPTl represents local SPP and SPPTg represents global SPP.
Therefore, a new SPP estimator is modeled in [48] as

SPP(k, t, s) = SPPTl(k, t, ∆k1, ∆t1, s)·SPPTg(k, t, ∆k2, ∆t2, s)

Here ∆k1 and ∆t1 are selected as unit values to represent the high resolution of a lag window,
while ∆k2 and ∆t2 are selected as larger values to represent the low resolution of a lag window.

An advanced speech estimator was presented in [48], which is based on a generalized speech
model in the WPT domain. In [48], a signal model is constructed of wy(k,t) = wx(k,t) + wr(k,t), where
wy(k,t), wx(k,t), wr(k,t) are WPT coefficients in k-th sub-band at time t extracted from noisy speech,
clean speech, and noise signal, respectively. Assuming wx(k,t) and wr(k,t) are independent on time
and frequency from a statistical point of view, the minimum mean-square error (MMSE) estimator is
modeled in [48] as

E(X|Y) =
∫ +∞
−∞ Xp(Y|X)p(X)dX∫ +∞
−∞ p(Y|X)p(X)dX

=

∫ +∞
−∞ Xpr(Y− X)px(X)dX∫ +∞
−∞ pr(Y− X)px(X)dX
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Here, X and Y represent the coefficients, px(X) is assumed to follow the generalized gamma
distribution described in [41] and pr(Y − X) is assumed to follow the Gaussian distribution described
in [41]. According to [41,48], the SPP estimator can be further modeled as,

E(X|Y) = σrv

[
exp

(
1
4 Y2
−

)
D−(v+1)(Y−)

]
−
[
exp

(
1
4 Y2

+

)
D−(v+1)(Y+)

]
[
exp

(
1
4 Y2
−

)
D−v(Y−)

]
+
[
exp

(
1
4 Y2

+

)
D−v(Y+)

]
Y± = βσr ±

Y
σr

Here D−v (·) is a parabolic cylinder function of order v, and σr is the estimated noise variance.
Then, the results of the MMSE estimator goes through an inverse WPT computation and finally
generates clean human speech.

2.3. Occupancy-Counting Algorithm Implementation with Background Noise-Cancellation Feature

In this work, these models of two-dimensional Teager energy operator (TEO) and wavelet packet
transform (WPT) are implemented in MATLAB codes. The flowchart in Figure 2 illustrates the details
of entire acoustic signal processing for building occupancy count estimation.

First, noisy speech is collected using microphones and is processed using the wavelet packet
transform technique. Then, two-dimensional intersectional Teager energy operators are calculated, and
the results are provided for both global and local SPP estimation. Then, the minimum mean-square
error (MMSE) estimation is performed to effectively separate noise signals and clean human speech.
Next, the clean speech signals are processed using the short-time energy calculation in our previous
publication [28]. Finally, the building occupancy number is estimated accurately. Every step in this
flowchart is implemented and run in MATLAB codes. From Figure 2, we can see that the flowchart
does not involve speech recognition or identification. Therefore, the user privacy issue is eliminated in
this study.
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3. Experimental Results

In this section, 100 clean speech files with an individual duration of 25 s are listened to by
researchers in order to identify the exact number of speakers for each speech file. Next, as shown in
Figure 3, these clean speech files are mixed with added noise files, either containing Gaussian noise or
measured noise recorded from several noisy places, including airports, cafeterias, construction sites,
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factories, streets, restaurants, subways, trains, flights, and exhibitions. Then, these mixed sound files
are processed by the acoustic signal-processing algorithm in [28] and the proposed acoustic signal
processing in this work, respectively. Finally, the exact occupancy number and two estimated occupant
numbers are compared and discussed in this section.
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3.1. Occupancy-Counting Results for Gaussian White Noise Mixed Human Speech

In a real environment, noise is often not caused by a single source, but a complex of many
different sources. Assume that real noise is the addition of random variables with a very large number
of different probability distributions, and that each random variable is independent. According to
the central limit theorem, their normalized sum increases with the number of noise sources and is
close to a Gaussian distribution. As a typical acoustic noise type, the probability density function of
a Gaussian white noise follows a normal distribution. The room occupancy estimation performance is
firstly evaluated when the background sound is assumed as Gaussian white noise.

Figure 4 plots the experimental results of using the STE feature in estimating the number of
speakers. Figure 4a shows the STE-based acoustic processing results in a high accuracy of room
occupancy estimation, when there is no background noise. It is clear that after processing 25 s of the
recorded acoustic signals, the estimation accuracy is close to 1, which indicates a very small error. When
there is a strong background white Gaussian noise source (e.g., 70 dB), the background noise is louder
than human speech, thus, the estimation accuracy is drastically decreased as shown in Figure 4b.
Especially for the cases of 10 speakers and 20 speakers, the estimation performance is very bad.
With the proposed background sound-cancellation algorithm introduced in Section 2, the estimation
accuracy is significantly improved and recovered as shown in Figure 4c. Comparing Figure 4b,c, at the
time instance of 25 s, the estimation accuracy with our proposed background noise enhancement
algorithm is boosted by at least 30%. Therefore, this proves the efficacy of using an appropriate speech
enhancement algorithm in the overall signal processing of occupancy estimation.Buildings 2018, 8, x FOR PEER REVIEW  9 of 16 
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3.2. Occupancy-Counting Results for Gaussian White Noise Mixed Human Speech

In addition to the investigation of the noise-cancellation performance for Gaussian white noise,
background sounds from 10 typical noisy places are recorded, including airports, cafeterias, construction
sites, factories, streets, restaurants, subways, trains, flights, and exhibitions. These noise files are
available to download from (https://sites.google.com/site/qianhuangshomesite/). Assuming that
human speech is 60 dB, Tables 2 and 3 show the comparison of occupancy-estimation results before
and after applying the proposed background sound cancellation algorithm to the 65 dB and 55 dB
background sounds, respectively. It is observed that these 10 noisy locations lead to an average
improvement in occupancy estimation by approximately 11~12%, which is lower than the performance
enhancement in a Gaussian white noise environment. This is because a Gaussian white noise is
a random signal with equal intensity at different frequencies, so its power spectral density is constant
and relatively easy to remove. In contrast, actually recorded noise from 10 typical locations includes
significant unpredictable variations in power spectral density. Therefore, the proposed background
sound cancellation algorithm exhibits better performance in processing speech signals that are mixed
with Gaussian white noise.

Table 2. Comparison of occupancy estimation accuracy before and after applying background sound
cancellation algorithm, assuming 65 dB background sound and 60 dB human speech.

Noise
Environments

Average Occupancy Estimation
Accuracy without Background

Sound Cancellation

Average Occupancy Estimation
Accuracy with Background

Sound Cancellation

Accuracy
Improvement

(%)

Airport 0.71 0.82 15.96
Cafeteria 0.71 0.81 13.08

Construction site 0.73 0.80 9.55
Factory 0.70 0.80 13.27
Street 0.74 0.82 11.76

Restaurant 0.72 0.82 13.36
Subway 0.72 0.8 10.65

Train 0.75 0.8 7.59
Flight 0.72 0.81 12.5

Exhibition 0.76 0.8 5.26
Average results 0.726 0.808 11.3

Table 3. Comparison of occupancy estimation accuracy before and after applying background sound
cancellation algorithm, assuming 55 dB background sound and 60 dB human speech.

Noise
Environments

Average Occupancy Estimation
Accuracy without Background

Sound Cancellation

Average Occupancy Estimation
Accuracy with Background

Sound Cancellation

Accuracy
Improvement

(%)

Airport 0.74 0.8 9.05
Cafeteria 0.68 0.71 5.42

Construction site 0.72 0.81 12.04
Factory 0.71 0.83 16.43
Street 0.66 0.82 25.38

Restaurant 0.73 0.83 13.24
Subway 0.71 0.81 14.08

Train 0.76 0.8 5.73
Flight 0.74 0.81 8.97

Exhibition 0.73 0.8 9.59
Average results 0.718 0.808 12.0

4. Building Energy Simulation Using EnergyPlus

This study is conducted using EnergyPlus software [49], which has been developed and released
by the U.S. Department of Energy. The university bookstore in the Student Service Building of Southern
Illinois University Carbondale campus is chosen, and its energy consumption is used as a baseline.

https://sites.google.com/site/qianhuangshomesite/
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As depicted in Figure 5, the university bookstore is surrounded by a billiards room, bowling room,
student dining area, McDonald’s, and McDonald’s seating area. The sounds made from activities in
these nearby rooms are viewed as background noise to the university bookstore, and the measured
worse case of background sound level is no higher than 65 dB.

The prerequisite knowledge for baseline modeling includes blueprints for original construction,
historical energy bills, and current operating data in the building automation system. For example,
the exterior wall consists of four layers, which are made of material M01 100 mm brick, M15 200 mm
heavyweight concrete, I02 50 mm insulation board, and G01a 19 mm gypsum board, respectively.
The interior wall is made of G01a 19 mm gypsum board. In our EnergyPlus simulations, the occupancy
schedule is based on the percentage of occupants that occupy the bookstore on weekdays. According
to the daily occupancy information from the building manager, a dedicated occupancy schedule
is created and used in the EnergyPlus software. All useful data and statements provided by the
physical plant engineers will be imported into an input file for EnergyPlus, which takes into account
building envelope, windows, lighting, HVAC equipment, and weather. The output variables include
the fan electric energy, zone air temperature, heating-coil electric energy, cooling-coil electric energy,
site wind speed, site wind direction, site outdoor air humidity, zone exterior and interior windows
total transmitted beam solar radiation rates, etc. These output variables are recorded for a whole year
hourly, daily, and monthly, respectively.
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Figure 5. Floor plan of simulated university bookstore and its neighboring stores.

Assuming the average occupancy-detection accuracy is 70% (without background sound
cancellation) and 80% (with background sound cancellation), Figure 6 shows the required monthly
ventilation electricity for default maximum occupancy, real occupancy, estimated occupancy with
and without background sound cancellation, respectively. Compared with the default maximum
occupancy set points for HVAC equipment, results of real occupancy and the previously estimated
occupancy estimation in [28] in Figure 6 achieve an average energy reduction of 14.2% and 8.6% in
ventilation electricity, respectively. Then, in contrast with the previously developed estimation in [28],
the adoption of our proposed background sound-cancellation algorithm further reduces ventilation
energy consumption by 3.54%. This result validates the necessity of developing the background
sound-cancellation algorithm. As shown in Figure 7, simulation results of cooling and heating
electricity are not sensitive to occupancy number. This is because occupancy number is not the main
factor to control HVAC equipment for cooling and heating in this building.

Figures 8 and 9 show the simulation results of daily ventilation electricity for two weeks in
January and July, respectively. From Figure 8, it is clear that for typical winter days, the difference with
or without using the adopted background sound cancellation is consistent. It indicates an average of
2.22% ventilation energy reduction when the background sound-cancellation algorithm is adopted.
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The weekdays are from 5 January to 9 January, when this bookstore requires more ventilation energy
than weekend days. From Figure 9, it is observed that for typical summer days, the average ventilation
energy reduction is 5.67%, when the background sound cancellation algorithm is used. The weekdays
are from 3 July to 7 July, when this bookstore requires more ventilation energy than weekend days.Buildings 2018, 8, x FOR PEER REVIEW  11 of 16 
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Figures 10 and 11 show the simulation results of hourly ventilation electricity for one day in January
and July, respectively. From Figure 10, it is easy to see that for typical winter days, the difference with or
without the adopted background sound cancellation algorithm is consistent, and the average ventilation
energy reduction is 3.14%. Moreover, it was observed that the ventilation electricity at night is above
3× 105 J, while it is below 3× 105 J at daytime. This is because the outdoor temperature on winter nights
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is much lower than at daytime, and therefore the HVAC equipment consumes more energy at night.
From Figure 11, this is shown for typical summer days, the background noise cancellation algorithm
helps to reduce the ventilation energy by 3.74%. As shown in Figure 11, most of this ventilation energy
reduction is achieved from 9 a.m. to 6 p.m.
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5. Conclusions

With the adoption of various information technologies in next-generation smart buildings,
demand-driven building operation is very attractive for reducing energy consumption in buildings.
Therefore, it is imperative to investigate and develop occupancy recognition and counting techniques.
While several promising occupancy-estimation techniques based on carbon dioxide sensors, RFID
sensors, etc. are being explored, each of them has significant issues that need to be addressed.
Researchers envision that future building occupancy counting techniques will have user-transparency,
high accuracy, a low failure rate, easy maintenance, low complexity, good privacy protection, and low
price. Occupancy estimation based on the acoustic processing of sound recorded in a room or thermal
zone is low cost, non-intrusive, and has good detection accuracy in quiet environments. However,
background noise in some noisy locations (such as restaurants, trains, and factory) mixes together or
even overwhelms indoor human voice, thus degrading the occupancy estimation accuracy. To deal
with this challenge of background sound interference, a background sound cancellation algorithm
is adopted to enhance the impacts of human speech during acoustic-driven occupancy estimation.
As there is no speech recognition or identification computations involved in our flowchart, user privacy
is well protected in this work. Experimental results show that the proposed algorithm increases the
average detection accuracy by approximately 11–12% in 10 typical noise environments, which results
in a reduction of 3.54% in ventilation energy in a case study of building energy simulation. In this
study, the motivation is not to prove that the proposed acoustic-based method using background
noise-cancellation algorithm is more accurate or superior than other existing occupancy detection
methods. The purpose is to investigate and evaluate the performance of combining STE calculation and
background noise cancellation, and to show its potential to save building operation energy and costs.
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