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Abstract: This article proposes a multidisciplinary approach for the assessment of seismic damage
from the perspective of conservation and prevention. A comparison of the state of damage has been
carried out in a case study, St. Salvatore church in Acquapagana (MC), as an example of church, which
underwent two important seismic events in the Central Italy area, the 1997 and the 2016 earthquakes.
The comparison of the state of damage passes through the following stages: (a) the territorial seismic
overview; (b) the historical description and material analysis; (c) the identification of macro-elements
with activated damage mechanisms; (d) the comparison between the two seismic events both from
a territorial- and building-scale perspective. This work puts together the archived and the on-site
survey data with those elaborated starting from seismogenic information, available from the National
Seismological Institute, and it provides a strategy also for other similar conditions. This work is to
be considered a contribution to a wider study that could be carried out in the areas hit by the 2016
earthquake. It could also represent a way to collect documentation in the post-earthquake phase,
improving the effectiveness of procedures currently applied to the first level of damage assessment.

Keywords: damaged churches; historical masonry churches; 1997 Umbria-Marche earthquake; 2016
Central Italy earthquake

1. Introduction

Earthquakes pose a threat to our cultural heritage assets, constituted in part by churches.
The seismic risk of the Italian territory is well known because of the many earthquakes that have
occurred over the years. This type of risk is strictly related to the vulnerability of the buildings; indeed,
working on them is necessary to preserve the national cultural heritage asset. In this regard, the efforts
of researchers are focused on acquiring procedures to access in detail the vulnerability of churches
and to think about intervention strategies. Since the 1976 Friuli earthquake, which caused severe
damage to the heritage building stock, churches have started to be studied in relation to their evidence
of vulnerability under seismic actions. The study of vulnerability is strictly related to the study of
damage. The post-earthquake observation of damage led to the elaboration of the forms of damage
assessment of churches, whose current version [1] was approved with Decree DPCM of 23 February
2006, becoming a national standard. This survey form associates a typical mechanism of collapse to
each macro-element, a well-recognizable structural unit. The observation of damage after the Friuli
earthquake of 1976 and its interpretation converged in a book, Le chiese e il terremoto [2], which can
be considered the basis of all the subsequent studies on the vulnerability of churches. With the 1997
Umbria-Marche earthquake, the observations of the effectiveness of strengthening and repairing
interventions started, allowing one to express considerations about interventions and to collect a large
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amount of data, as specified in [3]. As a consequence of this post-earthquake experience, a manual of
best practices was written, Codice di pratica (The Code of Practice) [4]. It was published by the Regional
Authority of Marche, as a tool in support of professionals that would operate in reconstruction and
repairing, suggesting a suitable modus operandi. In addition to this manual, other similar ones were
issued in those years, dealing with best practices for interventions, such as [5–10].

Other observations of damage have followed throughout the years, for the many earthquakes
that have occurred in Italy. Among others, some of the episodes with the corresponding studies are:
Lunigiana and Garfagnana, 1995 [11]; Umbria and Marche, 1997 [12,13]; Molise, 2002 [14]; L’Aquila,
2009 [15–21]; and Emilia, 2012 [22,23].

Moreover, several studies have been carried out to assess the seismic vulnerability of churches
and to understand the relative structural behavior under seismic actions by numerical analysis [24–27].
The vulnerability assessment of churches was also studied by some researches from a large-scale
perspective (i.e., [28]).

Considering this context and following the recommendations of the Italian Guidelines for Cultural
Heritage [29], in accordance with the Italian Building Code (N.T.C. 2008) [30], this article proposes a
procedure for the assessment of the damage of churches with a multidisciplinary approach, in line with
Principle 1.1 of the ICOMOS Charter [31]. This methodology is inserted in a panorama of studies, such
as [32–34], which believe in the importance of achieving deep knowledge of the historical building,
the object of the study, through the contribution provided by different disciplines, with the final aim
of preserving the cultural heritage asset. The multidisciplinary approach in the following work is
achieved observing the impact of the earthquake on the church case study from different perspectives,
taking into account several aspects: the seismogenic system, the registered peak ground acceleration
(PGA) values, the history of the church with the analysis of the masonry walls and the executed
interventions with the two post-earthquake states of damage (1997–2016). Indeed, with such an
approach, the observation of the post-earthquake damage and the study of the interventions executed
on a historical building become part of a wider process, which contributes to achieve the aim of
conservation and prevention of damage caused by earthquakes [35] (Chapter 29, paragraphs 1,2,4).

The procedure, exposed here, is applied to the single-nave St. Salvatore church, taken as a case
study representative of those churches that underwent earthquakes and interventions in the time lapse
between the events. Moreover, the following work intends to provide a contribution to ongoing studies
(e.g., [36]) on the state of damage of the churches of Central Italy damaged by the 2016 earthquake.
In particular, in [37], a set of single-nave churches, located in Umbria, Perugia, Ascoli Piceno, Macerata
and Pesaro-Urbino, is used to compare the surveyed state of damage with the expected damage,
according to predictive methods [38,39].

Figure 1 summarizes the procedure followed to investigate the state of damage of St. Salvatore
church, which is reflected in the structure of the article. Starting from a territorial analysis (Section 2.1)
of the seismicity of the area (the seismogenic source system, active faults, expected accelerations
and the catalogue of seismicity), entering into the detail of the historical description and material
characterization of the church (Section 2.2) and the identification of the existing macro-elements
(Section 2.3), the article compares the two seismic events, the 1997 Umbria-Marche earthquake and
the 2016 Central Italy earthquake: first, from a territorial perspective and, later, from a building-scale
point of view. The final sections are dedicated to the discussion of the evidence and to sum up the
results of the study.

All in all, this work will point out how from a multidisciplinary approach for the assessment
of damage it is possible, not only to obtain information regarding the technical aspects about the
effectiveness of interventions and situations to be avoided for historical masonry churches, but also to
interpret the damage, including seismic and territorial aspects. Meanwhile, another indirect outcome
of this approach is the collection of territorial- and building-scale information.
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Figure 1. Diagram of the multidisciplinary procedure followed in the article.

2. The case study of San Salvatore church in Acquapagana

2.1. Territorial Overview

For the study, the starting point was the identification of a church in the territory. San Salvatore
Church is the only church of Acquapagana, a small hamlet in the municipality of Serravalle di Chienti,
in the province of Macerata (Italy). The development of the urban center follows a south-north axis,
and the church is located in the southern part of the hamlet (Figure 2a). It is part of an isolated monastic
complex, developing with a west-east direction (Figure 2b). This geographical orientation will be useful
for the final considerations about the state of damage post the 1997 and post the 2016 earthquakes.
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Figure 2. Aerial views. (a) The location of St. Salvatore Abbey in Acquapagana [40]; (b) the complex of
St. Salvatore Abbey: the church (in the north) and the monastery building (in the east). Coordinates:
42◦59′00.5′ ′ N 12◦55′49.2′ ′ E [40].

The seismicity of this geographical area is well known, as the system of seismogenic sources
(Figure 3a), the map of active faults (Figure 3b), the seismic hazard map of the Marche region
(Figure 4a), the seismic catalogue (Table 1) and the histogram of seismicity of Serravalle di Chienti
(Figure 4b) demonstrate.
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Figure 3. (a) The map shows the Marche region (black line), with Macerata province highlighted (red
line) and Serravalle di Chienti municipality (yellow area). The church is identified with a green square;
two stripes represent the major seismogenic faults that cross the territory, Colfiorito-Campotosto fault
(purple stripe) and Vettore-Porche-Bove (light blue stripe). Source data: [41]. (b) The map shows
the principal active faults of the Central Apennine Mountain chain: Gubbio (29), Gualdo Tadino
(30), Colfiorito (31), Norcia (32), Mt.Vettore (33), Leonessa (34), Alta Valle dell’Aterno (35), Mt. Della
Laga (36), Rieti (37), Campo Imperatore-Assergi-Mt. Cappucciata (38), Valle del Salto (39), Campo
Felice-Colle Cerasito/Ovindoli-Pezza (40), Media Valle dell’Aterno (41), Fucino (42), Mt. Morrone (43),
Alta Valle del Sangro (44), Aremogna-Cinquemiglia (45), Sora (46), St. Pietro Infine (47) [42] (p. 10).
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Figure 4. (a) Marche seismic hazard map. Serravalle di Chienti’s value of peak ground acceleration
(PGA) (% g) is pointed out [43]. (b) The histogram represents in the x axis the year of occurrence of the
earthquake episode and on the y axis the intensity value [44].
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Table 1. Table of major seismic events for the Serravalle di Chienti area. Data source [44].

Microseismic
Intensity

Date Time Localization Epicenter
Intensity

Moment
Magnitude

10 30 04 1279 18:00 Camerino 9 6.31

8 03 05 1785 02:30 Alta valle del Chienti 7 5.14

6 28 07 1799 22:05 Appennino Marchigiano 9 6.13

NF 10 09 1919 16:57:20 Piancastagnaio 7-8 5.32

6-7 19 09 1979 21:35:37 Valnerina 8-9 5.86

4 13 10 1986 05:10:01 Appennino Umbro-Marchigiano 5-6 4.65

3 03 07 1987 10:21:58 Porto San Giorgio 5.09

4-5 04 06 1993 21:36:51 Nocera Umbra 5-6 4.50

4-5 05 06 1993 19:16:17 Gualdo Tadino 6 4.74

4 15 07 1997 08:51 Appennino Umbro-Marchigiano 4-5 3.69

5-6 03 09 1997 22:07:30 Appennino Umbro-Marchigiano 5-6 4.56

5 07 09 1997 23:28:06 Appennino Umbro-Marchigiano 5-6 4.38

4-5 09 09 1997 16:54 Appennino Umbro-Marchigiano 5-6 4.07

4-5 10 09 1997 06:46:51 Appennino Umbro-Marchigiano 5 4.16

7 26 09 1997 00:33:13 Appennino Umbro-Marchigiano 5.70

6-7 03 10 1997 08:55:22 Appennino Umbro-Marchigiano 5.25

6 06 10 1997 23:24:53 Appennino Umbro-Marchigiano 5.46

7 14 10 1997 15:23:11 Appennino Umbro-Marchigiano 7-8 5.65

4-5 09 11 1997 19:07:33 Appennino Umbro-Marchigiano 5-6 4.90

5 07 02 1998 00:59:45 Appennino Umbro-Marchigiano 5-6 4.43

4-5 16 02 1998 13:45:45 Appennino Umbro-Marchigiano 5 4.03

5-6 21 03 1998 16:45:09 Appennino Umbro-Marchigiano 6 5.03

5 26 03 1998 16:26:17 Appennino Umbro-Marchigiano 6 5.29

5-6 05 04 1998 15:52:21 Appennino Umbro-Marchigiano 6 4.81

4-5 11 08 1998 05:22:59 Appennino Umbro-Marchigiano 5-6 4.53

4-5 29 11 1999 03:20:34 Appennino Centrale 5-6 4.38

NF 09 12 2004 02:44:25 Zona Teramo 5-6 4.18

2-3 12 04 2005 00:31:52 Maceratese 4-5 4.16

4-5 15 12 2005 13:28:39 Valle del Topino 5-6 4.66

3-4 10 04 2006 19:03:36 Maceratese 5 4.51

The territory of Serravalle di Chienti is in the Colfiorito-Campotosto seismogenic source and
near that of Vettore-Porche-Bove (Figure 3a). In these areas, active faults are concentrated (Figure 3b),
and earthquakes, therefore, are generated. For Serravalle di Chienti, values of peak ground acceleration
(PGA) between 0.225 and 0.250 g are expected, according to the map in Figure 4a. These values are
useful in the perspective of damage prevention, but also to express an evaluation about accelerations
occurring during a seismic event. The recurrence of earthquakes in this area is confirmed by Table 1 and
Figure 4b, where the correspondent microseismic intensity and the moment magnitude of the seismic
events from 1279–2006 for Serravalle di Chienti are reported. This table helps to have a perceptive of
how many earthquakes churches located in that territory could have undergone. Most of the listed
events belong to the seismic sequence corresponding to the 1997 Umbria-Marche earthquake, labelled
as Appennino Umbro-Marchigiano.

2.2. Historical Description and Material Analysis of the Building

The original nucleus of the monastic complex of Acquapagana goes back to the XI Century: Saint
Romualdo built both the church and the monastery in 1007. This date is confirmed by Lodovico
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Jacobini, a historian who found the complex in 1653, thanks to a parchment of 1063, which has been
lost [45].

The church is an example of the Gothic-Umbrian style [46]: the smooth stone of the portal and of
the rosette, the horizontal frame on the façade, the buttresses and the single windows on the lateral
walls are clearly elements of this architectural period and of the geographical area under examination.
Entering more into detail, on the west side of the church (Figure 5b), the principal façade appears,
shaped as a simple hut with two openings: a portal, with a white stone frame, and a rose window.
On the lateral sides (Figure 5a,c), the façades are articulated with buttresses to balance the thrust of
the inner triumphal arches. In these walls, there are few openings: two small ones on the south side
(Figure 5c) and one on the north and east side (Figure 5a,d). According to [45], other information
on the church is dated 1737. At that time, according to the inventory of Camerino archbishopric’s
archive, the bell tower appeared on the main façade. It is assumed that the bell tower on the north side
of the presbytery was built later. In 1960, the wooden roof was replaced with a concrete slab and a
concrete curb [45], also visible in the graphic documentation of the 1997 earthquake, and then, after
the evidence of the damage caused [46], the roof was rebuilt with a light timber structure [45].
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Figure 5. Geometrical survey of the church [47]. (a) North elevation of St. Salvatore church; (b) principal
(west) façade of St. Salvatore church; (c) south elevation of St. Salvatore church; (d) east elevation of
St. Salvatore church.

Regarding the planimetric configuration, the examined church consists of a single rectangular
nave surrounded by continuous stone-framed masonry walls with an apse that ends the church on the
back side and gives access to the bell tower, remaining perfectly in axis with the entrance (Figure 6a).
A stair located in the southwest corner of the nave allows one to enter the timber choir above the
principal entrance (Figure 6b). The nave is marked by triumphal arches with a regular inter-beam
distance to provide support to the principal structure of the timber roof, which replaced the pre-existent
concrete roof after the 1997 earthquake. Today, the roof structure is clearly visible: simple beams,
running along the width of the church, bearing a secondary structure made of timber joists which
provide the support to the roof (Figure 6c,d).



Buildings 2018, 8, 45 7 of 23
Buildings 2018, 8, x FOR PEER REVIEW  7 of 23 

  
(a) (b) 

  
(c) (d) 

Figure 6. Geometrical survey of the church [47]. (a) Entrance-level plan of St. Salvatore church;  

(b) choir-level plan of St. Salvatore church; (c) plan at the bell tower opening level; (d) roof plan. 

A fundamental step considered in the comprehension of the construction history of the church 

is the analysis of masonry. The first necessary action is the analysis of texture to understand how it 

was built. The correspondence to the “rule of the art” was used to assess the seismic vulnerability of 

the church masonry walls. With this term is meant the totality of all those constructive techniques 

that guarantee good behavior and ensure compactness and monolithism [48] (p. 238), through 

quality evaluation criteria and the identification of possible phenomena of instability or degradation. 

The focus was set on the façade, extracting and analyzing a portion of 200 cm of width and  

90 cm of thickness (see the red square in Figure 7a and redrawn in Figure 7b). 

  
(a) (b) 

Figure 7. (a) Part of the investigated façade; (b) redrawn of a portion of the wall of the façade of the 

church (2.00 × 2.00 m). 

For the global assessment of masonry quality, the selected specimen has been evaluated, 

following the indications, given in [48], by which seven factors, which influence the good realization 

of masonry, are identified. Each factor is evaluated as: respected, or partially respected, or not 

respected. The seven factors are: 

Figure 6. Geometrical survey of the church [47]. (a) Entrance-level plan of St. Salvatore church;
(b) choir-level plan of St. Salvatore church; (c) plan at the bell tower opening level; (d) roof plan.

A fundamental step considered in the comprehension of the construction history of the church
is the analysis of masonry. The first necessary action is the analysis of texture to understand how it
was built. The correspondence to the “rule of the art” was used to assess the seismic vulnerability of
the church masonry walls. With this term is meant the totality of all those constructive techniques
that guarantee good behavior and ensure compactness and monolithism [48] (p. 238), through quality
evaluation criteria and the identification of possible phenomena of instability or degradation.

The focus was set on the façade, extracting and analyzing a portion of 200 cm of width and 90 cm
of thickness (see the red square in Figure 7a and redrawn in Figure 7b).
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Figure 7. (a) Part of the investigated façade; (b) redrawn of a portion of the wall of the façade of the
church (2.00 × 2.00 m).

For the global assessment of masonry quality, the selected specimen has been evaluated, following
the indications, given in [48], by which seven factors, which influence the good realization of masonry,
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are identified. Each factor is evaluated as: respected, or partially respected, or not respected. The seven
factors are:

• Good quality of the mortar.
• Presence of bond stones, or stones passing through the entire thickness of the wall.
• Shape of the elements.
• Dimension of the elements.
• Presence of staggering in the vertical joints.
• Presence of horizontal rows.
• Good quality of resistant elements.

These evaluation criteria help with the comprehension of the response of a masonry panel to
gravity and seismic actions, and they allow one to identify parameters that, if present, guarantee the
masonry quality. The considered panel is assumed to be subject to vertical loads (both concentrated
and distributed) in the middle plane and orthogonal to it. Each parameter is described for every action
with a score, which contributes to the definition of the final wall quality index. This index corresponds
to different categories for the quality of masonry (A = good masonry behavior; B = average masonry
quality; C = insufficient behavior).

Regarding St. Salvatore church, stone elements do not exhibit degradation phenomena, have a
regular and squared shape and well-defined edges (Figure 8a). This is clearly visible in lateral walls
and in the principal façade, while the state of conservation and the pattern of the material are hidden
by the plaster in the east front and in the annexed body in the north side of the church. Prevalent
dimensions are a 30–50-cm length, a 10–25-cm height and a 10–20-cm thickness, but many elements
are also present with a major dimension of 70 cm. The wall section, analyzed with the image of
the 1997 earthquake damage, shows the presence of a rubble masonry: three leaves, two external
layers with a filling material, linked with some cross blocks (Figure 8b). Mortar joints are in good
condition and well preserved: large stone elements and thin layers of mortar are well proportioned.
Horizontal rows (Figure 8c) characterize all the length of the wall without interruption, while the
splitting of vertical joints is only partially respected (Figure 8d), because some joints are not in an
intermediate position with respect to the stone element. Analyzing the corners, it is possible to observe
the presence of cross blocks, which help to assume a good connection between lateral walls and the
façade. The global evaluation of the masonry is summarized in Table 2: a section is dedicated to
show the photographic details of the masonry, another to show the schemes, one more to show the
descriptions of the techniques of construction and materials and one to show the geometrical stone
characteristics; finally, the last section is dedicated to the correspondence of the seven factors with a
final evaluation of the quality of the masonry, resulting in being of good quality.
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Table 2. Wall quality index evaluation. Source of the axonometry and section images: [49].

MASONRY BLOCKS OF SQUARED STONE AND PEBBLES, TRIPLE FACADE
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2.3. The Identification of Existing Macro-Elements

Earthquakes, which have occurred in Italy in the last few decades, have produced severe damage
to the masonry building stock: especially churches have been shown to be particularly vulnerable also
to low seismic accelerations. The reason for such vulnerability is connected to the church typological
characteristics, such as the presence of slender walls, heavy construction elements producing thrust
actions on walls and the absence of diaphragm slabs.

Systematic studies of church damage have been carried out since the 1976 Friuli earthquake.
Indeed, a process of damage data collection has started from that occasion and has been continued
also after the following major earthquakes. The observation of the structural behavior of churches
clearly allows one to understand typical aspects of the response during earthquakes, identifying
well-recognizable parts of the building that show unity in their behavior during earthquakes, labeled
as macro-elements [2].

Since the study, Le chiese e il terremoto [2], a strong connection between macro-elements and collapse
mechanisms has been pointed out, ending with the elaboration of the form of damage for churches [1],
based on 28 kinematic mechanisms, including both out-of-plane and in-plane collapse modalities [50].
The survey form for the damage of churches is used for the first-level damage assessment, to have
accessibility and the state of damage produced by the seismic event. It is filled by a team of experts,
following the procedure indicated in a specific manual [51]. This is an essential action that helps to
define the planning of safety interventions and the next repairing activities. For the present study,
the existing macro-elements of the church have been identified. The tridimensional model (Figure 9)
clearly shows the main structural units; out of all the possible macro-elements, only a few are present:
façade, lateral walls, bell tower, apse, triumphal arch. Consequently, kinematic mechanisms have been
associated with each macro-element.
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Figure 9. Macro-elements of St. Salvatore church. (A) Façade; (B) lateral walls; (C) bell tower; (D) apse;
(E) triumphal arch; (F) beams of the roof; (G) annex building.

The possible kinematic mechanisms, in the case of St. Salvatore church, are the following:

• Overturning of the façade (mechanism 1)
• Mechanisms of the upper part of the façade (mechanism 2)
• In-plane mechanisms of the façade (mechanism 3)
• Transversal response of the nave (mechanism 5)
• Longitudinal response of the lateral wall, in-plane (mechanism 6)
• Triumphal arches (mechanism 13)
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• Overturning of the apse (mechanism 16)
• Shear mechanism of the aps (mechanism 17)
• Vaults of the aps (mechanism 18)
• Mechanism of the element of the roof-lateral walls of the nave (mechanism 19)
• Interaction with annexed buildings (mechanism 25)
• Bell tower (mechanism 27)
• Upper portion of the bell tower (mechanism 28)

Figure 10 shows the activated mechanisms and the relative damage, reported by the team of
surveyors. This interpretation, made for each macro-element, leads to elaborate the general damage
index of the church (Id); in this case, the reported value is equal to 0.32 [52].
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As a result of the survey, the church was declared inaccessible [52]. Some of the mechanisms, in 
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Figure 10. Activated mechanisms and level of damage. Source data: [52]. (a) Overturning of the façade;
(b) mechanisms of the upper part of the façade; (c) in-plane mechanisms of the façade; (d) longitudinal
response of the lateral wall, in plane; (e) shear mechanism of the aps; (f) vaults of the aps; (g) bell tower;
(h) upper portion of the bell tower.

As a result of the survey, the church was declared inaccessible [52]. Some of the mechanisms,
in the church façade and in the bell tower, that occurred in the apse area have a serious or rather
diffused damage. To these aspects could be associated with the given assessment of accessibility.

2.4. Two Earthquake Episodes in Comparison: the 1997 Umbria-Marche Earthquake and the 2016 Central
Italy Earthquake

The seismicity of the area of Serravalle di Chienti is well known, as pointed out in Section 2.1.
The major recent events, which hit this area and are discussed in the present work, are the 1997
Umbria-Marche and the 2016 Central Italy earthquakes. St. Salvatore Church suffered damage in
both cases, even if at different levels, as is clearly visible looking at the infographic documentation.
Understanding what happened from a seismic territorial perspective is one of the essential steps for
the comprehension of the state of damage in the analyzed case study. Indeed, a territorial overview,
together with building-scale photographic documentation, allows a deeper comprehension of the state
of damage.
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2.4.1. The 1997 Umbria-Marche Earthquake

In the first days of September 1997, close to Colfiorito, an incremental seismic phenomenon
was registered. On 26 September 1997 at 0:33 a.m., the first shock was felt with a 5.70 moment
magnitude (Mw) (Figure 11a) at 3.51 km of depth, with the epicenter located at 43.022 latitude and
12.891 longitude [53]. After some hours, at 9:40 a.m., another strong shock (Figure 11b), with 6.01 Mw
and at 9.87 km of depth, hit the area with the epicenter slightly to the north (43.014 lat. and 12.853
long.) [54]. Then, on 14 October 1997 at 3:23 p.m., a shock (Figure 11c) of 5.65 Mw at 7.33 km of depth
hit Sellano, with the epicenter at 42.898 latitude and 12.898 longitude [55]. Other shocks followed until
the first months of 1998, as is visible in the historical catalogue of seismicity of Serravalle di Chienti
(Table 1). All the epicenters of the main shocks belong to the Colfiorito seismogenic unit, indicated
with the number 31 in Figure 3b.
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document. The south portion of the complex collapsed, while the upper part of the bell tower was 
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Figure 11. The 1997 major shocks with the location of St. Salvatore church (green square) in
Acquapagana and the seismogenic fault system of Colfiorito (purple area). (a) The red star points out
the epicenter of the 26 September 1997 event at 0:33 a.m. [53]; (b) the blue star specifies the epicenter of
the 26 September 1997 event at 9:40 a.m. [54]; (c) the yellow star indicates the epicenter of the 14 October
1997 event [55].

After this series of shocks, the church suffered severe damage, as the collected images document.
The south portion of the complex collapsed, while the upper part of the bell tower was strongly
affected, losing portions of walls (Figure 12) in correspondence to the opening, probably due to the
good connection of the transversal walls, which determined the migration of the damage in the weakest
and unbound part of the structure.
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Figure 12. The image shows the state of damage post the 1997 earthquake of the east side of the
building. In the foreground, the portion of the collapsed monastic complex is visible, while in the
background, the damaged bell tower appears [56].
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As mentioned in Section 2.2, the connection between lateral walls of the nave and the façade is
well realized (see the image of the corner in Table 2). This aspect influences the response of the building
against horizontal forces, developing a box-like behavior. Indeed, the collapse of lateral walls is located
in the upper area, in contact with the roof. In this regard, the information about the substitution of the
roof in the 1960s helps to understand the damage. Under seismic cycles, the concrete roof pounded on
the masonry walls, causing local damage. The correlated state of damage is clearly visible in the upper
part of the lateral walls (north and south) and of the buttresses (Figure 13a). Moreover, the multi-leaf
walls, shaken and pounded, show the separation of the external leaf from the standing interior one.
This phenomenon is visible both in the north walls (Figure 13b) and in the gable part of the main
façade (Figure 13c). As in the case of the north wall, in the portion above the rose window in contact
with the roof, the pounding effect caused the loss of a part of the masonry. In Figure 13c, this is visible
as rubble on the ground in front of the church. The main façade also showed in-plane shear cracks in
the area, which goes from the gable to the lower south west corner. These kinds of cracks followed
the path of the mortar, denouncing the lower strength capacity of the mortar compared to that of the
masonry. Moreover, none of the cracks cross the blocks of stone, confirming the good quality of the
masonry evaluated in Section 2.2.
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Figure 13. Post-1997 earthquake damage of the exterior of the church. Photo source [56]. (a) Collapse
of the upper part of the buttresses and of the lateral walls; (b) partial collapse of the north wall of
St. Salvatore church; (c) damaged gable, left portion of the upper side of the façade, shear crack in the
central part under the rose window and collapse of the upper portion of the buttresses of the south side.



Buildings 2018, 8, 45 14 of 23

Finally, the damage also occurred the interior of the church. The stiffness of the concrete roof
determined shear cracks in the triumphal masonry arches, as shown in Figure 14a. Furthermore, from
the images of the church interior, the loss of both the internal leaf of the façade wall and of part of the
upper portion of the lateral walls (Figure 14b) is visible. The explanation of this damage is the same as
the exterior damage.
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Figure 14. Post-1997 earthquake damage of the interior of the church. Photo source: [57]. (a) View of
the triumphal arches towards the apse area. Diffuse shear cracks and pounding damage. (b) Inside
view of St. Salvatore church. Partial collapse of the wall and of part of the internal leaf of the wall of
the main façade at the tympanum level.

2.4.2. The 2016 Central Italy Earthquake

Acquapagana in Serravalle di Chienti is among the areas hit by the several shocks that have
affected Central Italy since August 2016. The major shocks happened on 24 August 2016, on 26 and 30
October 2016 and on 18 January 2017. The I.N.G.V. (Istituto Nazionale di Geofisica e Vulcanologia)
identifies these events with the so-called Amatrice-Norcia-Visso seismic sequence. Maps in Figure 15
show the PGA curves for each seismic event together with the church location. For the series of shocks,
other data, such as the shake maps, could be found in [58–61].
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provisional interventions and the survey form [52] of St. Salvatore filled out by a ReLUIS (Rete 

Figure 15. PGA isocurves of the main shocks. (a) Event of 24 August (12% g); the epicenter is the red
star [58]; (b) event of 26 October (8% g); the epicenter is the yellow star [59]; (c) event of 30 October
(12% g); the epicenter is the blue star [60]; (d) Event of 18 January (2.5% g); the epicenter is the green
star [61].

These maps are the result of a QGIS software [62] elaboration: the overlapping of geographical
information—St. Salvatore Church coordinates (42◦59′00.5′ ′ N 12◦55′49.2′ ′ E) and administrative
limits—with the curves of the PGA (% g) allows one, for each seismic event, to connect different kinds
of information. Even if a more specific assessment would require the acceleration time history at the
site, this step of knowledge is helpful for the comprehension of what happened in those areas. Indeed,
these maps show that, on 24 August, the church reached a PGA curve of 12% g (Figure 15a), on the
26 October of 8% of g. (Figure 15b), on 30 October of 12% of g (Figure 15c), while, on 18 January, the
church is outside the curve of 2.5% of g (Figure 15d). Even if in this last case, the PGA value is lower
than in the preceding shocks, the church structure could have suffered damage because it was already
compromised. In this regard, [63,64] could contribute to explaining the progression of damage caused
by the repetitive shocks. Moreover, all the values stay in the range of the expected acceleration of the
area, specified in Section 2.1.

The effects of the 2016 earthquake on the building have been studied according to: the onsite
external survey, the collection of photographic documentation related to the moment before the
provisional interventions and the survey form [52] of St. Salvatore filled out by a ReLUIS (Rete
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Laboratori Universitari di Ingegneria Sismica) team after the 2016 earthquake. Both the bell tower and
the church building present a significant state of damage. Externally, in particular on the east side,
the bell tower appears compromised: along the height, shear cracks are present; due to the plaster,
it is not possible to affirm that the cracks follow the mortar. Probably the path of the cracks, at some
points, provides evidence of the discontinuity of the masonry caused by reconstruction after seismic
events (Figure 16a,b). This is visible in the upper part of the bell tower. Indeed, Figure 12 confirms
that this portion was rebuilt after the 1997 earthquake. Moreover, the upper part of the bell tower,
on the west side, shows not only shear cracks, but also torsional ones (Figure 16c). The presence of
the tie rods efficiently works: indeed, this portion of the tower reacts with a box-like behavior effect,
providing a contrast to the torsional action and causing cracks at the base of the terminal part of the bell
tower. Figure 16d shows a diagonal and vertical crack that should be connected to the pounding effect
between the annexed body and the buttress of the nave, which shows Mechanism 5 (see Section 2.3).
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Figure 17. Interior state of damage of the bell tower. (a) Shear cracks of the ground floor [47];  

(b) continuous part of the shear crack of the first floor [47]; (c) shear crack on the north side [47]. 
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from external images (Figure 18), the façade shows light visible lesions in correspondence with the 

timber beam of the roof, which causes shear cracks because of the pounding effect. Light lines of 

Figure 16. Exterior post-2016 earthquake damage. (a) Shear cracks along the height of the bell
tower [47]; (b) damaged bell tower with provisional interventions; (c) torsional and shear cracks [47];
(d) diagonal and vertical crack in the annexed building in contact with the buttress of the north wall of
the nave [47].

The state of damage observed outside has a correspondence with the interior part of the bell
tower, where the cracks cross the different levels of the structure (Figures 16c and 17a,b).
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Figure 17. Interior state of damage of the bell tower. (a) Shear cracks of the ground floor [47];
(b) continuous part of the shear crack of the first floor [47]; (c) shear crack on the north side [47].
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The damage of the church building appeared more concentrated in the principal façade. Indeed,
from external images (Figure 18), the façade shows light visible lesions in correspondence with the
timber beam of the roof, which causes shear cracks because of the pounding effect. Light lines of
damage are present, retracing the discontinuity of the masonry due to the post-1997 earthquake
reconstruction of the gable of the façade.
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Figure 18. Post-2016 earthquake damage of the external façade with the damage pattern.

The pounding effect of the timber beams of the roof, introduced post-1997 earthquake, is more
evident from the interior of the church (Figure 19a). The overturning mechanism of the façade is shown
in Figure 19b. A vertical line of discontinuity denounces the overturning of the façade, evaluated in
Figure 10, underlined also by the diagonal cracks in the lateral walls.
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Figure 19. Post-2016 earthquake damage of the inside view of the west wall of the church. (a) Cracks
at the intersection between the beams of the roof and the facade [47]; (b) vertical crack between the
façade and the lateral wall where there are also diagonal cracks [47].

3. Discussion

The multidisciplinary approach, exemplified in this article, for the assessment of the state of
damage has provided a more exhaustive vision, not limited to the building scale. Several aspects have
been considered, as summarized in Figure 1. Information on the seismogenic source systems, on the
PGA accelerations, on the localization of the epicenters, archived data of the historical seismicity of the
area, the documentation of the state of damage from the survey form used for churches and images of
the state of damage have been employed.

The comparison between the two seismic episodes, the 1997 Umbria-Marche and 2016 Central
Italy earthquake, shows a milder state of damage in the last one. In summary, this could be caused by:
(a) a lower distance from the epicenters of the several shocks in the 1997 Umbria-Marche earthquake
compared to those of the 2016 Central Italy earthquake (Figure 20); (b) the different propagation
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direction of waves, from the northwest (26 and 27 September) and from the south (14 October) in the
1997 earthquake, while southeast/east in the 2016 earthquake, in reference to the position of the church
explained in Section 2.1 and in Figure 2c, as well as the effectiveness of the interventions done after the
1997 earthquake.
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Figure 20. Maps showing the distances of epicenters of the principal shocks from the church. (a) The
map presents the 1997 Umbria-Marche earthquake shocks. Data source: [41,53–55]. (b) This map shows
the 2016 Central Italy earthquake shocks. Data source: [41,58–61].

At the building scale, from the comparison of the state of damage between the two earthquakes,
some considerations can be made. Observing Figure 21, the shear cracks on the plane of the façade,
below the rose window are lightly marked from the recent earthquake.
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Figure 21. Comparison of the state of damage on the façade after the 1997 earthquake (on the left) and
the 2016 one (on the right).

On the contrary, the upper portion of the gable, in contact with the roof, is in good condition, and
it does not show the separation of the leaves. It seems that a good interlocking between the internal
and the external leaf of the façade has been performed with the post-1997 earthquake intervention.
Moreover, the substitution of the heavy concrete roof with a light timber structure (Figure 22) has
contributed to reducing the mass, which during the cyclic dynamic effects of the earthquake, could
have severely damaged the façade.
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Figure 22. Comparison of the types of roof and the relative state of damage after the 1997 earthquake
and the 2016 one.

The effectiveness of these interventions seems to be demonstrated, even if further studies should
be done in this regard. An improvement in the connection between the timber beams and the wall
is recommended. A good box-like effect of the building was observed in both events. Nevertheless,
the rather high level of damage of Mechanisms 1 and 2 (Figure 10) suggests the use of tie rods at
the level of the gable, in correspondence with the transversal walls. In the case of the bell tower,
the tie rods helped to keep the four walls together and to limit the damage. The interventions
performed on the main façade, on the lateral masonry walls and on the buttresses have provided good
seismic performance.

Finally, other general considerations can be added:

• In the bell tower, an additional steel structure, tying together the four walls of the bell tower,
could guarantee ductility and reduce torsional movement of the upper portion.

• The existing independent steel structure, used to carry the bells, has shown a satisfactory response
to seismic actions and probably has reduced the damage to the masonry structure.

4. Conclusions

The multidisciplinary procedure for the assessment of seismic damage, presented in this work,
demonstrates the advantages that such an approach can provide in terms of a more exhaustive vision
of the damage.

This methodology could be applied to other churches recently affected by earthquakes in Central
Italy and to other similar situations, thanks to its replicability and adaptability. Indeed, inserting
churches with their own coordinates in a GIS work space, together with seismic data of an earthquake,
accessible from the INGV website [65] or in general from similar authorities, the damage of the building
can be studied; moreover, seismic accelerations, directions and distances can be considered. In keeping
with such an approach, a knowledge of the territorial scenario could be achieved, in terms both of
the vulnerability of the geographical area and of the interventions performed after seismic events.
Meanwhile, this methodology for the assessment of damage could help to store and collect territorial-
and building-scale information, which would be useful for future advancement of knowledge.
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