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Abstract: The hybrid steel trussed concrete beams examined in the present study are comprised of
two principal components, i.e., a steel joist with inclined rebars, realized in industry, which is welded
to a smooth steel plate and then embedded within the concrete cast in situ. The paper presents first
the state of the art on laboratory tests and analytical modeling of the steel-to-concrete stress transfer
mechanism investigated by push-out tests. Next, the most relevant scientific contributions currently
available in the technical literature regarding experimental investigation on actual shear behavior are
summarized and discussed. Lastly codes and analytical models are reviewed.
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1. Introduction

A Hybrid Steel Trussed Concrete Beam (HSTCB) is a structural element consisting of a lattice
metal beam, with a prefabricated concrete or steel caseback, embedded in whole or in part in concrete
casting in place. The main parts of the lattice are the top and bottom chords and the web. The lattice
morphology can be categorized by different parameters [1]: (1) by the bottom chord, e.g., steel
or precast prestressed concrete bottom chord (Figure 1a); (2) by the shape of the lattice, e.g., spatial
(Figure 1a,b), plane (Figure 2a), or multi-plane lattice (Figure 1c); (3) by the size and position (compared
to the slab), e.g slab thick (Figure 1d), downward (Figure 1e), or upward (Figure 1f) full thick beams;
(4) by the element shape of the bottom chord, e.g., beams having bottom chords made with steel plate,
steel angular (Figure 1g), or round or square bars placed on one or more layers; (5) by the morphology
of the web bars, e.g., web made up by a single bar bent with a V shape (Figure 1h), composed with
two elements welded to the top and bottom chords, or consisting of a continuous serpentine (Figure 1i).
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Figure 1. Beams having: (a) steel or precast prestressed concrete bottom chords; (b) spatial lattices;
(c) multiplane lattices; (d–f) slab thick downward, and upward (compared to the slab) full thick beams;
(g) bottom chord made by steel angular; (h) web made by a single bar bent with a V shape;
or (i) consisting of a continuous serpentine.

Figure 2. Connection typology at the beam-to-column joint: (a) transversal steel plate welded to the
rebar welded to the bottom steel plate; (b) added top and bottom rebars; (c) added bi-planar truss;
(d) two overlapping lattices positioned eccentrically.
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When the beam is inserted into a moment-resistant frame, several structural options are available
to ensure the connection and the transmission of the bending moment across the beam-column joint.
In a first case, connection is guaranteed at the base of the beam by connecting the bottom plate to
the column by a transversal steel plate welded to the rebars, welded in turn to the bottom steel plate
(Figure 2a). In other cases, added top and bottom steel rebars are utilized in order to guarantee
transmission of the tensile and compressive force at the joint (Figure 2b). In a third case connection is
obtained by overlapping a precast spatial lattice with two plane trusses in the joint region (Figure 2c),
or lastly by overlapping two lattices positioned eccentrically with respect to the axis of the bottom
chord (see Figure 2d) so that the lattice itself acts as reinforcement that guarantee connections.

An HSTCB is typically subject to three different operating phases. Phase 0 begins with construction
in the factory and ends with installation (transient lifting, transport and assembly phase). Phase I
is transitory (Figure 3), and begins with the beam put in place and includes the concrete casting of
the beam and of the portion of deck attached thereto. Phase I lasts until the concrete reaches the
preset design resistance for the beginning of Phase II. Phase II includes the whole life of the structural
organism in which the HTCB is inserted (operating phase).

Figure 3. Beam structural schemes in operating Phases I and II.

The HSTCB represents a more and more widely used structural typology in the building
construction industry thanks to economic benefits arising from excellent structural performance
and rapidity of implementation. The latter derive from the partial prefabrication of the beams and
from their self-supporting capacity in casting Phase 0 and Phase I. Regarding the design of such
a type of beam, in the past HSTCBs were designed on the basis of the current rules for R.C. or for
steel–concrete hybrid beam elements. More recently, a large number of research papers have been
published, aimed at deriving specific design procedures for this beam typology. The key problems
scrutinized in Phase 0 and Phase I regard estimation of the welded joint resistance [2] and the flexural
and torsional stability of the lattice [3]. Meanwhile, the key problems scrutinized in Phase II regard
the stress transfer mechanisms between steel and concrete [4–12], assessment of bending and shear
strength [13–20], beam-column joint performance under static, cyclic [21–26] and seismic [27] loads,
and assessment of deformability at short and long-term [28].

In this context, in the present paper, first the state of the art on laboratory tests and the
analytical modeling of the steel-to-concrete stress transfer mechanism investigated by push-out tests are
focused on. Next, the most relevant scientific contributions currently available in the technical literature
regarding experimental investigation on actual shear behavior are summarized and discussed; lastly,
code and analytical design-oriented models proposed in the literature are reviewed.

2. Steel to Concrete Stress Transfer Mechanism

2.1. Experimental Results

In spite of the large variety of HSTCB typologies commonly in use since 1970, in the past only
a few authors presented experimental results studying the stress transfer mechanism between steel and
concrete. More recently, this problem has aroused new interest, and it is usually investigated by means
of experimental push-out tests that are inspired by the test procedures specified in Eurocode 4 [29]
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for conventional composite beams. Usually, the tested sample of the beam consists of (Figure 4b)
a steel plate working as the bottom chord of the lattice, one or more longitudinal steel bars constituting
the upper chord, and steel web bars welded to the bottom and top chords working as diagonals
connecting the truss and concrete core. The bars can be either ribbed bars or smooth steel bars. As for
classical push-out tests, the testing specimen consist of two equal segments of beam joined by means
of an added steel plate welded perpendicularly to the truss bottom chords and properly strengthened
at the end where the load is applied [4,5,7–11,29]. The main outcome of the test is load vs. slip between
the concrete of the beam and added steel plate curve (Figure 5), which allows for one to evaluate the
strength and ductility of the connection. Figure 4 shows the layout of the push-out tests on HSTCBs
available in the technical literature. All results are used in the following sections in terms of maximum
load in order to check the suitability of some analytical approaches for the assessment of the push-out
test response.

The first researchers that studied the steel truss-to-concrete stress transfer mechanism in HSTCBs
by push-out tests were Puhali and Smotlack (1980) [4]. They compared the performance of planar and
three-dimensional trusses (Figure 4a) with different strengths of the connection (size of web rebars).
More precisely, for each typology, three specimens were tested, all of them having steel plate 6 mm
thick, and diameter of web bars ϕw and upper chord ϕup varying in a range from 14 mm to 32 mm.
(Table 1). The bars and the plate were both realized with smooth steel having nominal yielding strength
of 355 N/mm2 (S355), while the concrete had a cubic compressive resistance varying in the range
26–30 N/mm2. Table 1 shows the features of the specimens and the experimental results.

Figure 4. Geometry of specimens: (a) Puhali and Smotlack (1980) [4]; (b) Tullini and Minghini [7];
(c) Aiello [5]; (d) Badalamenti et al. [14].

Table 1. Specimen features and experimental results by Puhali and Smotlack [4].

ID Web Bars Upper Chord Ultimate Load (kN) Failure

A-P1 no.1 bar
(ϕw = 14 mm)

no.2 bars
(ϕ up = 14 mm) 463.0 steel web rebars

A-P2 no.1 bar
(ϕw = 24 mm)

no.2 bars
(ϕup = 24 mm) 647.5 concrete

A-P3 no.1 bar
(ϕw = 32 mm)

no.2 bars
(ϕup = 32 mm) 843.5 concrete

B-P4 no.2 bars
(ϕw = 14 mm)

no.3 bars
(ϕup = 14 mm) 735.5 Steel web rebars

and plate buckling

B-P5 no.2 bars
(ϕw = 24 mm)

no.3 bars
(ϕup = 24 mm) 1177.5 concrete

B-P6 no.2 bars
(ϕw = 32 mm)

no.3 bars
(ϕup = 32 mm) 1324.5 steel plate buckling
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The authors stressed that all specimens with space truss (B-P4, B-P5 and B-P6) exhibit both
higher stiffness and strength with respect to the single planar truss counterpart (specimens A-P1, A-P2
and A-P3). In each of the two groups, specimens having rebars with small diameters (A-P1 and B-P4)
exhibit low strength, but ductile behavior characterized by failure of the web bars. When spatial truss
is considered, buckling of the steel plate can precede the web bar failure. Specimens with web bars of
larger diameters exhibit larger strengths, but a more brittle failure mechanism characterized by a crisis
of the concrete or buckling of the steel plate (Table 1).

The load-slip curves obtained for the group A and group B specimens are shown in
Figure 5a,b respectively. All specimens exhibit large initial stiffness, which decreases when slip
between the steel plate and the concrete kicks in. Specimen A-P1 exhibited ductile behavior, with
rupture due to cutting of the diagonal rebar of the truss, along planes parallel to the axis of the
specimen, in sections close to those of welding to the plate. Models A-P2 and A-P3 showed lower
ductility, as characterized by a collapse on the concrete side along planes parallel to the load axis.
Collapse occurred following shear action developed by the bar of the truss on the concrete.

Figure 5. Load-slip curve obtained by Puhali and Smotlack [4] for: (a) group A specimens; (b) group
B specimens.

The group B specimens showed much greater strength and stiffness than the corresponding group
A specimens. Again, in the sample with diameter of the web diagonals ϕw = 14 mm, failure occurred
due to rupture of the bars in the area of connection to the plate; in this case failure was preceded
by noticeable local buckling of the steel plate. In the collapse mechanism, all the bars of the truss
were strongly deformed, and in particular, the compressed diagonals and the bars of the upper chord.
For sample B-P5, for which the load-slip curve (Figure 5b) shows a considerable amplitude of the slips
at the failure, the ductile branch was followed by a fragile collapse, caused by sudden bursting of
one of the two concrete “slabs” due to shear action exerted by the bars of the lattice on the concrete.
Finally, the failure of specimen B-P6, equipped with a lattice upper chord and web bars having large
diameter (ϕw = ϕup = 32 mm), occurred due to local buckling of the steel plate.

The more recent experimental investigation carried out by Tullini and Minghini [7] stressed the
key role played by the shape of the web bars, and the size of the welding. The authors tested three
identical specimens (Figure 4b), whose truss was made (see Figure 6a) with a S355 4 mm thick steel
plate, web bars of 12 mm diameter and upper chord with diameter 18 mm. The web truss was made up
of a continuous serpentine welded to the bottom plate and the bars of the upper chords. The welds on
the lower plate had a throat height of 6 mm, a length of 35 mm and a pitch of 200 mm. The bars were
made of steel with nominal yielding stress 440 N/mm2 and the concrete had mean cubic compressive
strength equal to 42.24 N/mm2. The tests conducted by the authors aimed at assessing the strength,
stiffness and ductility of the connection between steel and concrete. For this purpose, the authors
showed the curve in Figure 6b of the load absorbed by the single weld as a function of the sliding
between the metal plate and the concrete, and its numerical estimation by Ollgaard’s relationship.
For all samples tested failure suddenly occurred, with a separation of a block of concrete from the
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plate due to the wrench of the welds between the plate and the web bar. Moreover, they stressed that
the high slip gradient arising in sections near the supports may lead to premature concrete failure.

Figure 6. Push-out test by Tullini and Minghini (2013) [7]: (a) Lattice before concrete casting for testing
employed; (b) Load on welding-sliding: —- experimental results; : Ollgaard’s relationship.

Aiello (2008) [5], attested the efficiency of the push-out test procedure derived by EC4 [29] for
conventional steel–concrete composite beams for characterizing the stiffness, strength and ductility
of the connection of HSTCBs. She confirmed that the collapse can often be due to failure through
under-sizing of the welding between web bars and bottom steel plate, and emphasized the role played
by the finishing of the surface of the web rebar (smooth or ribbed). She advised strict checking of the
bent and welding processes of the web bars during the production phase.

The experimental analysis reported here concerns eight tests on specimens of four typologies.
Their characteristics are described in Table 2, where ϕw and ϕuc indicate the diameter of the diagonal
bars and the upper chord, and Pu is the maximum load achieved in each test. The geometry of the
specimens includes three meshes with space trusses. The details of the geometry are shown in Figure 7a,
while Figure 7b shows the steel truss before casting and Figure 7c the complete specimen placed into
the compression-testing machine. In all specimens, the bars constituting the upper chords are made
of B450C steel. The diagonals of the truss are made of B450C ribbed steel in the case of specimens
B12 and B14, and S355 smooth steel for specimens S12 and S14. The bottom chord is constituted by
a steel plate of 6 mm made up of S355 steel. The concrete has an average cubic compressive strength of
42.6 N/mm2. In specimens with identity tag S14 the welds between the initial and end diagonals and
the base plate are removed. In almost all cases the collapse of the specimens was due to failure of the
concrete, but sometimes failure of the welding also occurred. Figure 8 shows the load-displacement
curves obtained from the Linear Variable Displacement Transducer (LVDT) measurements for each
test representative of the specimens having all welds. The LVDTs were placed on the upper front side
of the specimen (LVDT As and Ad) and next to one welding (LVDT Ps). In Figure 9 the deformed
shape of the steel truss at the end of the test for specimen B12_2 is reported.

Table 2. Features of specimens tested by Aiello [5].

ID ϕw ϕuc Pu (kN) Failure

S12_1 S355
2ϕ12

B450C
1ϕ18

817.1
concrete

S12_2 842.1

S14_2
S355
2ϕ14

B450C
1ϕ18

787.1 concrete

S14_3 808.1 concrete

S14_4 861.1 welding

B12_1 B450C
2ϕ12

B450C
1ϕ18

996.1 concrete

B12_2 1007.5 welding

B14_1 B450C
2ϕ14

B450C
1ϕ8 1139.0 steel
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Figure 7. Push-out test in Phase II (Aiello). [5]: (a) geometry of specimens (dimensions in mm); (b) steel
truss before casting; (c) specimen into the testing machine.

Badalamenti [13] and Badalamenti et al. [14] proved that, in a spatial truss too, correct sizing of the
welding and proportioning of the (ribbed) web bars allows one to obtain a ductile collapse mechanism,
in which the cracking caused by attainment of the tensile concrete strength is followed by a progressive
transfer of tensile stresses from the concrete to the tensile web bars of steel trusses, and plate buckling
is avoided. Ductile behaviour is ensured by activation of a plastic hinge at the connection of the tensile
web rebars with the steel plate, and at the height corresponding to the concrete longitudinal crack in
the compressed web bar.

They prepared three identical specimens, P1, P2 and P3 (see Figure 10a,b), where the trusses were
made up of ribbed bars for reinforced concrete. The web bars had a diameter of 12 mm, the upper
chord was made up of three bars of 16 mm diameter and the bottom plate was constituted by a plate
of 5 mm. The bars were made with steel having nominal yielding strength equal to 450 N/mm2

(B450C) while the base plate was made of S355 class steel. The concrete had a cylindrical resistance
equal to 27.77 N/mm2. In order to evaluate the stress in the web bars electric strain gauges were
placed before concrete casting as shown in Figure 10c,d. After curing and maturation, in all specimens
two other strain gauges were also placed on the steel plate on two sides of the truss bottom joint,
in order to evaluate the stress transfer in the truss joint.

In all the tests, the ultimate loads obtained were very similar, with a mean value of 1104.7 kN,
and specimen collapse was due to concrete failure. Specifically, the maximum load values recorded
for specimens P1 and P2 were equal to 1051.6 kN and 1004.9 kN respectively while for specimen P3
a higher value was achieved, equal to 1257.5 kN.
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Figure 11 shows the load-displacement curves for the three tests considering the displacement
values recorded by the testing machine. During the load history, appreciable cracks began to appear at
a load value of 80% of the maximum load; they propagated until the maximum load, corresponding to
the maximum concrete tensile strength, was achieved. In the descending branches the curves showed
the progressive strength reduction that during the test was associated with a typical noise of breaking
of metallic parts. It can be observed that the specimens exhibited a somewhat ductile branch to which
there corresponded a rapid increase in vertical cracking of the concrete; the configuration of specimen
P1 at the end of the test can be observed in the pictures reported in Figure 11. Specifically, in Figure 11b
side views of the specimen P1 are shown, while in Figure 11c a view of the top face of the specimen
is represented (a similar failure type was observed for the two other specimens). For all specimens,
failure was due to achievement of the tensile strength in the concrete with formation of large amplitude
cracks in the longitudinal direction of the specimen. Cracking caused progressive transfer of tensile
stresses from the concrete to the tensile web bars of the steel trusses. The latter underwent large plastic
strains near the connection to the plate, as was seen after removing the concrete from the specimen.
In particular, by analyzing the pictures in Figure 12, which refer to specimen P1, it emerges that the
compressed bars exhibited large deformations at a distance of about 50 mm from the plate, presumably
corresponding to the longitudinal crack. A progressive reduction in the strength of the specimen
appears, corresponding to the progressive rupture of the tensile web bars next to the plate. In all
three tests, the welding remained undamaged.

Figure 8. Load-displacement curves in push-out tests, by Aiello [5]: (a) specimen S12_1; (b) specimen S12_2;
(c) specimen B12_1; (d) specimen B12_2; (e) specimen B14_1.



Buildings 2018, 8, 134 9 of 25

Figure 9. Deformed shape of the steel truss at the end of test B12_2 (Aiello) [5].

Figure 10. Specimen for push-out test in Phase II: (a) photo of a specimen; (b) geometry and
instrumentation (dimensions in millimeters); (c) strain gauges in specimens P1 and P2; (d) strain
gauges in specimen P3 (Badalamenti) [13].
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Figure 11. Push-out test in phase II (Badalamenti) [14]: (a). Load-displacement curves; (b) lateral view
of specimen P1 at failure; (c) top view.

Figure 12. Deformed steel truss of specimen P1 at the end of the test (Badalamenti) [14]: (a) overall view;
(b) zoom of deformed bars.

Finally, it is noteworthy that recently analytical and experimental investigation on HSTCBs
were developed [11,12]. In the former study, evaluation of the shear resistance of the connection
between bottom steel plate and concrete core through the diagonal bars of the truss was focused on,
developing a mechanical model. In [12], the results of laboratory tests conducted on six specimens
of two beam typologies, namely slab thick and full thick full-size HSTCBs, subjected to four-point
bending, with variation in the shear span, are reported. The tests were designed in order to investigate
the element resistance associated with three typical failure modes that can occur in HSTCBs, namely
flexural, shear and connection failure. Analytical formulations for calculation of resistance derived
from the available literature and technical codes were utilized to assess the failure modes of each
beam and load configuration. Finally, the transfer length necessary to ensure the full strength of the
connection were assessed. Both the two models will be presented in the following sections.

However, it has to be stressed that almost all the experimental investigations, and the derived
analytical models concern HSTCBs with bottom chord made up of steel plate, while there is a lack of
knowledge on the behavior of beams with precast prestressed concrete bottom chord.

2.2. Analytical Models for Stress Transfer Mechanisms between Steel and Concrete

In the literature, there are only a few models attempting to investigate the stress transfer
mechanisms between steel lattice and surrounding concrete in HSTCBs.
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Tullini and Menghini [7] modeled the influence of the stiffness, strength and ductility of the
connection on the overall behavior of the HSTCB. In their model, the hybrid beam was considered
as a conventional steel–concrete composite beam with deformable shear connection provided by the
web bars of the steel lattice welded to the steel plate at the bottom chord. Consequently, the behavior
of the connection was reproduced by means of the kinematical model proposed in [30] assuming
linear variation of the deformations within the layers represented by the concrete and the steel plate,
and that the slip between the two elements can occur without vertical separation at their interface.
Consequently, a nonlinear finite element formulation was derived in order to evaluate the ultimate
bending strength of the hybrid beam. More precisely, once a polynomial law of the displacement field
is assumed according to Amadio and Fragiacomo [31], a closed-form expression of the slip for the linear
elastic behavior of a uniformly loaded simply supported beam was derived in order to characterize the
response of hybrid beams with non-ductile shear connections. The authors stress that the hypothesis
of linear elastic behavior of steel and concrete is a realistic one for technical design, when the ultimate
limit state is governed by the premature crisis of the shear connection. They also derived a closed
form expression of the ultimate flexural strength of a beam characterized by an elastic-perfectly plastic
connection having constant stiffness along the beam axis.

In Colajanni et al. [10] attention was focused on the strength evaluation of the shear connection.
Numerical models able to reproduce the results of the push-out test were developed, and an analytical
relation able to reproduce both experimental and Finite Element (FE) results was proposed.
The analytical model was refined in [11], where a design equation capable of assessing the ultimate
action that can be transferred from the concrete core to the steel plate of the beam through the web
bars of the lattice was derived. The efficiency of the formulation was proved by means of favorable
comparison with numerical prediction by FEM and push-out test results.

In [10] a three-dimensional nonlinear FE model was developed. The constitutive relationship
of the steel composing the plates and the rebars was modeled by means of a quadri-linear law,
while the concrete behavior was defined by means of a Concrete Damaged Plasticity (CDP) model,
suitable for modeling concrete and brittle materials. The CDP model uses the concept of isotropic
damaged elasticity in combination with isotropic tensile and compressive plasticity to represent the
inelastic behavior of concrete. It makes use of the yield function, which is able to account for different
evolutions of strength under tension and compression. CDP is able to properly account for the concrete
confinement effect and it assumes that the main two failure mechanisms are tensile cracking and
compressive crushing. In order to accurately grasp the complicated dowel and bond phenomena
arising at the steel–concrete interface, a 3D solid model was used to account for the actual contact
surfaces between the truss and the concrete. The behavior of HSTCBs constituted by either deformed
or smooth steel diagonal bars was investigated, and four models for the steel–concrete interface
were analyzed. Sensitivity of the response to the size of the mesh was analyzed.

In [11] the Authors highlight that the connection behavior is governed by the relative strength
between steel lattice, concrete core, and welds, which are determined by the interaction among different
mechanisms, such as lateral confinement of concrete, nonlinear behavior of materials, contacts and
detachment phenomena. Although different collapse mechanisms could be activated depending
on the hierarchy of strength between them, the weld failure can easily be avoided by prope sizing.
In his circumstance, the geometrical and mechanical characteristics of the more widespread typologies
ensure that the most frequent collapse mechanism is due to activation of two plastic hinges formed
on each of the web bars of the lattice. They are placed in the regions near to the plate and in
another section along the diagonal rebar longitudinal axis, like what occurs in dowels and piles in
cohesive soils. Thus, the authors derived a model inspired by models already existing in the technical
literature concerning the abovementioned systems [32–35]. On the basis of the mechanisms reported in
Broms [32] and Vintzeleou and Tassios [35], several noteworthy parameters are identified for extending
the model to estimation of the steel dowel/pile strength to inclined steel rebar pushed against concrete.
Primarily, the effect of the amount of lateral confinement of the steel rebar, and secondly the plastic
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hinge length arising on the inclined rebar, are investigated. Furthermore, unlike most of the approaches
present in models available in the literature, this formulation takes into account the M-N-V internal
force interaction in evaluating the ultimate strength domain of the diagonal web rebar.

To this aim, the authors selected the collapse mechanism shown in Figure 13, where the following
most significant parameters can be recognized:

1. dowel leaning (i.e., leaning of the web bar of the lattice) represented by means of the angle α

formed along the inclined plane of the truss. The angle α is evaluated according to the geometrical
dimensions of the lattice, as follows:

α = arccos
(

0.5 s√
0.25 s2 + d2 + 0.25b2

)
(1)

in which s, b and d are the lattice spacing, width and depth, respectively;
2. bearing stress of concrete fb = ψ fc, which depends on the width of the lateral concrete covers

c1 and c2 as defined in the formulation by Vintzeleou and Tassios [35], where a correction
coefficient δ = (ψ/3)0.5 fluctuating in the range 0.60–1.30 can be evaluated as follows:

δ(I) = 0.6 + c1
db

(
0.027 c2

db
+ 0.1

)
for 0 ≤ c1

db
≤ 3 and 0 ≤ c2

db
≤ 5

δ(I I) = 0.9 + 0.08 c2
db

for c1
db
≥ 3 and 0 ≤ c2

db
≤ 5

δ(I I I) = 0.6 + 0.233 c1
db

for 0 ≤ c1
db
≤ 3 and c2

db
≥ 5

δ(IV) = 1.3 for c1
db
≥ 3 and c2

db
≥ 5

(2)

Thus, the coefficient value ψ = 5 that rules the value of the plastic strength of the concrete can
be assumed when the concrete is fully confined (i.e., c1/db ≥ 3 and c2/db ≥ 5), while ψ = (δ

√
3)2

when the confinement effect depends on the concrete cover;
3. the boundary condition of the head of the dowel: the dowel is modeled as clamped to the steel plate of

the lattice so that at failure two plastic hinges are activated. The distance between the two plastic
hinges is (Leff − a), Leff being the effective length of the web rebar and a the length of the plastic
hinge located near the steel plate;

4. the bending moment that activates the plastic hinges when the shear force V vanishes is
evaluated according to the bending moment M-axial force N interaction domain assumed in
Millard and Johnson (1984) [36]

Mpl =
d3

b
6

fy

1− N2

/(
π

d2
b

4
fy

)2
 (3)

5. the shear-normal stress interaction M-N-V is considered according to Eurocode 3 [37] indications in
which shear reduces the amplitude of axial force-bending moment interaction domain by tuning
the steel ultimate strength by means of a coefficient (1− ρ). Asw and fu being the cross-section area
and the ultimate strength of the steel of the web bar, the reduction coefficient can be evaluated as
ρ = (2V/VRu − 1)2 for V ≥ 0.5VRu, where VRu = 0.8fuAsw.

According to the structural system shown in Figure 13 the equilibrium equations read as follows:

V cos α = N (4)

V sin α− fb · db · a = fb · db ·
(

Le f f − a
)

(5)

2Mpl + fb · db · 0.5
(

Le f f − a
)2

= (V sin α− fb · db · a)
(

Le f f − a
)

(6)
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Figure 13. Selected collapse mechanism [11]: (a) spatial view; (b) structural scheme; (c) force equilibrium.

where the plastic flexural moment Mpl is given by Equation (3) in which Equation (4) is taken into
account, meaning it depends on the dowel force V. The authors stress that the symbol V used in
Equations (4)–(6) does not provide the shear action of the beam, but it provides the value of the shear
action that can be transferred from the concrete core to the steel plate through the bars of the lattice.
Likewise, the axial force N on the web bar has to be calculated by means of the Morsch truss.

Once the value of N is explicated from Equation (4) and that of Mpl from Equation (6), and they
are substituted in Equation (5), the following implicit relationship for the shear strength can be derived:

V2

 sin2 α
2 fb db

+ 16 cos2 α

3 π2db fy

(
1−
(

10 V
fu π d2

b
−1
)2
)
−V·a· sin α−

(
d3

b
3 fy

(
1−

(
10 V

fu π d2
b
− 1
)2
)
− fb db a2

2

)
= 0 (7)

where fb = ψfc, and the steel yielding strength of the steel rebar in Equation (7) is reduced
according to the interaction with the shear force (M-N-V interaction) suggested by the Eurocode 3
(CEN 2005) [37] prescriptions. A simpler direct expression of the dowel shear strength can be derived
if the M-N-V interaction is neglected, since from Equation (7) the following relation for the dowel
strength is derived:

V2

(
sin2 α

2 fbdb
+

16 cos2 α

3π2 fydb

)
−V a sin α−

(
d3

b
3

fy −
fbdb a2

2

)
= 0 (8)

Moreover, if both the internal force interaction is ignored and the distance a of the plastic hinge
from the steel plate is neglected, the following simpler analytical expression for the dowel strength V,
useful for practical design purposes, is derived:

V =
d2

b
√

2 fy fb√
3 sin2 α + 32 fb

π2 fy
cos2 α

(9)

Hence, the connection strength can be evaluated according to three proposed expressions, called
in the following sections model A, model B, and model C:

- model A delivers the dowel strength provided by a single web rebar of the HSTCB lattice,
formulated to take into account the actual plastic hinge length a and by assessing the effect
of actual the level of concrete confinement by means of the coefficients ψ, and δ, the latter
expressed by Equation (2). According to this model, the evaluation of V requires that Equation (5)
is solved, retaining the M-N-V interaction effects governed by the Eurocode 3 prescriptions.

- model B, where the M-N-V interaction effect only is neglected, delivers the analytical expression
of the value of the shear strength V-dowel strength connection in Equation (8).
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- model C, where both the M-N-V interaction effects and the distance of the plastic hinge from the
steel plate are neglected (i.e., ρ = 1 and a = 0 are assumed) and the maximum amount of concrete
confinement is retained (i.e., assuming ψ = 5). According to the abovementioned simplification,
an analytical expression of the value of connection shear strength V is provided in the closed
form by Equation (9).

The authors provide a favorable validation of the models by comparison with numerical FEM
and experimental results available in the technical literature.

In sum, the above presented models allow evaluation of both the strength of the steel truss-to
concrete connection, and the overall behavior of HSTCBs with bottom chord made up of steel plate.
However, it has to be stressed that, often in the construction practice, rebars are added and welded to
the bottom chord steel plate, in order to increase the capacity of the connection, and increase the shear
strength exploiting the dowel action of the system obtained by the collaboration of the added rebars
and the steel plate. None of the experiments and models in the literature have analyzed the effect of
this technical solution on the connection capacity.

3. Shear Strength

3.1. Experimental Results

A large number of shear tests on HSTCBs were carried out between 1987 and 1990 by the Italian
industry CSP. A typical specimen geometry and load condition (simply supported beam subjected to
a concentrated load applied at the midspan) of the tested beam is represented in Figure 14a. Figure 14b
shows typical shear failure that occurred in the tested beams and in Figure 14c the detail of the crack
pattern is represented. Figure 14d shows the specimen at the end of the test, focusing on the position
of the failed concrete strut with respect to the web steel bars. It can also be observed that spalling of
the concrete corresponding to the inferior face of the beam is prevented by the presence of the bottom
steel plate.

The results pointed out that the shear resistance mechanisms are different than those observed
in similar R.C. beams, and the maximum loads achieved was higher in most cases. It was noted
that the steel truss and the bottom plate make a significant contribution to the shear overstrength of
the system. However, the behavior of each beam was highly dependent on the typology geometric
of the truss, constituted by inclined or vertical compressed web bars, and by the finishing of the
surface (smooth or ribbed) of the web bars. Izzo et al. [38] stressed that the hypothesis of perfect
bond between the steel reinforcement and the concrete matrix (usual in models for R.C. beams) is not
realistic, especially for a beam made of smooth steel instead of ribbed steel bars. Thus, he stressed
that: understanding of the stress transfer mechanisms between the steel members and the concrete
is an aspect of paramount importance since the connection has to be provided almost solely by the
steel truss; and that, considering the limitation of the bond stress, the arch effect that is activated in the
shear failure mechanism of HSTCBs, is a preeminent contribution, which leads to an increased risk of
failure due to crushing of the compressed concrete strut.

More recently, another experimental campaign on shear failure on HSTCBs was carried out by
Chisari and Amadio [16]. They analyzed the role of added bottom rebars welded to the plate and rebar
surface finishing (smooth or ribbed).
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Figure 14. (a) Specimen for shear test; (b) shear failure; (c). Crack pattern of Hybrid Steel Trussed
Concrete Beam (HSTCB) with separation of the lower steel plate; (d) specimen at the end of the test
with no spalling of the concrete thanks to the presence of the lower steel plate.

Three-point bending tests were carried out on three types of specimens, all characterized by the
presence of a bottom steel plate. The cross-sections of the specimens are shown in Figure 15: they
differ for the number of bottom-added rebars welded to the steel plate, zero (Acc0), three (Acc3) or
five rebars (Acc5) respectively. The added rebars have the aim of increasing the bond between the
bottom steel plate and the concrete, and provide dowel action. Furthermore, it is worth noting that,
for each cross-section, three different specimens were manufactured, giving cases where the upper
chord and the diagonal bars were both ribbed (cn-an), the upper chord was ribbed while the web bars
were smooth (cn-al), and the upper chord was smooth and the diagonals were ribbed (cl-an).

Figure 15. Cross-sections of the three typologies of tested beams (Chisari and Amadio [16]).

The beams were simply supported at the ends and loaded with a concentrated force
asymmetrically applied with respect to the midspan. The tests were performed in displacement control.
The scheme of the geometry and the load condition is represented in Figure 16.
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Figure 16. Geometry of the beam and load condition (Chisari and Amadio [16]).

The load-displacement curves showed that the three specimens without lower added rebars
exhibited almost the same behavior with a maximum load of about 860 kN (see Figure 17a).
Concerning the specimens with three added rebars, the beam constituted by both ribbed upper
chord and diagonal bars exhibited a higher peak load equal to 1080 kN, while the other two specimens
achieved a maximum load of about 930 kN (see Figure 17b). Finally, with reference to the third series
of specimens made with five added inferior rebars, the beams exhibited almost the same behavior
achieving a peak load whose value was in the range between 975 kN and 1050 kN (see Figure 17c).
No welding failure was observed after removal of the concrete.

Figure 17. Load-displacement curves: (a) beams without lower rebars; (b) beams with three added
lower rebars; (c) beams with five lower added rebars (Amadio et al. [16]).

The results proved that a very important role is played by the concrete-steel plate base bond,
which cannot be assured only by connections and terminal plates. If it is partially also guaranteed by
longitudinal bars welded to the base, full shear strength can be attained.

Recently, the outcomes of a test survey on shear critical HSTCB by means of three-point
bending tests were published [20], investigating the effects of concrete compressive strength and
load application direction. The experiments were performed on five HSTCB specimens divided into
two series, and carried out applying symmetric loads. In detail, two series of specimens were tested.
Series A was loaded in order to obtain a positive bending moment, with the bottom steel plate
in tension. In series B, the specimens were placed upside-down, so that the steel plate was subjected
to compression action and the longitudinal rebars of the lattice were in tension, representing a load
condition in which the beam in an actual frame was subjected to negative bending moment and shear.
The characteristic cross-section of the truss is displayed in Figure 18a: it contains three upper rebars of
16-mm diameter, a bottom steel plate 5 mm thick, and two web rebars of 12 mm diameter. The beam
depth and width are 250 mm and 300 mm respectively. In the Series A beams, specimen A1 has
4 additional 16 mm diameter bars added at the top chord (Figure 18b), while specimens A2-1 and
A2-2 have 16 mm diameter supplementary bars, 4 in the top chord and 2 on the bottom chord
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(Figure 18c). Lastly, the Series B beams, labeled as B1 and B2, have the same cross-section as
specimen A1 (Figure 18b).

Figure 18d shows the longitudinal section of the beams, where the specimen is placed upside
down, as in the Series B beams, and the load configuration. All specimens were loaded with
a 600 mm shear span. The steel plate ends were bent, and welded at the top chord in order to
avoid plate-to-concrete relative slip. The slip could have significantly influenced the failure mode,
activating unrealistic behavior. In fact, in actual beams, the bottom plate is fixed at the beam-column
joints by suitable devices designed to avoid slip activation. The top chord, web and additional rebar
were made of steel type B450C, while for the bottom plate a smooth steel class S355 (fyk = 355 MPa)
was utilized. Specimens A1 and B1 were cast with concrete having a mean compressive strength of
25.16 MPa (concrete type 1), while specimens A2-1 and A2-2 and B2 were cast with concrete having
a mean compressive strength of 15.66 MPa (concrete type 2).

Figure 18. Dimensions of cross-section of tested specimens (mm); cross-section of: (a) truss;
(b) specimens A1, B1, and B2; (c) specimens A2-1; (d) longitudinal section of a tested specimen
and load configuration (series B) (Colajanni et al., [20]).

Figure 19a displays the load-displacement curve of the Series-A specimens (Positive
Bending Moment). In detail, specimen A1 showed shear collapse at a deflection of 22.35 mm and
a corresponding shear strength of 577.74 kN. During the loading process, the first vertical cracks
appeared under the load application point at the load value of 190 kN, while at the load value of 320 kN
diagonal shear cracks began to appear. The specimen showed ductile behavior until the evolution of
the main diagonal shear crack, which caused brittle shear failure. Conversely, samples A2-1 and A2-2.
cast with weak concrete (Type 2), from the beginning exhibited evident brittle shear failure, attaining
a load maximum value of 422.29 kN and 461.29 kN (27%, and 20% smaller than that of Specimen A1).
The behavior was characterized by partial detachment of the bottom steel plate from the concrete
core. The collapse of the specimens was caused by failure of the compressed concrete strut, as shown
in Figure 19b,c. Figure 20a displays the load-deflection curves of the series B samples. Sample B1,
cast with the stronger type 1 concrete, exhibits a mixed flexure-shear collapse mechanism. It was
characterized by quasi-ductile behavior, attaining the maximum load of 519.53 kN and corresponding
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deflection of 8.99 mm. Failure was attained with a residual strength and a corresponding deflection
of about 380 KN and 27 mm. Sample B2, cast with weak type 2 concrete, exhibits a shear collapse
mechanism characterized by more brittle behavior, shear strength of 335.94 kN (54% smaller than that
of specimen B1), and a corresponding deflection of 9.17 mm. During the load process close to the peak
load, a crack formed transversally at the bottom face of the specimen, and concrete crushing near the
support came into play (see Figure 20b,c). The rebar of the chord of the lattice exerted dowel action,
typical of a shear mechanism.

Figure 19. Series A: (a) load-deflection curves; (b) main diagonal shear crack (spec. A2-1); (c) “upper”
chord (specimen placed upside-down) and tensile web bar of the truss across the diagonal crack
(spec. A2-1).

Figure 20. Series B: (a) load-deflection curves; (b) main diagonal crack at the support (spec. B2);
(c) detail of the dowel mechanism (spec B2).

The authors summarize the test results as follows: concerning all specimens loaded to induce
positive bending moment (series A), the main diagonal shear crack came into play in the direction of
the compressed concrete strut and grew progressively, while previously formed sub-vertical flexural
cracks were almost stable. After attainment of the maximum load, initially a sub-horizontal branch
of the curve was ensured by the residual strength of the steel members. When concrete compressive
strength was attained, brittle shear failure arose, followed by a sudden drop in beam load capacity.
The bottom steel plate locally disconnected from the concrete core.

Regarding the two samples subjected to negative bending moment (B1 and B2), the beam behavior
was characterized by brittle failure in the case of weak concrete (sample B2), while it was more ductile
for strong concrete (sample B1). The pattern and development of flexural and shear cracks were the
same as for the specimens loaded with positive bending moment, with the addition of local crushing
of the concrete close to the lateral supports. The steel plate buckled and separated from the concrete
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core. None of the welds, either between steel plate and web bar, or between web and top chord rebar,
exhibited any damage.

3.2. Mechanical Models for Shear Strength

Aiming at assessing the shear strength of HSTCBs, different models are available in the literature,
some of them consisting of relations derived for other beam typologies and suitably adapted to
the typology considered, while others are derived on purpose for HSTCBs. Most of the former
are also part of national and international codes. Specifically, the code relations here considered
are those pertaining to former (EC2-92 [39]) and present (EC2-04 [40]) Eurocode 2, the American
code ACI 318-08 [41], the Canadian code CAN-CSA 2004 [42], and the former and present Italian
building code, D.M. 09-January-1996 [43] and D.M. 14-January-2008 [44], herein shortly denoted
as DM-96 and DM-08 respectively. These relations were formulated for standard R.C. elements,
and usually adapted to HSTCBs too. Recently, other researchers have formulated on purpose models
for assessment of shear strength in HSTCBs. Among them, a first group of models are formulated
in order to provide simple relations to be used for design of the beam (design-oriented models),
(Amadio et al., [25], Chisari and Amadio [16]). Those of the second group require more complex
procedures (analysis-oriented models), such as those of Monti and Petrone [18] and Campione,
Colajanni and Monaco [19]. In the following sections, the models of the former group will be described
in detail, and those of the latter group only summarized.

In reviewing design-oriented models suggested by the codes or by researchers, they are divided
into two classes: namely additive models and truss models.

To the former class (additive models) the following models belong: EC2-92 [39], ACI 318-08 [41],
the Canadian code CAN-CSA 2004 [42], the former Italian code DM-96 [43], along with the models
derived by Chisari and Amadio [16] and Amadio et al. [25]. They evaluate the shear strength VR by
adding the strength provided to the concrete, Vc, and the strength provided by the web reinforcement
Vsw, namely

VR = Vc + Vsw (10)

therefore, they differ from each other for the way these two contributions are considered.
In EC2-92 [39] the share of the shear strength provided by the concrete is evaluated as:

Vc = [τrdk(1.2 + 40ρl) + 0.15σcp]bwd (11)

where τrd = 0.25 fctk0.05 /γc is the concrete shear strength, k = 1.6 − d a size effect coefficient, ρl the
longitudinal reinforcement geometric ratio, and σcp the compressive stress (if present), bw and d the
width and the effective depth of the beam, respectively.

Moreover, the share provided to the web reinforcement is estimated as:

Vsw = 0.9d
Asw

s
fyw(1 + cot α) sin α (12)

Asw being the web shear reinforcement area, fyw the steel yielding strength, α and s the leaning and the
spacing of the web reinforcement.

The Italian building code of 1996, DM-96 [43], uses an analogous additive model, where the
concrete strength share is evaluated as:

Vc = 0.6 fctdbwdδ (13)

fctd being the concrete tensile strength and δ a coefficient (equal to 1 for pure bending) that tunes
the contribution of the compressed concrete above the neutral axis as a function of compression
stress acting along the beam axis. The share of web reinforcement can be evaluated according to
Equation (12).
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In ACI 318M-08 [41] also, the shear strength of an R.C. beam is evaluated by the additive model.
Specifically, the expression of Vc is:

Vc =

(
0.16λ

√
f ′c + 17

As

bwd
Vud
Mu

)
bwd ≤ 0.29

√
f ′c bwd f ′c in MPa (14)

while Vsw can again be evaluated according to Equation (12).
The Canadian Standard Code [42] provides the following equations for the concrete shear strength

and web transverse reinforcement shares, respectively:

Vc = φcλβ
√

f ′c bwd f ′c in MPa (15)

Vsw = φs
Asw

s
fywd cot ϑ (16)

where φc and φs are safety factors for concrete and steel, λ is a coefficient equal to 1 in the case of
normal weight concrete, and β and ϑ can be evaluated according to Bentz and Collins (2006) [45]
as follows:

β = 0.40

/(
1 + 1500

fy

2Es

)
(17)

ϑ = 29◦ + 7000
fy

2Es
(18)

The model proposed by Amadio et al. [25] was formulated on purpose for the HSTCB
characterized by the addition of some steel angles. Therefore, the equation for shear strength evaluation
comprises three shares instead of two, and reads as follows:

VR = Vc + Vsw + Vang (19)

Vang being the shear strength provided by the steel angles. The equation recalled for evaluating Vc

is that prescribed in the current Italian building code [44] for the shear strength of elements without
shear reinforcement, similar to Equation (13):

Vc = [
0.18
γc

k(100ρl f ′c )
1/3

+ 0.15σcp]bwd (20)

k = 1 +
√

200/d ≤ 2 (d in mm) being a suitable coefficient able to take into account the
size effect, the geometric ratio of longitudinal reinforcement and the actual compressive stress.
Conversely, the share Vsw is estimated considering a simple lattice with a concrete upper chord and
a lower chord consisting of longitudinal steel rebar connected by means of web diagonal rebars (Figure 21),
obtaining Vsw = Asw fyw sin α

Figure 21. Scheme of the truss system according to Amadio et al. [25].

Finally, the model derived by Chisari and Amadio [16]. was calibrated according to the results
of a parametric FE analysis interpreting the results of some of the experimental tests described in
the previous section. In the formulation, the shear mechanism is derived on the basis of an analogy
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with the behavior of a concrete panel reinforced through a steel tie, where the panel experiences
diagonal compression along the unloaded diagonal direction. In the HSCTB an analogous behavior is
recognized for the diagonal web bars that connect the two chords. Thus, once the stress state in the
element of the hyperstatic model of the structure is evaluated, suitably exploiting the results of FE
analysis for characteristic parameter evaluation, the shear strength of the element can be assessed by
summation of the concrete and web steel rebars according to the following expressions:

Vc =
f ′c fct

0.66 f ′c + γ fct
bh (21)

Vsw =

Asw fyw −
Vc

sin α

1

k2

(
1
k1
+ a

EAsw cos α

)
 sin α (22)

where γ = 1.99 (when a more detailed evaluation as a function of the ratio s/h according to [16] is not
performed), k1 = 0.963 G b sin α, G being the shear modulus of the concrete and h the truss height, and

k2 = k1

(
1 +

( s
h
− 0.628

)−2
)

(23)

To the second class (truss models) there belong the models provided by the current European [39]
and Italian [44] codes for conventional reinforced concrete beams, and two composite mechanical
models recently proposed on purpose for HSTCBs, namely those of Monti and Petrone [18] and
Campione et al. [19].

The truss models with variable strut inclination proposed in the EC2-04 [40] and DM-08 [44] codes
estimate the beam shear strength as the minimum of those able to produce collapse of the concrete
compressed diagonal strut VRc and of the tensile web reinforcement VRs, evaluated as follows

VRc = ναc0.9d f ′c bw
cot θ + cot α

1 + cot2 θ
(24)

VRs = 0.9d
Asw

s
fyw(cot θ + cot α) sin α (25)

where the softening coefficient υ can be assumed as υ = 0.5 according to DM-08 [44] and equal to
υ =0.6

(
1− f ′c /250

)
according to EC2-04 [40], and αc = 1 for non-prestressed beams. The concrete strut

inclination θ can be chosen in order to maximize the beam shear strength in the range 1 ≤ cot θ ≤ 2.5.
Since VR = Min[VRs; VRc], the inclination θ of the concrete strut can be obtained by equating the
right-hand sides of Equations (23) and (24), giving:

1 ≤ cot θ =

√
ν

sbw f ′c
Asw fyw sin α

− 1 ≤ 2.5 (26)

Monti and Petrone [18] suggested a complex model for evaluating the shear strength of HSTCBs
based on extensive finite element analysis. The authors identified a crisis mechanism characterized
by yielding of n pairs of diagonal bars, which is activated before crushing of the concrete. In order to
speed up the shear strength evaluation procedure, they formulated a simplified method in which the
concrete is assumed to be able to carry the increment of load caused by premature yielding of a pair of
web reinforcements.

Recently, Campione, et al. [19] proposed a hybrid model based on the additive approach, where
the contribution of the reinforced concrete is evaluated by taking into account both the arch effect and
the beam effect. The latter is governed by the discontinuity in the bottom chord forces induced by the
concentrate action exerted by the diagonal web bars, and the residual bond stress in the adjunctive
rebar that integrates the reinforcement of the bottom steel plate.
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Lastly, it has to be stressed that, among the models derived for conventional reinforced concrete
beams, those derived for beams reinforced by means of stirrups with two different inclinations [46],
recently improved for beams strengthened by external reinforcement [47], have also been successfully
applied for prediction of the shear strength of HSTCBs [17].

Again, it has to be stressed that most of the experimental investigations and the derived analytical
models concern HSTCBs with bottom chord made up of steel plate, whereas there is a lack of knowledge
on the shear behavior of beams with precast prestressed concrete bottom chord.

4. Conclusions

Although Hybrid Steel Trussed Concrete Beams (HSTCB)s have been utilized since the 1970s in
many countries in Europe, Asia, and Central and South America, for almost forty years’ design of this
typology has been conducted using models and design methods formulated for conventional steel
and concrete composite beams, or for reinforced concrete beams. Recently, against the background of
research and regulatory innovative formulations of models and calculation methods for evaluation of
shear strength of concrete and composite elements, a new impulse to research performed on purpose
for HSTCBs has been generated. Thus, researchers have performed experimental tests and formulated
calculation models for assessment of HSTCB capacity. Many of them are devoted to investigating
two topics, namely the stress transfer mechanism between the steel lattice and the concrete core,
and the shear strength of HSTCBs.

The test results and the models recently proposed in the literature are reviewed here, stressing
when they are derived by extension of models formulated for different element typologies, or derived
on purpose for HSTCBS.

It is emphasized that regarding the first topic, many experimental push-out tests were performed,
using the procedures codified in the codes for conventional steel concrete composite beam. The results
show that proper sizing of the welding and of the web reinforcement make it possible to avoid brittle
failure of the connection, ensuring development of a ductile collapse mechanism, characterized by
the collapse of the concrete subsequent to yielding of the web reinforcement. The models derived on
purpose are able to assess both the stiffness [7] and the strength [11] of the connection.

Regarding the shear strength of the beam, the collapse mechanism is strongly influenced by the
relative strength between the web steel reinforcement and the concrete, and by the bond between
reinforcing bars and concrete, i.e., by the type and surface finishing of the steel bars. Evaluation of
shear resistance in design-oriented model is mainly performed by extending and suitably adapting
design models for conventional reinforced beams to the case of HSTCBs. More complex models
derived on purpose for this typology [18,19] are more efficient, but are more suitable for analysis of
previously designed structures (analysis-oriented models).

However, it has to be highlighted that, often in the construction practice, rebars are added and
welded to the bottom chord steel plate, in order to increase both the capacity of the connection,
and increase the shear strength. None of experiments and models in the literature analyzed the effect
of this technical solution on the steel truss to concrete connection capacity. Moreover, several tests
proved the large effect that this technical solution has on the shear strength of the beam, but the
available models do not adequately reproduce it because they do not consider the collaboration of the
added rebars and steel plate ensured by the welds.

Finally, it has to be emphasized that there is a lack of knowledge on the connection capacity and
shear behavior of beams with precast prestressed concrete bottom chord.
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