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Abstract: Recent catastrophic earthquake events have reinforced the necessity of evaluating the
seismic performance of buildings. Notably, the buildings can go into the plastic phase during a
striking earthquake disaster. Under this condition, the current design codes assume seismic response
reduction by virtue of the energy dissipation capacity of the structural members. In the strong-
column–weak-beam design, which involves I-shaped beams and boxed columns, the mechanism is
defined as a standard design scheme to prevent the building from collapsing. Therefore, energy dissi-
pation relies highly on the I-shaped beam performance. However, the I-shaped beam performance
can differ depending on the loading history experienced, whereas this effect is untouched in the
prevailing evaluation equation. Hence, this study first performs cyclic loading tests of 11 specimens
using different loading protocols. The experimental results clarify the fluctuation in the structural
performance of I-shaped beams depending on the applied loading hysteresis, proving the necessity
of considering the stress history for proper assessment. Furthermore, the database of experimental
results is constructed based on the previous experimental studies. Ultimately, the novel evaluation
equation is proposed to reflect the influences of the loading protocol. This equation is demonstrated to
effectively assess the member performance retrieved from the experiment of 65 specimens, compris-
ing 11 specimens from this investigation and 54 specimens from the database. The width–thickness
ratio, shear span-to-depth ratio, and loading protocols are utilized as the evaluation parameters.
Moreover, the prediction equation of the Bauschinger effect coefficient is newly established to convert
the energy dissipation capacity under monotonically applied force into hysteretic energy dissipation
under the cyclic forces.

Keywords: I-beam; rotation capacity; energy dissipation capacity; Bauschinger effect coefficient;
loading protocol

1. Introduction

I-shaped steel beams (I-beams) are widely utilized in steel moment-resisting frames
(MRFs) due to their high in-plane bending stiffness and strength against applied bending
moments. However, in addition to dead and live loads, seismic loads increase the bending
moment, leading to instability phenomena such as lateral buckling and local buckling.
The research on I-beams initiated by elucidating these buckling phenomena through
classical theory [1,2] and then expanded to evaluate lateral buckling resistance and rotation
capacity [3–25]. Since main girders in frames are typically connected to restraining beams
or concrete slabs, studies on buckling stiffening and stress transfer mechanisms between
these components [26–33] have improved the performance evaluation of beams in frames.
Additionally, numerous analytical and experimental studies have assessed the width–
thickness ratio, ultimate bending strength, and rotation capacity to avoid plate buckling of
the flange and web. Through these efforts, the beam can exhibit sufficient plastic rotation
during a major earthquake by limiting the width-to-thickness ratio [34–52]. Regarding
the width–thickness ratio, the prevailing design codes [53,54] specify their values for the
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member classifications. Even though recent provisions by AIJ [55] included the index
with the web–flange interactions, the loading protocol influence was not reflected in the
evaluation equation.

The mechanical performance of I-beams has been extensively studied in previous
experimental research, such as the work by Kato et al. and Lignos, D. G. et al. [56–61].
Furthermore, the loading protocol and slenderness ratio influences are addressed in previ-
ous studies [62,63], whereas the evaluation scheme has not been established in an explicit
manner. The evaluation criteria typically involve the rotation capacity for unidirectional
loading (monotonic loading) and the energy dissipation capacity for cyclic loading. Pa-
rameters such as the width–thickness ratio of the member, shear span-to-depth ratio, or
loading conditions are considered. The energy dissipation capacity refers to the dimension-
less load–displacement relationship (skeleton curve) obtained by connecting the skeleton
curves of each loop when the member is subjected to cyclic loading. It has been considered
equivalent to the rotation capacity of the member under monotonic loading. Therefore, it
is used as an index for evaluating the performance of members in the static incremental
analysis (pushover analysis) of steel frame structures subjected to static seismic forces [64].

Conversely, in time–history response analyses, the energy dissipation of the hinge
parts of columns and beams in the structure is used as an evaluation criterion [65].
The relationship between the energy dissipation capacity under monotonic loading and
hysteretic energy dissipation is evaluated using the Bausinger effect coefficient, and
different methods for assessing the performance of other members are used in seismic
design analysis methods. The Bausinger effect coefficient is the ratio of the energy
absorption in the softening zone during cyclic loading, which is not evaluated in the
skeleton curve, to the energy absorption in the skeleton curve of the load–deformation
history curve of the member subjected to cyclic loading. In the case of beams, a coefficient
of 2.0 is set according to the recommendation of the Architectural Institute of Japan (AIJ).
However, since the Bausinger effect varies with the loading amplitude and number of
cycles [66,67], it is necessary to clarify the relationship between the energy dissipation
capacity obtained from the skeleton curve and the hysteretic energy dissipation of the
entire loading history. Otherwise, differences in mechanical performance may occur for
the same member when different analysis methods are used. Therefore, it is necessary to
ascertain the rotation and energy dissipation capacity of members constituting the main
structure and clarify their relationship.

On the other hand, although experimental and analytical data on I-beams subjected
to monotonic loading and cyclic loading have been collected in previous studies [68–77],
the influence of the loading history on the rotation capacity, energy dissipation capacity,
hysteretic energy dissipation, and Bausinger effect coefficient has not been clarified yet.

This paper aims to establish primary data on the history characteristics of I-beams
subjected to monotonic loading and cyclic incremental loading by conducting loading
experiments on I-beams with different loading histories, using the parameters of the flange
width–thickness ratio and shear span-to-depth ratio. It collects experimental data on the
structural performances at the maximum flexural strength time and stores the experimen-
tal results in a database. Then, based on the data extracted from earlier experimental
studies [78–97], where the load–deformation relationship can be extracted as a cantilever
beam type, the experimental results of I-beams which failed due to local buckling under
monotonic loading and cyclic incremental loading are collected, and the data are databased.
Differences in the width–thickness ratio, shear span-to-depth ratio, loading history, etc., are
examined to clarify their effects on the ultimate strength ratio and energy dissipation capac-
ity. Furthermore, for cyclic incremental loading, an evaluation equation for the Bausinger
effect coefficient with the loading amplitude and number of loadings as parameters is
proposed, and a performance evaluation method considering differences in loading history
characteristics is presented.

The novel evaluation equation proposed and validated in this study realizes the proper
reflection of the impact of various loading protocols (monotonic loading, repeated loading,
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number of cycles) on the Bauschinger effect coefficient, even for beams with identical cross-
sections and lengths. This enables the specification of the behavior of beams within an MRF,
reaching their ultimate flexural strength contingent upon the stress history encountered
during earthquakes.

2. Cyclic Loading Tests on I-Shaped Steel Beams with Different Flange
Width-to-Thickness Ratios, Shear Span Ratios, and Loading Histories
2.1. Outline of Experiment on I-Beams

Figure 1 shows the test specimen for the loading experiment. A 2000 kN universal
testing machine was used for the experiment, employing a three-point bending method. As
shown in the figure, the left side of the loading point is reinforced with cover plates welded
to the upper and lower flanges, and the loading beam is designed to maintain elasticity
even when the test specimen reaches its maximum load. Table 1 lists the test specimens. In
their designation, the first letter stands for the loading protocols (A: monotonic, B: cyclic,
one loading cycle with a specific displacement, and C: cyclic, three loading cycles with
a specific displacement), the second number denotes the flange width–thickness ratio
(1: b/tf = 6.25, 2: b/tf = 4.17, and 3: b/tf = 8.33), and the third number indicates the shear
span-to-depth ratio (1: L/H = 5, L/H = 4, and L/H = 6).
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Figure 1. Outline of experiment and specimen: (a) testing apparatus; (b) measurements; (c) loading
protocol (cyclic, one loading cycle with a specific displacement).

There are a total of 11 specimens, and SN400 steel was used for the specimens. The
cross-section of the specimens has a web depth of 200 mm, a web thickness of 8 mm, and a
flange thickness of 12 mm, with varying flange width-to-thickness ratios and shear span-
to-depth ratios. This experiment selected beams with a small web depth-to-thickness
ratio, for which there are few existing experimental results. The loading methods include
monotonic and cyclic incremental loading, with the cyclic loading program designed
based on the assumption of beams subjected to seismic forces. During an earthquake,
when horizontal forces act on a moment-resisting frame, bending moments resulting
from shear forces acting on the columns are transmitted to the beams. Given that the
entire beam experiences an unsymmetric bending moment, the loading condition for half
of the beams in the moment-resisting frame was adopted for this experiment. Figure 1c
depicts the loading protocol for the cyclic loading experiments. The deformation δp
corresponding to the full plastic bending moment Mp of the test specimen divided by the
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beam length L was set as the criterion for cyclic loading, and one cycle of loading was
repeated at each step of ±δp, ±2δp, ±4δp, and ±6δp of the incremental loading, except
for specimen C-1-1. In contrast, for specimen C-1-1, three loading cycles were applied
at each step. The Mp was calculated using the measured values shown in Table 2. As
shown in Figure 1, one displacement transducer was installed at the position 100 mm
from the center of the beam on both sides, and one displacement transducer was installed
at each end support of the test specimen. The controlled displacement δ was calculated
as a cantilever beam based on the displacement δ0 at the position of the transducer and
the rotation angle φ of the transducer.

δ = δ0 + φL = (δ3 + δ4)
100
200

− (δ1 + δ2)
L

2L + 200
+

(
δ3 − δ4

200
− δ1 − δ2

2L + 200

)
L (1)

Table 1. Test configurations.

Designation L [mm] b/tf [mm] d/tw [mm] L/H [-] Slenderness
Ratio [-] Protocol No. of Cycles

A-1-1

1000

6.25

22

4.95

24.55

Monotonic -

B-1-1 4.95 Cyclic 1

C-1-1 4.98 Cyclic 3

A-2-1
4.17

4.98
37.88

Monotonic 1

B-2-1 4.95 Cyclic 1

A-3-1
8.33

4.98
18.15

Monotonic 1

B-3-1 4.95 Cyclic 1

A-1-2
800

6.25
3.96 19.64

Monotonic 1

B-1-2 Cyclic 1

A-1-3
1200 5.97 29.46

Monotonic 1

B-1-3 Cyclic 1

Table 2. Measurement of section dimensions.

Specimen H [mm] B [mm] tf [mm] tw [mm]

A-1-1 202 150 11.9 8.20
B-1-1 202 150 12.1 8.10
C-1-1 201 150 12.0 8.25
A-2-1 201 101 12.0 8.25
B-2-1 202 100 12.1 8.25
A-3-1 201 200 11.8 8.20
B-3-1 202 201 11.8 8.20
A-1-2 202 150 12.0 8.25
B-1-2 202 150 11.9 8.25
A-1-3 201 150 11.9 8.35
B-1-3 201 151 12.0 8.25

Here, δ1 to δ4 represent the vertical displacements of displacement transducers num-
bered (1) to (4) in Figure 1. Additionally, δp is calculated from the following equation as the
sum of the displacements δmp due to bending deformation and δsp due to shear deformation
as referenced in the previous literature [69]:

δp = δmp + δsp, δmp =
PpL3

3EI
, δsp =

κPpL
GA

(2)
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Here, δmp represents the displacement of the simply supported beam due to bending
deformation when the plastic moment is reached at the loaded side beam end, and δsp
represents the displacement of the simply supported beam due to shear deformation.
Additionally, E is Young’s modulus, I is the moment of inertia, A is the cross-sectional area,
G is the shear modulus, and κ is the shape factor.

The test specimens were made of SN400B steel in Japan. Two specimens were extracted
from a 12 mm thick flange and an 8 mm thick web for tensile testing. Stress–strain curves
are illustrated in Figure 2, and Table 3 presents the characteristics of the tensile test results.
It is noted that the yield stress level of the 12 mm thick plate is lower than that of the 8 mm
thick plate, while their tensile strengths are nearly equal. The material test of the steel was
conducted in accordance with JIS Z 2241 [98].
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Figure 2. Stress–strain curves.

Table 3. Material test results.

Thickness [mm] E [N/mm2] σy [N/mm2] σu [N/mm2] Y.R. Elongation [%]

Flange 8 1.99 × 106 323 444 0.727 21
Web 12 2.00 × 106 283 428 0.661 24

2.2. Plastic Deformation Characteristics of I-Beam with Different Loading Protocols

Figure 3a shows the load–displacement relationship of specimen C-1-1 subjected to
cyclic loading. C-1-1 is a specimen subjected to loading three times with the same amplitude.
The vertical axis represents the shear force acting on the beam P normalized by the ultimate
plastic load Pp (=Mp/L), and the horizontal axis represents the displacement δ of the beam
normalized by the displacement δp at the ultimate plastic strength.
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Figure 3. Procedure used to draw skeleton curve (C-1-1): (a) hysteresis curve; (b) cumulative
hysteresis curve; (c) skeleton curve.
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The cyclic load–displacement curve is divided into the skeleton curve, the Bauschinger
effect region, and the elastic unloading region. The skeleton curve part is represented by
thick solid lines corresponding to the load level experienced by the member for the first
time. The Bauschinger effect region is defined by dashed lines corresponding to load levels
previously experienced by the member. The elastic unloading region is represented by thin
solid lines corresponding to the load level during unloading. The ▽ in the figure indicates
the point of maximum strength.

Figure 3b shows the cumulative hysteresis curve of specimen C-1-1. The cumulative
hysteresis curve decomposes the loading history curve into each loop. It connects the
final displacement at the unloading of the previous loop and the initial displacement at
the beginning of the next loop at P/Pp = 0 for each positive and negative loop. αBηmax is
the value obtained by subtracting the elastic deformation part from the total area up to
the maximum strength in the cumulative history curve. It represents the dimensionless
accumulated hysteretic energy dissipation.

Figure 3c shows the skeleton curve of specimen C-1-1. The skeleton curve connects
only the skeleton curve part indicated by thick solid lines in the hysteresis curve of Figure 3a.
In this paper, the value obtained by subtracting the elastic deformation part from δmax/δp
at the maximum strength is defined as the rotation capacity µmax in the skeleton curve. The
energy dissipation capacity ηmax at the maximum strength in the skeleton curve is obtained
by subtracting the elastic deformation part from the total area up to the maximum load
and represents the dimensionless cumulative energy dissipation.

Here, αB is the ratio of the energy dissipation capacity of the skeleton curve in Figure 3b
to the hysteretic energy dissipation of the cumulative hysteresis curve in Figure 3c, which
is the Bauschinger effect coefficient. The Bauschinger effect coefficient αB is always greater
than 1.

Figure 4 illustrates the load–displacement relationship for I-beams with equal cross-
sections and lengths but different loading histories. Figure 4a shows the results of the
cyclic loading tests, while Figure 4b shows the skeleton curves and results of the monotonic
loading tests from Figure 4a. For the monotonic loading test A-1-1, the same history curve
is drawn for both positive and negative sides. Even for specimens with the same shape,
the skeleton curve of cyclic loading has a higher maximum strength and a smaller rotation
capacity at the maximum strength compared to the load–displacement relationship of
monotonic loading. This indicates that the skeleton curve obtained from cyclic loading is
not necessarily equivalent to the load–displacement relationship of monotonic loading.
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Figure 5 illustrates the strain distribution in the beam flange and web of specimen
C-1-1 for the first, second, and third loading cycles with a loading amplitude δ/δp = 3.
Figure 5a shows the strain distribution in the flange, with the upper side representing
the compressive side and the lower side representing the tensile side. Figure 5b,c show
the strain distribution in the web, with Figure 5b indicating the position 100 mm from
the load point side of the specimen end and Figure 5c indicating the position 200 mm



Buildings 2024, 14, 1376 7 of 23

from the load point side. At δ/δp = 3, local flange buckling has already occurred near the
beam end during the first loading cycle, with some variation in strain values between the
compressive and tensile flanges, but overall, they are nearly matched. As the loading cycles
increase for the second and third cycles, the strain values increase in the plasticized region
within 400 mm (2H) from the beam end. In other words, even at the same dimensionless
displacement level, as the number of loading cycles increase, the strain values increase,
and due to strain hardening, the stress also increases. Therefore, as shown in Figure 4,
before local buckling occurs, the load on the skeleton curve of cyclic loading is higher at the
same displacement compared to the load–displacement relationship of monotonic loading,
and with more loading cycles, the load at the same displacement is slightly higher on the
positive side.
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Figure 5. Strain distribution: (a) flange; (b) web (100 mm apart from fixed end); (c) web (200 mm
apart from fixed end).

2.3. Influence of Loading Protocols on Cyclic Behavior of I-Beams

Table 4 presents a summary of the experimental results for all specimens. It includes
the failure mechanism, the number of cycles at which local buckling occurred based on
strain data, the rotation capacity µmax in the skeleton curve, the energy dissipation capacity
ηmax in the skeleton curve, and the Bauschinger effect αB. In cases where the flange width
is narrow, such as specimens A-2-1 subjected to monotonic loading and B-2-1 subjected to
cyclic loading, combined buckling occurred shortly after local buckling, leading to rapid
strength degradation. Specimen B-3-1 experienced fracture due to welding defects at the
welded joint between the longitudinal stiffener near the load point side and the tension
flange after local buckling. On the other hand, in cases where the shear span-to-depth
ratio is small, specimen A-1-2 reached its maximum strength due to local buckling, while
specimen B-1-2 subjected to cyclic loading experienced flange local buckling due to bending
moments, showing more prominent shear deformation compared to other specimens. Even
for the specimens of the same section and length, different loading histories can result in
different failure mechanisms.
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Table 4. Summary of experimental results.

Specimen Failure Modes Cycle at Failure µmax ηmax αb

A-1-1 Local buckling 13.27 15.96

B-1-1 Local buckling +2δp 12.65 16.16 2.06

C-1-1 Local buckling +2δp (1st) 8.17 9.45 2.48

A-2-1 Combined buckling
(local and lateral buckling) 8.34 7.96

B-2-1 Combined buckling
(local and lateral buckling) −4δp 8.64 13.84 1.63

A-3-1 Local buckling 11.86 13.33

B-3-1 Local buckling
and flange failure +2δp 5.46 10.41 1.61

A-1-2 Local buckling 20.90 26.59

B-1-2 Combined buckling
(local and shear buckling) +6δp 8.88 17.10 2.02

A-1-3 Local buckling 12.84 15.47

B-1-3 Local buckling +2δp 7.85 14.09 1.82

Figure 6 illustrates the relationship between rotation capacity and energy dissipation
capacity for I-beams with different flange width-to-thickness ratios and shear span ratios.
Figure 6a,b depict the relationship between rotation capacity, energy dissipation capacity,
and flange width-to-thickness ratio for monotonic and cyclic loading, while Figure 6c,d
show the relationship between rotation capacity, energy dissipation capacity, and shear
span-to-depth ratio. In Figure 6a,b, specimens with smaller width-to-thickness ratios (A-2-1
and B-2-1) experienced lateral buckling shortly after local buckling, resulting in a lower
rotation capacity and energy dissipation capacity compared to specimens with larger width-
to-thickness ratios (A-1-1 and B-1-1). However, for other specimens, the rotation capacity
and energy dissipation capacity decreased as the width-to-thickness ratio increased. In
Figure 6c,d, for specimens subjected to cyclic loading, specimen B-1-2 exhibited a lower
rotation capacity due to significant shear deformation along with flange local buckling.
However, for other specimens, the rotation capacity and energy dissipation capacity de-
creased as the shear span-to-depth ratio increased. Different buckling mechanisms between
monotonic and cyclic loading indicate that cyclic loading induces local buckling in both
flanges, leading to more advanced section deformation at the same loading displacement
compared to monotonic loading, making it more susceptible to other buckling modes.
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Figure 7 compares the experimental results of monotonic and cyclic loading for spec-
imens with the same cross-section and length. Figure 7a–c show the ultimate strength
ratio, rotation capacity, and energy dissipation capacity, respectively. Although the ultimate
strength ratio is higher for cyclic loading in all specimens, the rotation capacity and energy
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dissipation capacity are higher for monotonic loading, except for specimens A-2-1 and B-2-1,
where the buckling mode was combined with lateral buckling. In the case of monotonic
loading, local buckling occurs in the flanges subjected to compressive stress, while the
flanges subjected to tensile stress experience plasticization and stretching. Under cyclic
loading, the flange initially undergoes local buckling under compressive stress, followed
by tension, resulting in extended local buckling deformation. Flanges subjected to tensile
stress undergo plasticization and stretching, followed by local buckling under compressive
stress. As a result, the stress state changes within the same loading amplitude, leading to
pinching due to the alternating expansion and contraction of deformations. Consequently,
even with the same displacement, cyclic loading causes a reduction in bearing capacity in a
smaller deformation.
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3. Rotation Capacity and Energy Dissipation Capacity of I-Beams That Failed Due to
Local Buckling under Different Loading Protocols
3.1. Parameters of Experiment

Figure 8 illustrates the relationship between the width-to-thickness ratio of the test
specimens from previous experiments [78–97] and the width-to-thickness ratio classifi-
cation according to AISC, EC8-1, and AIJ codes [53,55,99,100]. The symbol # represents
specimens from monotonic loading experiments, while • represents specimens from the
cyclic loading experiments. The test specimens are made of ordinary steel equivalent to
either the 400 N/mm2 class or the 490 N/mm2 class. The figure shows 41 specimens from
cyclic loading experiments for which history curves could be extracted, represented as
•, from previous articles [78–92] and 38 specimens from monotonic loading experiments,
shown as #, from earlier reports [93–97]. The relationship between each classification and
rotation capacity is shown in Figure 8b. Additionally, the test specimens from this paper
are denoted with a plus sign (+) for monotonic loading and a cross (×) for cyclic loading.
Specimens where the maximum strength was reached due to lateral buckling (A-2-1 and
B-2-1) and those fractured at welded joints (B-3-1) are excluded.

For instance, when comparing the width-to-thickness ratio of each beam with the
Eurocode, both the flanges and webs display a broad spectrum of width-to-thickness ratios,
spanning from Class 1 to Class 3, with the majority falling into Class 1. The web width-to-
thickness ratios range approximately from 20 to 85, while the flange width-to-thickness
ratios range from about 5 to 15. Notably, there was only one specimen for cyclic loading
and two specimens for monotonic loading in the Class 4 equivalent rank.
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According to AISC [54], cross-sections classified as compact members must possess
an inelastic rotation capacity (µmax) equal to or greater than 3 (thus, a rotation capacity µ
greater than 4). In contrast, EC 8-1 [99] mandates that cross-sections fall into Class 1, 2, or 3
for seismic design. Each class is associated with a specific behavior factor (q), with Class
1 requiring q > 4, Class 2 needing q > 2, and Class 3 stipulating q > 1.5. Conversely, EC
8-3 [100] specifies rotation capacity values of µmax > 8 for Class 1 and µmax > 3 for Class
2. Among the design codes, only the Japanese classification system outlined in AIJ [53]
accounts for segment interaction. It comprises four classes (P-I-1, P-I-2, P-II, and P-III), with
the required µmax defined as follows: µmax ≥ 4 for P-I-1, µmax ≥ 2 for P-I-2, µmax ≥ 0 for P-II,
and µmax < 0 for P-III.

Figure 8c illustrates the relationship between the sectional aspect ratio and the shear
span-to-depth ratio of I-beams. Here, the sectional aspect ratio refers to the ratio of beam
width to height (B/H), and the shear span-to-depth ratio refers to the ratio of beam length to
height (L/H). For hot-rolled members, these two indices can generally capture the section
performance of I-beams and are used as indicators for section selection during design.
Therefore, the figure shows the distribution of both indices. The sectional aspect ratio
ranges from approximately 0.4 to 1.2, while the shear span-to-depth ratio ranges from about
2.5 to 10, within the range of hot-rolled I-beams used in actual structures.

3.2. Rotation Capacity, Ultimate Strength Ratio, and Energy Dissipation Capacity of I-Beams with
Different Loading Protocols

Figure 9 organizes the experimental results of I-beams in terms of equivalent width-
to-thickness ratio. The legend is the same as in Figure 8. Figure 9a illustrates the ultimate
strength ratio, denoted as τmax (τmax = Pmax/Pp), while Figure 9b shows the rotation capacity,
denoted as µmax. The equivalent width-to-thickness ratio of I-beams is defined in Kadono
et al. [101] by the following equation:
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Figure 9. Width–thickness ratio and structural performance of I-beams; (a) ultimate strength ratio; (b)
rotation capacity.

Here, σyf and σyw are the yield stresses of the flange and web, respectively, E is Young’s
modulus, and b/tf and d/tw are the flange width-to-thickness ratio and web width-to-
thickness ratio, respectively.

Figure 9a,b show that as the equivalent width-to-thickness ratio decreases, the ultimate
strength ratio τmax and rotation capacity µmax tend to increase. However, even for equal
width-to-thickness ratios, the ultimate strength ratio is higher in the case of cyclic load
experiments compared to monotonic load experiments, and the rotation capacity shows
variability in the range from (b/tf)eq= 0.3 to 0.6.

Here are the experimental equations shown in a previous study [52], presented as
Equations (4)–(6):
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This paper considers the parameters of previous experimental equations and uses the
least squares method to create experimental equations based on the results of 65 specimens
from this experiment and the database outlined in Appendix A. Furthermore, considering
the differences in loading methods, the number of repetitions and the repetition amplitude
are added as parameters. The experimental equations proposed in this paper are shown in
Equations (7)–(9):
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In this context, N denotes the cumulative number of loading cycles until the attainment of
the maximum load, where each loading cycle, whether positive or negative, contributes a
value of 1. However, for instances of monotonic loading, N is stipulated to be 1. The symbol
µxi represents the dimensionless amplitude of loading displacement in the i-th cycle.

In Equation (4), the flange-to-web thickness ratio, web thickness ratio, and yield strain
are evaluated using the equivalent thickness ratio in Equation (7), with the aspect ratio
being considered the shear span ratio.

Equation (5) previously comprised only the ultimate strength and axial force ratios
(assumed as 0 here) to determine the plastic strain amplification. However, recognizing that
rotation capacity is influenced not only by the thickness ratio but also by the proportion
of the plasticization region [102], Equation (8) accounts for the effects of the equivalent
thickness ratio and shear span-to-depth ratio. The rationale behind employing the shear
span-to-depth ratio as an indicator of moment gradient lies in the disparity in the bending
moments experienced by the flanges, even under equivalent moments. In cases of localized
buckling failure, the local buckling of the flanges can impact the structural performance of
the beam.

Figure 10 illustrates the correspondence between the experimental results from pre-
vious studies [78–97], the experimental results presented in this paper, as well as the
experimental equations from both the earlier studies and the proposed equations in this
paper. In Figure 10a, the comparison between the experimental results and the empirical
equation (Equation (4)) from Kato’s research [52] regarding the ultimate strength ratio is
demonstrated. This paper aims to evaluate the mechanical performance of I-beams under
cyclic loading by comparing them with the results of monotonic loading experiments and
considering factors such as the number of cycles and load amplitudes, thereby enabling a
consistent evaluation regardless of the loading conditions. It is noteworthy that compared
to the experimental equations from previous studies, the experimental results generally
exhibit larger values, particularly noticeable in the case of cyclic loading experiments. This
discrepancy can be attributed to the fact that the experimental equations from previous
studies do not consider the parameters of the cyclic loading history, thus not necessarily
aligning well with the cyclic loading experimental results collected in this paper.
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Figure 10. Comparison of ultimate strength ratio: (a) previous evaluation equation; (b) proposed
evaluation equation.

Figure 10b presents a comparison between the experimental results of the ultimate
strength ratio and the modified experimental equation (Equation (7)). Compared to the ex-
perimental equations from previous studies, the modified experimental equation proposed
in this paper demonstrates better correspondence with the experimental results.
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The error rates for the experimental equations from previous studies are 10.7% (12.6%)
for Figure 10a and 6.1% (5.7%) for Figure 10b, while those for the modified experimental
equations proposed in this paper are 6.1% (5.7%) and 6.1% (5.7%), respectively. This indi-
cates a relatively good approximation of the experimental results for both monotonic and
cyclic loading conditions. It is worth noting that the error rate is calculated by summing the
differences between the experimental values and the values obtained from the experimental
equations, divided by the total number of experimental data points, and expressed as a
percentage. The first number in the error rate represents the case where both monotonic and
cyclic loading experimental results are combined. In contrast, the number in parentheses
represents the case where only cyclic loading experimental results are considered.

Figure 11 compares the experimental results of the rotation capacity, µmax, with the
experimental equations. Figure 11a utilizes the experimental equation (Equation (5))
from a previous study [52], while Figure 11b employs Equation (8). The shaded areas
in the figures indicate the range of a 30% error for reference. Although there are no
significant disparities between the experimental equations and the experimental results,
the values of the experimental results vary widely around µmax = 8 for the experimental
equation (Equation (8)). On the other hand, Equation (8) demonstrates a generally good
correspondence with the experimental results. The error rates for the experimental equation
(Equation (5)) and Equation (8) are 31.3% (28.9%) and 23.1% (25.8%), respectively, indicating
that using the experimental equations based on the equivalent thickness ratio and aspect
ratio proposed in this paper can reduce the variability.
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Figure 11. Comparison of rotation capacity: (a) previous evaluation equation; (b) proposed
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Figure 12 compares the experimental results of the energy dissipation capacity,
ηmax, with the experimental equations. Figure 12a,b employ the experimental equation
(Equation (6)) from Kato’s research [52] and Equation (9), respectively. The shaded areas
in the figures indicate a 30% error range, similar to that in Figure 12. Meanwhile, the
experimental equations from previous studies represent the gradient up to the maximum
load, with a linear approximation. However, they may not correspond well with the
experimental results obtained from Equations (4) and (5). Hence, several data points for
ηmax exceed the range of a 30% error, resulting in an error rate of 35.5% (36.1%). In contrast,
the modified experimental equation proposed in this paper, Equation (9), demonstrates a
better fit with many experimental results, falling within the 30% error range, resulting in
an error rate of 25.2% (27.0%).
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Figure 12. Comparison of energy dissipation capacity: (a) previous evaluation equation; (b) proposed
evaluation equation.

In summary, by proposing experimental equations that consider parameters such
as the equivalent thickness ratio, shear span-to-depth ratio, number of cycles up to the
maximum load, and cumulative normalized displacement based on the parameters of
previous experimental equations, this paper demonstrates that the experimental results
can be more accurately represented.

3.3. Influence of Bauschinger Effect Coefficient of I-Beams That Failed Due to Local Buckling under
Cyclic Loading

Figure 13 illustrates the relationship between the Bauschinger effect coefficient, the
number of loading cycles, and the loading amplitude. The crosses represent the results
of the cyclic loading experiments in this paper. Figure 13a depicts the relationship with
the number of loading cycles N. In contrast, Figure 13b shows the relationship between
the total dimensionless loading displacement amplitude ∑µxi and the Bauschinger effect
coefficient αB. The Bauschinger effect coefficient αB is defined as the ratio of cumulative
hysteretic energy dissipation in the cumulative hysteresis curve to the energy dissipation
capacity in the skeleton curve, as described in earlier research [64], which is set to 2.0 for
beams. While αB shows an almost linear relationship with N and correlates with ∑µxi, some
variability is observed. Therefore, Figure 14 illustrates the relationship between both of the
coefficients N and ∑µxi and the Bauschinger effect coefficient. The vertical axis represents
the Bauschinger effect coefficient αB, while the horizontal axis represents the variable used
in the second term on the right-hand side of the equation.

αb = 1 + 0.5(N − 1)log
√

∑i=1 µxi (10)

However, in the case of N ≤ 1 (monotonic loading), N is set to 1. When the loading
history remains within the elastic range during cyclic loading, only the first occurrence
is counted.

From this paper and previous experimental results, it has been shown that this en-
hancement ratio depends on both the number of loading cycles and their amplitudes.
Therefore, using both indicators in this paper, the evaluation equation is set as αb = 1 for
monotonic loading and the above equation is formed through a trial-and-error method.
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The plots in the figure represent the experimental results, while the dashed line
corresponds to Equation (10). There is a tendency for the Bauschinger effect coefficient to
increase with higher values of the total number of loading cycles and loading displacement
amplitudes, and the experimental results generally agree with Equation (10).
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Figure 13. Relationship between Bauschinger effect coefficient and loading histories: (a) number of
cycles; (b) cumulative plastic deformation.
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Thus, the hysteretic energy dissipation of an I-beam subjected to cyclic loading can be
obtained by multiplying ηmax obtained from Equation (9) by Equation (10).

In the field of structural engineering, numerous studies have focused on evaluating
the performance of composite beams, where steel beams are attached to concrete slabs as
composite members [27–33]. However, this paper focuses on the failure mechanism of steel
beams, explicitly targeting the phenomenon of local buckling, and aims to evaluate the
inherent performance of steel beams that failed due to local buckling. The performance
evaluation of the composite beam will be clarified in a future study.

4. Conclusion

This paper elucidated the differences in the hysteresis curves and buckling mech-
anisms of locally buckling I-beams through monotonic and cyclic loading experiments.
Subsequently, a simplified and accurate experimental equation was proposed based on the
previous experimental equation as a unified evaluation method independent of loading
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history differences. It is noteworthy that Table A1 comprises several specimens sharing
identical cross-sectional shapes and lengths, yet lacks variation in loading protocols as a
parameter. Therefore, concluding remarks (1) and (2) stem from the findings retrieved from
the experiment in this study. The conclusions obtained are as follows:

(1) When subjected to cyclic loading at the same amplitude in the plastic region where
local buckling occurs in I-beams, it was confirmed that the strain values increase
and plasticization progresses as the number of cycles increase. When subjected to
cyclic loading, the rotation capacity and energy dissipation capacity obtained from
the experimental results decrease with increasing cycles at the same amplitude in the
skeleton curve.

(2) For specimens of the same cross-section and length subjected to monotonic and
cyclic loading, the rotation capacity and energy dissipation capacity are higher under
monotonic loading if local buckling occurs.

(3) In the previous experimental equation, particularly in the case of cyclic loading, there
are significant errors in the maximum load, rotation capacity, and energy dissipation
capacity. On the other hand, the experimental equations proposed in this paper
(Equations (7)–(9)) can generally evaluate the ultimate strength ratio, rotation capacity,
and energy dissipation capacity regardless of the loading type.

(4) The Bauschinger effect coefficient increases with a more significant number of load-
ing cycles and larger loading amplitudes, and its value can be evaluated using
Equation (10). Moreover, hysteretic energy dissipation under cyclic loading can be
assessed using Equations (9) and (10).

It should be noted that the application range of the experimental equations in this
paper covers web-to-thickness ratios from 20 to 85, flange-to-thickness ratios from 5 to 15,
section shape ratios from 0.4 to 1.2, and shear span-to-depth ratios from 2.5 to 10, based on
the previous literature and the specimens tested in this paper.

This paper only targets the incremental amplitude type, and evaluating the performance
of I-beams under decremental amplitude or random amplitude types is a future task.
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Appendix A

The summary of the database obtained from previous articles is listed below. The
hysteresis curves and residual deformation of all 11 specimens are presented below. All
specimens except for A-2-1 and B-2-1 failed due to local buckling, while specimens A-2-1
and B-2-1 experienced coupled buckling induced by lateral buckling after local buckling,
leading to ultimate failure. Specimen B-1-2 exhibited significant shear deformation in
addition to bending deformation.
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Table A1. Summary of database.

Section L b/tf d/tw L/H τmax µmax ηmax N Σµxi Refs.

H-330 × 150 × 4.5 × 9 1260 8.3 69.3 3.8 1.29 3.21 2.24 11 39.07 [78]
H-330 × 150 × 4.5 × 9 1266 8.3 69.3 3.8 1.05 1.76 0.68 5.5 13.34 [78]
H-250 × 150 × 4.5 × 9 1496 8.3 51.6 6.0 1.25 3.5 2.33 9.5 30.49 [80]
H-250 × 150 × 4.5 × 12 1492 6.3 50.2 6.0 1.28 3.83 2.89 9 28.53 [80]
H-250 × 150 × 4.5 × 9 1497 8.3 51.6 6.0 1.3 3.13 2.22 8.5 25.91 [80]
H-250 × 150 × 4.5 × 9 1499 8.3 51.6 6.0 1.08 2.2 1.11 4.5 9.76 [80]
H-200 × 150 × 6 × 9 900 8.3 30.3 4.5 1.35 7.16 7.12 7 49.89 [81]
H-200 × 150 × 6 × 9 900 8.3 30.3 4.5 1.34 11.17 11.62 11.5 113.84 [81]
H-200 × 150 × 6 × 9 900 8.3 30.3 4.5 1.51 8.58 9.18 5.5 38.24 [81]
H-200 × 150 × 6 × 9 900 8.3 30.3 4.5 1.39 8.17 8.4 5.5 35.4 [81]

H-500 × 200 × 9 × 19 2400 5.3 51.3 4.8 1.23 5.6 4.23 27 130.71 [82]
H-450 × 200 × 9 × 12 1850 8.3 47.3 4.1 1.37 5.63 4.87 7.5 40.66 [83]
H-450 × 200 × 9 × 12 1850 8.3 47.3 4.1 1.35 9.82 9.78 12 99.8 [83]
H-450 × 200 × 9 × 12 1850 8.3 47.3 4.1 1.33 7.31 6.3 10 75.72 [83]

H-506 × 201 × 11 × 19 1800 5.3 42.5 3.6 1.35 7.77 7.05 4 29.42 [84]
H-300 × 130 × 6 × 12 1200 5.4 46.0 4.0 1.45 12.03 12.35 4 37.78 [85]
H-300 × 130 × 6 × 12 1200 5.4 46.0 4.0 1.45 11.54 12.15 4.5 47.62 [85]
H-300 × 130 × 6 × 12 1200 5.4 46.0 4.0 1.39 9.5 9.69 3.5 33.05 [85]
H-300 × 130 × 6 × 12 1200 5.4 46.0 4.0 1.46 11.69 11.66 4 39.85 [85]
H-300 × 100 × 9 × 9 1200 5.6 31.3 4.0 1.41 8.52 9.24 7 38.84 [86]
H-300 × 100 × 6 × 6 1200 8.3 48.0 4.0 1.44 4.2 3.9 4.5 14.18 [86]

H-488 × 300 × 11 × 18 2150 8.3 41.1 4.4 1.56 6.26 5.41 10 63.67 [87]
H-600 × 300 × 12 × 22 3125 6.8 46.3 5.2 1.36 7.18 6.48 5 25.28 [88]
H-600 × 300 × 12 × 22 3125 6.8 46.3 5.2 1.37 7.12 6.64 4 22.16 [88]
H-450 × 150 × 9 × 12 1425 6.3 47.3 3.2 1.35 8.06 6.08 6 32.4 [89]
H-250 × 125 × 6 × 9 1375 6.9 38.7 5.5 1.48 9.82 10.76 6 35.5 [90]

H-500 × 200 × 10 × 16 2168 6.3 46.8 4.3 1.34 10.85 11.59 7.5 53.87 [91]
H-500 × 200 × 10 × 16 3150 6.3 46.8 6.3 1.3 10.59 10.15 5 33.56 [92]
H-500 × 200 × 10 × 16 3150 6.3 46.8 6.3 1.26 8.9 8.15 5 31.85 [92]
H-500 × 200 × 10 × 16 3150 6.3 46.8 6.3 1.15 6.24 10.57 4 18.45 [92]
H-500 × 200 × 10 × 16 3175 6.3 46.8 6.4 1.37 8.7 8.44 4 25.51 [93]
H-500 × 200 × 10 × 16 3175 6.3 46.8 6.4 1.23 8.92 8.28 4.5 27.27 [93]
H-500 × 200 × 10 × 16 3175 6.3 46.8 6.4 1.27 8.65 8.3 4 19.91 [93]
H-500 × 200 × 10 × 16 3175 6.3 46.8 6.4 1.27 7.56 6.96 4 20.38 [93]
H-300 × 125 × 4.5 × 9 1200 6.9 62.7 4.0 1.29 6.65 6.3 - - [94]
H-300 × 125 × 9 × 9 1200 6.9 31.3 4.0 1.3 9.69 9.94 - - [94]
H-300 × 125 × 6 × 9 900 6.9 47 3.0 1.4 11.21 12.45 - - [94]
H-300 × 125 × 6 × 9 1200 6.9 47 4.0 1.27 8.55 8.33 - - [94]
H-180 × 144 × 6 × 9 1040 8.0 27 5.8 1.18 10.56 10.31 - - [95]
H-180 × 180 × 6 × 9 1300 10.0 27 7.2 1.11 5.81 5.11 - - [95]
H-180 × 216 × 6 × 9 1570 12.0 27 8.7 1.06 4.96 4.07 - - [95]
H-180 × 144 × 6 × 9 1040 8.0 27 5.8 1.13 8.46 7.98 - - [95]
H-300 × 180 × 6 × 9 1300 10.0 47 4.3 1.1 5.59 4.69 - - [95]
H-420 × 144 × 6 × 9 1040 8.0 67 2.5 1.07 6.03 5.23 - - [95]
H-420 × 144 × 6 × 9 1040 8.0 67 2.5 1.13 3.93 3.15 - - [95]
H-300 × 144 × 6 × 9 1040 8.0 47 3.5 1.03 2.6 1.77 - - [95]

H-270.5 × 108.5 × 4.23 × 5.57 1200 9.7 61.3 4.4 1.18 2.56 1.53 - - [96]
H-269.6 × 144.3 × 4.23 × 5.57 1500 13.0 61.1 5.6 1.09 1.86 0.81 - - [96]
H-314.4 × 108.3 × 4.23 × 5.57 1450 9.7 71.7 4.6 1.15 1.93 0.96 - - [96]
H-315.5 × 143.8 × 4.23 × 5.57 1750 12.9 72.0 5.5 1.03 1.69 0.66 - - [96]
H-359.7 × 108.8 × 4.23 × 5.57 1700 9.8 82.4 4.7 1.14 2.26 1.13 - - [96]
H-359.5 × 144.8 × 4.23 × 5.57 2050 13.0 82.4 5.7 1.03 1.78 0.68 - - [96]

H-250 × 125 × 5.8 × 8.5 1250 7.4 40.2 5.0 1.23 6.62 6.2 - - [97]
H-450 × 200 × 9 × 14 1350 7.1 46.9 3.0 1.18 7.62 7.22 - - [98]
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Figure A1. Load–displacement relationship and ultimate deformation state.

The list of symbols is presented below.
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Table A2. List of symbols.

b/tf Flange width–thickness ratio
L/H Shear span-to-depth ratio
L Beam length
d/tw Web width-to-thickness ratio
H Hight of beam
B Width of beam
tf Flange thickness
tw Web thickness
δp Displacement corresponding to full plastic bending moment
Mp Full plastic bending moment
δ Controlled displacement
δ0 Displacement at position of transducer
φ Rotation angle measured by the transducers
δmp Displacements due to bending deformation of beam
δsp Displacements due to shear deformation of beam
E Young’s modulus
I Moment of inertia
A Cross-sectional area
G Shear modulus
κ Shape factor
σy Yield stress
σu Tensile strength
Y.R. Yield ratio (σy /σu)
P Shear force acting on beam
Pp Shear force imposing full plastic bending moment of beam
αBηmax Hysteretic energy dissipation up to ultimate strength
αB Bauschinger effect coefficient
µmax Rotation capacity
ηmax Energy dissipation capacity
b
t f

√
235
σy f

Generalized flange width-to-thickness ratio

d
tw

√
235
σyw

Generalized web width-to-thickness ratio

B/H Section aspect ratio
τmax Ultimate strength ratio
σyf Yield stress of flange plate
σyw Yield stress of web plate
N Cumulative number of loading cycles until attainment of maximum load
µxi Dimensionless amplitude of loading displacement in i-th cycle
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