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Abstract: The public teaching buildings of universities have a large flow of people, high lighting
requirements, and large energy consumption, which present significant potential for energy saving.
The greatest opportunity for integrating “green” architectural design strategies lies in the design
phase, especially the early stage of architectural design. However, current designers often rely
on experience or qualitative judgment for decision-making. Thus, there is a pressing need for
rational and quantitative green architectural design theories and techniques to guide and support
decision-making for the design parameters of teaching buildings. This study, based on field surveys
of 40 teaching buildings, constructs building archetypes regarding energy consumption including
28 typical values. Based on the “Rectangle”, “L”, “U”, and “Courtyard” archetypes, through batch
energy consumption simulation and multiple regression methods, the influence mechanisms of
nine energy consumption influencing factors on four types of building energy consumptions were
explored, and energy consumption prediction models were derived. The findings of this research
can serve as factor evaluation and selection in the early stage of architectural design for public
teaching buildings at universities, and the prediction model can assist in the early estimation of
energy consumption. This aims to enrich and supplement green architectural design methods by
supporting the design of green public teaching buildings and providing reference and application for
relevant engineering practices.

Keywords: teaching buildings at universities; energy consumption prediction; energy consumption
influence mechanism; early architectural design stage

1. Introduction

Currently, humanity faces issues like energy crises, climate change, and environmental
degradation, prompting countries worldwide to focus on energy-saving and emission-
reduction research [1]. The International Energy Agency (IEA) reports that the con-
struction industry accounts for approximately 30% to 40% of the world’s total energy
consumption [2–4]. In the U.K., school buildings are the third-largest energy consumers
after commercial buildings and office buildings [5]. Among these, public teaching buildings
at universities, with high foot traffic, frequent use, and demanding lighting requirements,
have a significant share in campus energy consumption. Therefore, this study focuses on
public teaching buildings at universities.
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Many studies and practices show that there is over 40% energy-saving potential in
the architectural design stage [6–8], which is the main stage for decision-making and
determining various parameters. Research by the University of Cambridge also indicates
that the greatest opportunity for integrating “green” architectural design strategies is in the
architectural design stage [9].

However, in the early stage of architectural design, architects and engineers often rely
on experience or qualitative judgment, which lacks scientific rigor. Additionally, detailed
energy modeling and simulation in the early architectural design phase are constrained
by the need for extensive building details (available only in later stages) and the time and
specialized personnel required, limiting the application of energy consumption simulation
software in the early architectural design stage [7,8,10,11]. The result of the above situation
is a lack of synchronization between architectural design analysis and energy consumption
analysis, causing uncertainties in low-energy teaching architectural design.

If we can explore the impact mechanism between significant design parameters and
energy consumption, examine the sensitivity of design parameters to energy consumption,
and construct a rapid prediction model for this relationship, many problems can be effec-
tively addressed. The influence mechanism obtained from this research can theoretically
assist architects and engineers in making more scientifically rational choices regarding
design parameters. The energy consumption prediction model can provide simple and
fast energy consumption forecasts and analysis for early design proposals, aiding in the
scientific optimization of design schemes.

Firstly, this study summarizes the archetypes of public teaching buildings in Beijing’s
universities regarding energy consumption based on field research and data collection from
40 public teaching buildings. These archetypes include 28 typical values across factors
like location and climate, typical architectural forms, building envelope structures, HVAC
systems, and indoor loads. Then, 10 types of parameters were selected from 28 types of
factors, including building shape, Orien, SHGC, Uwindow, Insuld-wall Insuld-roof, WWRnorth,
WWRsouth, WWReast, and WWRwest. Based on the building shape factor (four typical public
teaching building shapes including the “Rectangle” archetype, the “L” archetype, the “U”
archetype, and the “Courtyard” archetype), the influence mechanism, sensitivity, and
prediction of energy consumption of the other nine building factors were investigated. This
research used multiple linear regression methods and standardized regression coefficients
(SRCs) to analyze the relationship between these nine building input factors and four
types of energy consumption output (heating, cooling, lighting, and comprehensive) in
four building Archetypes. A predictive model for energy consumption is developed,
aiming to assist in the early-stage decision-making of architectural design parameters, thus
maximizing energy savings in teaching buildings.

Most previous studies [6,8–11] were carried out based on the rectangular shape of
buildings, and most studied the influence of a single factor on energy consumption. How-
ever, there are few studies and discussions on the energy consumption of university
teaching buildings in Beijing. The innovation of this research is as follows: First, university
teaching buildings are selected as the building type to carry out research in Beijing. Second,
the “Rectangle”, “L”, “U”, and “Courtyard” archetypes are selected to carry out this re-
search. Third, this research studies the influence of multiple factors on energy consumption,
including Orien, Uwindow, SHGC, WWRsouth, WWRnorth, WWRwest, WWReast, Insuld-wall,
Insuld-roof, etc.

The aim of this study is to create teaching building archetypes, explore the influence
mechanism of various factors on energy consumption, and develop models to predict
energy consumption in order to support architectural design factor decision-making in
the early design phase, so as to realize the green architectural design of public teaching
buildings at universities.
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2. Building Archetypes

A building archetype model database for public teaching buildings of universities in
Beijing was established. This involved detailed field surveys of 40 public teaching buildings
at universities across Beijing. The process integrated domestic industry standards and
research findings, as well as internationally advanced technical parameters. The collected
data were systematically organized and analyzed. This study identified and extracted
28 types of factors that characterize the energy consumption of Beijing’s university public
teaching buildings, covering aspects like geographic location and climate, architectural
forms, building envelope structures, HVAC systems, and indoor loads. These factors
were detailed in terms of their characteristic values, distribution, and range, providing
foundational data for this research.

2.1. Location and Climate Parameters

This study focuses on Beijing because of its status as a representative city in China
and the abundance of university teaching buildings in the region, providing numerous
foundational cases and data.

During energy consumption simulations, the geographic location was set to Beijing.
Meteorological parameters were derived from the Chinese Standard Weather Data (CSWD)
database within EnergyPlus 9.0.1 software, specifically using Beijing’s meteorological data,
as shown in Table 1.

Table 1. A list of location and climate factors for creating an archetype simulation model of public
teaching buildings in Beijing.

Factor Type Variable Name and Unit Value Interval Quantity (PCS)

Location and climate factors
Location Beijing city — —
Climate CSWD (Chinese Standard Weather Data) — —

2.2. Typical Architectural Form Parameters

Field surveys and analyses revealed that the standard floor area of university public
teaching buildings is typically around 2500 m2, with a standard number of floors being
five, and a typical floor height of 4.0 m.

Furthermore, four basic architectural shapes (archetypes) for these buildings were
identified as follows: “Rectangle”, “L”, “U”, and “Courtyard”. It was observed that the
“Rectangle” and “L” building archetypes commonly have a layout of a “central single
corridor with classrooms on both sides,” and the “U” and “Courtyard” archetypes often
adopt a “single corridor with classrooms” format. To ensure that all four shapes maintain a
floor area of 2500 m2, typical dimensions were determined based on common architectural
practices, as shown in Figure 1.

This study assumes that when a building faces due south, the Orien factor is denoted
as 0◦. This research found a variety of orientations for teaching buildings, including not
only cardinal directions (south, north, east, and west) but also other angles. Therefore,
to comprehensively understand the impact of the Orien factor on energy consumption,
19 typical orientation scenarios were extracted at 10◦ intervals, ranging from 0◦ to 180◦,
as detailed in Table 2. Based on the survey data from 40 cases, it was determined that
the window-to-wall ratio (WWR) of teaching buildings generally ranges from 0.20 to 0.70.
Consequently, this study set the variation range of these factors to 0.20–0.70, with intervals
of 0.05, distributed uniformly, as shown in Table 2.
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Figure 1. A schematic diagram of the “Rectangle”, “L”, “U”, and “Courtyard” building archetypes.

Table 2. A list of architectural form factors for creating an archetype simulation model of public
teaching buildings in Beijing.

Factor Type Variable Name and Unit Value Interval Quantity (PCS)

Architectural form factors

Standard floor area 2500 m2 — 1

Number of floors 5 — 1

Building height per floor 4.0 m — 1

Building shape

“Rectangle” archetype
“L” archetype
“U” archetype
“Courtyard” archetype

— 4

Orien 0◦/10◦/20◦/30◦
. . .340◦/350◦/360◦ 10◦ 19

WWReast
0.20/0.25/0.30/0.35
. . .0.60/0.65/0.70 0.05 11

WWRwest
0.20/0.25/0.30/0.35
. . .0.60/0.65/0.70 0.05 11

WWRnorth
0.20/0.25/0.30/0.35
. . .0.60/0.65/0.70 0.05 11

WWRsouth
0.20/0.25/0.30/0.35
. . .0.60/0.65/0.70 0.05 11
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2.3. Typical Building Envelope Structure Parameters

Uwall is a critical parameter that influences energy consumption. Typically, for a given
wall insulation material, Uwall is primarily determined by the thickness d of the insulation
material. Therefore, this study selected Insuld-wall as the factor for this research. The survey
found that the insulation board material is mostly EPS board. In line with the survey results
and relevant standards [12–14], the value of Uwall was determined to be in the range of
0.10 to 0.50 W/(m2·K), where the minimum value represents the most advanced level of
insulation internationally, and the maximum value meets the baseline requirements of
energy-saving standards. Through conversion, the range of variation for Insuld-wall was
approximately 0.06 to 0.30 m, with a step size of 0.01 m. The details are provided in Table 3.

Table 3. A list of building envelope structure factors for creating an archetype simulation model of
public teaching buildings in Beijing.

Factor Type Variable Name and Unit Value Interval Quantity (PCS)

Building envelope
structure factors

Insuld-wall 0.06~0.30 m 0.01 25
SHGC 0.30, 0.34, . . ., 0.90, 0.94 0.04 17

Uwindow

1.0, 1.2, 1.4, 1.6, 1.8, . . .,
3.2, 3.4, 3.6, 3.8,
4.0 W/(m2·K)

0.2 16

Insuld-roof 0.06~0.30 m 0.01 25
Ground layer heat transfer
coefficient U 0.45 — 1

Floor heat transfer coefficient U 1.20 — 1

Compared with window frames, external window glass typically has a larger area and
poorer insulation performance, which significantly influences the overall thermal perfor-
mance of a window. Therefore, this study chose to analyze two key thermal parameters of
external window glass including Uwindow and SHGC. Window frame factors are not con-
sidered in this research. Based on field surveys of university teaching buildings, reference
to relevant Chinese standards, and drawing from advanced domestic and international
engineering technologies, the range for Uwindow was set between 1.0 and 4.0 W/(m2·K),
with an interval of 0.02. The SHGC values ranged from 0.30 to 0.94, with an interval of 0.04,
both uniformly distributed.

Similarly, integrating the results of field surveys and relevant standards [12–14], Uroof
was determined to be in the range of 0.10 to 0.45 W/(m2·K). Through conversion, Insuld-roof
was established as 0.06 to 0.30 m, with a step size of 0.01 m.

After reviewing the relevant literature and conducting field surveys, the typical ther-
mal transmittance coefficients for ground floors and building slabs were determined to be
0.45 and 1.20, respectively.

“In this study, 40 cases of public teaching buildings in Beijing were examined through
actual investigation and construction drawing data. In addition, reference was also made
to the Chinese standard atlas “External Wall Insulation Building Construction 10J121”
and “Beijing Public Building Design Standard DB11/687-2011” [14]. The typical exterior
wall construction hierarchy was finally determined, which is shown in Table 4. Similarly,
combining the actual survey data and the flat roof construction with reference to the
building standard design atlas, the typical building roof construction hierarchy of public
teaching buildings in Beijing universities was obtained, as shown in Table 5”.
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Table 4. Typical exterior wall construction hierarchy.

Exterior Wall Structural Levels and Materials Uwall (W/(m2·K))

Interior finishes Plaster

0.10~0.50

Base wall Concrete hollow block walls (or aerated concrete)

Exterior insulation system

Leveling and gluing layers 1:3 cement mortar
Insulation layer EPS insulation materials

Plastering layer
First anti-cracking mortar + one layer of
alkali-resistant glass fiber mesh cloth +
second anti-cracking mortar

Finishing layer Paint or tile

Table 5. Typical building roof structure hierarchy.

Building Roof Structure Hierarchy Construction Materials Uroof
(W/(m2·K))

Protective layer 40 thick C20 fine gravel concrete

0.10~0.45

Separation layer 10 thick low-strength mortars
Waterproofing layer Waterproofing membrane or coating layer
Leveling layer 20 thick 1:3 cement mortars
Insulation layer EPS insulation board
Slope-finding layer 2% of thinnest 30-thick LC5.0 lightweight aggregate concrete
Structural layer 100 thick reinforced concrete roof slabs

2.4. Typical HVAC System and Indoor Load Parameters

Referencing the GB 50189-2015 [13] and considering related research and field survey
data, typical factors for HVAC systems and indoor load factors for the public teaching
buildings at universities in Beijing were determined. Details of these factors are provided
in Tables 6 and 7.

Table 6. A list of HVAC system factors for creating an archetype simulation model of public teaching
buildings in Beijing.

Factor Type Variable Name and Unit Value Interval Quantity (PCS)

HVAC system factors

Heating system
Heat source: gas boiler
Comprehensive efficiency of heating
system: η1 = 0.60

— —

Cooling system

Cold source: electric drive chiller
Comprehensive performance
coefficient of cooling system:
SCOPT = 2.50

— —

Heating design temperature (◦C)

20 ◦C
Refrigeration design
temperature (◦C)
Per capita fresh air volume
(m3/h-person)

— —

Heating preheating
temperature (◦C) 12 ◦C; 18 ◦C — —

Heating duty temperature (◦C) 5 ◦C — —

Cooling design temperature (◦C) 26 ◦C — —

Cooling pre-cooling
temperature (◦C) 28 ◦C — —

Fresh air volume per capita
(m3/h·person) 24 — —
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Table 7. A list of indoor load factors for creating an archetype simulation model of public teaching
buildings in Beijing.

Factor Type Variable Name and Unit Value Interval Quantity (PCS)

Indoor load factors

Personnel density (m2/person)
Teaching area: 1.39
Auxiliary area: 30.0 — —

Lighting power density (W/m2)
Teaching area: 9.0
Auxiliary area: 5.0 — —

Electrical equipment power density (W/m2)
Teaching area: 9.0
Auxiliary area: 5.0 — —

After consulting relevant standards and performing statistics through field investiga-
tion, data such as the occupancy rate, lighting utilization rate, and electrical equipment
utilization rate were obtained, as shown in Figures 2 and 3. In addition, this study assumed
that classrooms were empty on weekends and during winter and summer vacations.
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Figure 2. The occupancy rate of occupants and artificial lighting utilization rate on weekdays in
public teaching buildings.
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Figure 3. The utilization rate of electrical equipment on weekdays in public teaching buildings.
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3. Methodology
3.1. Building Energy Consumption Prediction Methods

Building energy consumption prediction is a method of describing the complex pro-
cess of building energy use through derived and generalized mathematical formulas or
equations. It is vital for energy management and conservation in buildings [15,16].

Currently, there are four main methods for rapid energy consumption prediction in
the early stage of architectural design including the following: simplified engineering
calculations, statistical methods (multivariate regression models), artificial intelligence
methods (artificial neural network models), and parallel computing methods [17]. Among
these, regression models are straightforward, effective, and widely applied data-driven
models. They use statistical analysis to estimate the relationship between factors and build
mathematical models, thus providing a mathematical description of the entire building
system [18–23]. When the outcome to be predicted is determined by multiple input factors,
a multiple linear regression method can be applied for modeling and analysis. Therefore,
this study employs a multiple linear regression approach to predict the four types of energy
consumption in the public teaching buildings of universities in the Beijing area.

Regression analysis involves using statistical principles to process a large amount of
data, determining the correlation between a dependent variable and one or more indepen-
dent variables, and establishing a regression equation (functional expression) for predicting
future changes in the dependent variable. It includes both univariate and multiple regres-
sion analyses, with the latter dealing with two or more independent variables.

There are n sets of actual data between the independent variables x1, x2, . . . , xk−1 and
the dependent variable y. Here, y is an observable random variable influenced by k – 1
non-random parameters x1, x2, . . . , xk−1 and a random parameter ε.

A linear regression model with k − 1 variables can be expressed as shown in
Equation (1) [24].

y = β0 + β1x1 + β2x2 + β3x3 + . . . + βk−1xk−1 + ε (1)

In the above linear regression model, ε represents the random error after accounting
for the effects of the k − 1 independent variables on y. It is an unobservable random
variable with a mean of zero and a variance σ2 > 0, typically assumed to follow a normal
distribution, ε~N(0, σ2). When the experimental or model system undergoes n (n ≥ p)
independent observations, a dataset of n groups is obtained. The relationships and data
points can be expressed as shown in Equations (2)–(4).

y1 = β0 + β1x11 + β2x12 + . . . + βk−1x1k−1 + ε1
y2 = β0 + β1x21 + β2x22 + . . . + βk−1x2k−1 + ε2
y3 = β0 + β1x31 + β2x32 + . . . + βk−1x3k−1 + ε3
. . .
yn = β0 + β1xn1 + β2xn2 + . . . + βk−1xnk−1 + εn

 (2)

Y =



y1
y2
y3
...

yn


n×1

, X =



1 x11 x12 · · · x1k−1

1 x21 x22
... x2k−1

1 x31 x32
... x3k−1

...
...

...
...

...
1 xn1 xn2 . . . xnk−1


n×k

(3)

β =



β0
β1
β2
...
βk−1


k×1

, ε =



ε0
ε1
ε2
...
εn−1


n×1

(4)
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In the above equations, y is the dependent variable (model output); xk−1 is the (k-1)th
model input factor; k−1 is the number of independent variables (input factors); βk−1 is
the regression coefficient for the (k − 1)th input factor in the multivariate linear regression
equation; and β0 is the constant term.

In multivariate linear regression, the regression coefficients of different variables
may have different dimensions because of varying units and ranges of the independent
variables. These coefficients indicate the numerical relationship between the dependent
and independent variables but do not reflect the sensitivity of the independent variables
in the regression equation. To compare the relative importance of each input factor, the
regression coefficients are normalized to SRCs [25], meaning each variable is adjusted by
subtracting its mean and dividing by its standard deviation. The absolute value of the SRC
reflects the sensitivity of a parameter; a larger absolute value indicates higher sensitivity.
The sign of the SRC determines the direction of the relationship between independent and
dependent variables: a positive SRC suggests a positive correlation, while a negative SRC
indicates a negative correlation [26].

3.2. Research Process
3.2.1. Selection of 9 Input Energy Consumption Influencing Factors and 4 Output Energy
Consumption Variables

Numerous studies have demonstrated that building orientation significantly affects
energy consumption [27,28]. The major components of a building’s envelope, such as exter-
nal walls, windows, and roofs, are critical factors influencing energy consumption [29–32].
However, less research has been performed on ranking the influence of these factors on
energy consumption.

Based on the building shape factor (“Rectangle” archetype, “L” archetype, “U” archetype,
and “Courtyard” archetype). The influence mechanism, sensitivity, and prediction of
energy consumption of the other nine building factors were investigated. The selected nine
architectural energy consumption influencing factors are Orien, Uwindow, SHGC, WWRsouth,
WWRnorth, WWRwest, WWReast, Insuld-wall, and Insuld-roof, as detailed in Table 8. The four
types of output energy consumption variables are heating, cooling, lighting, and total
energy, as specified in Table 9.

Table 8. A table of multiple linear regression input variables.

Input Variable Name Variable Meaning Input Variable Value and Unit Interval Quantity (PCS)

x1 Orien 0.0◦~180.0◦ 10◦ 19
x2 SHGC 0.30~0.94 0.04 17
x3 Uwindow 1.00~4.00 0.20 16
x4 Insuld-roof 0.06~0.30 (m) 0.01 25
x5 Insuld-wall 0.06~0.30 (m) 0.01 25
x6 WWRsouth 0.20~0.70 0.05 11
x7 WWRnorth 0.20~0.70 0.05 11
x8 WWRwest 0.20~0.70 0.05 11
x9 WWReast 0.20~0.70 0.05 11

Table 9. A table of multiple linear regression output variables.

Output Variable Name Variable Meaning Variable Value and Unit

y1 Annual building heating energy consumption kWh/a
y2 Annual building cooling energy consumption kWh/a
y3 Annual building lighting energy consumption kWh/a
y4 Annual building total energy consumption kWh/a
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3.2.2. Calculating the Standard Regression Coefficient SRC and Deriving the Energy
Consumption Prediction Model

Applying a multiple regression approach, this study focuses on the public teaching
buildings of universities in Beijing. The relationship between each input factor and the
building’s output energy consumption variables is analyzed using standardized regression
coefficients (SRCs). On this basis, predictive models for heating, cooling, lighting, and total
energy consumption were constructed. The entire research process is illustrated in Figure 4.
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Initially, the building archetype model of public teaching buildings at universities was
conducted using DesignBuilder, including the “Rectangular”, “L”, ”U”, and “Courtyard”
archetypes. According to Table 2, values for 9 input energy consumption influencing
factors and 19 other parameters were set. The EnergyPlus and jEPlus collaborative com-
puting platforms were utilized to automate the value selection and variation in these nine
input variables. For each architectural shape (each archetype), this process could gen-
erate 19 × 17 × 16 × 25 × 25 × 11 × 11 × 11 × 11 = 4.729 × 1010 combinations of virtual
building assemblies. For the four architectural archetypes combined, this amounted to
4 × 4.729 × 1010 building combinations.

Building upon the aforementioned framework, the Latin Hypercube Sampling (LHS)
method was used to uniformly extract 5000 building combinations (IDF files) from each
category of the 4.729 × 1010 groups, corresponding to each architectural shape. This
resulted in a total of 20,000 combinations (5000 × 4), forming a sample set for specific energy
consumption computations. LHS is a technique for stratified sampling from a multivariate
parameter distribution, often used in computer experiments or Monte Carlo integrals. First,
by using stratified sampling, the original sample extracted is more uniform, which will not
produce an obvious aggregation phenomenon. Second, samples are forcibly extracted to
each layer to ensure the comprehensiveness of the sample results. The 20,000 IDF files were
input into EnergyPlus for batch energy consumption computation, subsequently yielding
energy consumption results (CSV files).
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Finally, based on the energy consumption simulation results of these 20,000 groups, a
multiple linear regression method was used to calculate the standardized regression coeffi-
cients (SRCs). With nine building factors (x1~x9) as input variables and the annual energy
consumption for heating, cooling, lighting, and total energy (y1~y4) as output variables, as
detailed in Tables 3 and 4, simplified and intuitive building energy consumption regression
equations were constructed. This involved deriving predictive estimation models for an-
nual heating, cooling, lighting, and total energy consumption for the “Rectangular”, “L”,
“U”, and “Courtyard” archetype buildings. The predictive models were then subjected to
verification and evaluation.

4. Results and Discussion
4.1. Influence Mechanism Analysis Based on SRC Values
4.1.1. Influence of Input Factors on Heating Energy Consumption

Figure 5 presents the size and polarity of SRCs for the nine types of energy consump-
tion influencing factors in the four architectural archetypes including “Rectangle”, “L”, “U”,
and “Courtyard”. It illustrates the intensity and direction of the effect of these nine factors
on heating energy consumption. The larger the absolute value of the SRC, the greater the
influence, although this absolute value does not represent the specific contribution rate. A
positive SRC coefficient indicates a positive correlation between the input factor and output
energy consumption, while a negative SRC implies the opposite.
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Figure 5. Analysis of the impact of energy consumption influencing factors on heating energy
consumption for the four studied archetypes.
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The analysis shows that among the nine influencing factors, the one with the most
significant impact on heating energy consumption in all four architectural archetypes is
Uwindow (SRCs of 0.725, 0.784, 0.765, and 0.804 for each archetype, respectively). The
positive SRCs indicate a positive correlation between Uwindow and heating energy con-
sumption in all four archetypes. The second most influential factor for heating energy
consumption is SHGC, with SRC values of −0.534, −0.490, −0.534, and −0.504 for the four
archetypes, respectively. The negative SRC values for SHGC suggest that heating energy
consumption decreases as SHGC increases. Regarding the intensity of influence, factors
such as Insuld-wall, Insuld-roof, WWRnorth, WWRsouth, WWRwest, and Orien are of moderate
influence. However, the ranking of the influence of these factors varies among the “Rectan-
gle”, “L”, “U”, and “Courtyard” archetypes. For example, in the “Rectangle” archetype,
the Orien factor has a stronger influence on heating energy consumption compared with
the other forms. Regardless of the architectural shape, Insuld-wall generally has a stronger
influence on heating energy consumption than Insuld-roof. For instance, in the “Rectangle”
archetype, Insuld-wall’s influence is stronger than that of Insuld-roof (|−0.148| > |−0.130|),
and similar trends are observed in the “U” archetype (|−0.133| > |−0.114|), “L” archetype
(|−0.128| > |−0.115|), and “Courtyard” archetype (|−0.155| > |−0.121|). Overall,
across all four building archetypes, WWReast has the smallest SRC, indicating it has the
least influence on heating energy consumption.

4.1.2. Influence of Input Factors on Cooling Energy Consumption

Figure 6 shows the SRCs of cooling energy consumption for four architectural archetypes
and the analysis of the influence mechanism between nine types of energy consumption
influencing factors and cooling energy consumption.
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Figure 6. Analysis of the impact of energy consumption influencing factors on cooling energy
consumption for the four studied archetypes.
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A comprehensive analysis of the four architectural shapes reveals that their influenc-
ing factor SHGC corresponds to SRCs of 0.788, 0.865, 0.859, and 0.908, respectively. As
Figure 4 visually indicates, this factor has the most significant impact on cooling energy
consumption, proving that SHGC plays a decisive role in the variation in cooling energy
consumption. Adjusting this parameter is an essential means of controlling building cool-
ing energy consumption. A positive SRC value suggests that an increase in SHGC leads to
increased cooling energy consumption.

Subsequently, the factors that moderately influence cooling energy consumption are
WWRsouth, WWRnorth, WWReast, WWRwest, and Uwindow. The SRCs for WWRsouth in the
four shapes are 0.292, 0.276, 0.293, and 0.177; for WWRnorth, they are 0.236, 0.225, 0.219, and
0.134, respectively. Compared with WWRsouth and WWRnorth, WWReast, WWRwest, and
Uwindow have a weaker influence on cooling energy consumption. Notably, Uwindow, which
has the most significant impact on heating energy consumption, shows only a moderate
influence on cooling energy consumption. The SRCs for WWRsouth, WWRnorth, WWReast,
and WWRwest are all positive, indicating a positive correlation with the building’s cooling
energy consumption. The SRCs for Uwindow are negative, showing a negative influence on
cooling energy consumption.

The next factors are Orien, Insuld-wall, and Insuld-roof. The SRCs for the Orien factor
in the four archetypes are 0.037, 0.007, −0.006, and 0.001, with both positive and negative
values, indicating uncertainty in the direction of Orien’s influence on cooling energy con-
sumption. The SRCs for Insuld-wall are −0.002, 0.04, 0.003, and 0.001, and for Insuld-roof,
they are 0.002, −0.010, 0.002, and 0.000, respectively, all of which are nearly zero. This indi-
cates that Insuld-wall and Insuld-roof have a minimal impact on cooling energy consumption
in buildings.

4.1.3. Influence of Input Factors on Lighting Energy Consumption

Figure 7 shows the SRCs for lighting energy consumption in the four archetypes. The
analysis of the interaction between nine types of energy consumption influencing factors
and lighting energy consumption is as follows. Overall, the results for the “Rectangle”, “L”,
and “U” archetypes are similar, whereas the “Courtyard” archetype shows some differences.

(1) For the “Rectangle”, “L”, and “U” archetypes:

The top two influencing factors for lighting energy consumption are WWRsouth and
WWRnorth. In these three archetypes, the SRCs for WWRsouth are −0.697, −0.720, and
−0.696, respectively; for WWRnorth, they are −0.567, −0.476, and −0.535. Factors with
moderate influence on lighting energy consumption include WWReast, WWRwest, Orien,
and SHGC. The SRC coefficients for WWReast are −0.109, −0.183, and −0.202; for WWRwest,
they are −0.071, −0.192, and −0.185; for Orien, they are −0.097, 0.187, and −0.004; and
for SHGC, they are −0.125, −0.107, and −0.097. The varying SRCs for Orien, some
positive and some negative, suggest a potential non-linear relationship with lighting energy
consumption. Factors such as Uwindow, Insuld-roof, and Insuld-wall have no impact on
lighting energy consumption, consistent with natural laws and indirectly confirming the
accuracy of this study’s energy consumption simulation and regression analysis.

(2) For the “Courtyard” archetype:

The top two influencing factors are WWRnorth and WWReast, with SRCs of −0.711 and
−0.421, respectively. Factors with moderate influence include Orien, WWRwest, WWRsouth,
and SHGC. The SRC for Orien is −0.280, for WWRwest, it is −0.244, for WWRsouth, it is
−0.241, and for SHGC, it is −0.094. Similar to the other three shapes, factors like Uwindow,
Insuld-roof, and Insuld-wall have almost no impact on the lighting energy consumption of
the “Courtyard” archetype.
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Figure 7. Analysis of the impact of energy consumption influencing factors on lighting energy
consumption for the four studied archetypes.

4.1.4. Influence of Input Factors on Total Energy Consumption

Observing Figures 5–8, it is evident that the relationship between total energy con-
sumption and the nine input factors is primarily determined by heating and cooling energy
consumption, with an influence mechanism closer to that of heating energy consumption.

Uwindow positively correlates with heating energy consumption (as detailed in Figure 5)
and negatively with cooling energy consumption (as detailed in Figure 6). Regarding total
energy consumption (as shown in Figure 8), the SRC for Uwindow is positive, indicating
that as Uwindow increases, the change in heating energy consumption far exceeds that of
cooling energy consumption, suggesting that total energy consumption is more significantly
influenced by heating energy consumption. SHGC is negatively correlated with heating
energy consumption but positively influences cooling energy consumption, being the most
significant factor for the latter. The opposing effects cancel each other out, significantly
weakening SHGC’s influence on total energy consumption. In this study, a positive SRC
indicates that the increase in heating energy consumption caused by the increase in SHGC is
slightly less than the increase in cooling energy consumption. Similarly, the influence of the
factor Orien on total energy consumption is uncertain, indicating a non-linear relationship.

Regarding the total energy consumption of buildings, the sensitivity of the influencing
factor Uwindow is the highest, with SRCs of 0.669, 0.789, 0.788, and 0.866 for the “Rectangle”,
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“L”, “U”, and “Courtyard” archetypes, respectively. The following factors are WWRsouth,
WWRnorth, and WWRwest; then Insuld-wall, Insuld-roof, and WWReast; and lastly, SHGC and
Orien. Overall, the ranking of the influence of various factors on total energy consumption
is more similar to that of heating energy consumption. Therefore, it can be concluded that
heating energy consumption is the dominant energy consumption in the public teaching
buildings of universities in Beijing.
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Figure 8. Analysis of the impact of energy consumption influencing factors on total energy consump-
tion for the four studied archetypes.

4.2. Derivation and Evaluation of Prediction Models
4.2.1. Building Energy Consumption Prediction Models for the “Rectangle” Archetype

Through multivariate linear regression analysis, as shown in Table 10, the regression
coefficients and fitting degree indexes for the annual heating, cooling, lighting, and com-
prehensive energy consumption of the “Rectangle” archetype public teaching buildings at
universities in Beijing were obtained. The calculated prediction models are as follows:

y1 = 117,000.0 − 44.7x1 − 81,350.0x2 + 23,490.0x3 − 53,990.0x4 − 61,420.0x5
+925.8x6 + 7414.0x7 + 23,670.0x8 + 22,220.0x9

(5)

y2 = 146,900.0 + 15.0x1 + 89,120.0x2 − 2573.0x3 + 750.5x4 − 714.2x5
+8203.0x6 + 8418.0x7 + 40,960.0x8 + 52,530.0x9

(6)
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y3 = 153,600.0 − 3.4x1 − 1226.0x2 − 36.3x3 − 223.7x4 + 129.6x5
−1326.0x6 − 862.2x7 − 8480.0x8 − 10,920.0x9

(7)

y4 = 552,000.0 − 33.1x1 + 6552.0x2 + 20,880.0x3 − 53,460.0x4 − 62,000.0x5
+7804.0x6 + 14,970.0x7 + 56,150.0x8 + 63,830.0x9

(8)

where:

y1 represents the annual heating energy consumption of the “Rectangle” archetype, kWh/a;
y2 is the annual cooling energy consumption, kWh/a;
y3 is the annual lighting energy consumption, kWh/a;
y4 is the annual total energy consumption, kWh/a;
x1 is Orien, ◦; x2 is SHGC; and x3 is Uwindow, W/(m2·K);
x4 is Insuld-roof, m; x5 is Insuld-wall, m;
x6 is WWReast; x7 is WWRwest;
x8 is WWRnorth; x9 is WWRsouth.

Table 10. Multivariate regression coefficients and fitting degree indexes of the annual energy con-
sumption prediction models for the “Rectangle” archetype.

Prediction Models for the “Rectangle” Archetype y1 (kWh/a) y2 (kWh/a) y3 (kWh/a) y4 (kWh/a)

Regression coefficients

β0 117,000.0 146,900.0 153,600.0 552,000.0
β1 −44.7 15.0 −3.4 −33.1
β2 −81,350.0 89,120.0 −1226.0 6552.0
β3 23,490.0 −2573.0 −36.3 20,880.0
β4 −53,990.0 750.5 −223.7 −53,460.0
β5 −61,420.0 −714.2 129.6 −62,000.0
β6 925.8 8203.0 −1326.0 7804.0
β7 7414.0 8418.0 −862.2 14,970.0
β8 23,670.0 40,960.0 −8480.0 56,150.0
β9 22,220.0 52,530.0 −10,920.0 63,830.0

Fitting degree indexes R2 87.2% 79.7% 87.2% 65.0%

Note: The prediction model is for the annual heating, cooling, lighting, and total
energy consumption of the building archetypes. Corresponding monthly, daily, and per
unit area energy consumption can be obtained through relevant conversion calculations.

4.2.2. Building Energy Consumption Prediction Models for the “L” Archetype

Through multivariate linear regression analysis, as detailed in Table 11, the regression
coefficients and the fitting degree indexes for the annual heating, cooling, lighting, and
comprehensive energy consumption of the “L” archetype public teaching buildings at
universities were obtained. Additionally, the derived prediction models are represented by
Formulas (9)–(12).

y1 = 110,700.0 − 2.2x1 − 87,050.0x2 + 26,590.0x3 − 51,220.0x4 − 57,020.0x5
+58.2x6 + 18,910.0x7 + 18,750.0x8 + 14,690.0x9

(9)

y2 = 144,300.0 − 2.4x1 + 95,410.0x2 − 2828.0x3 + 586.5x4 + 805.0x5
+18,900.0x6 + 19,800.0x7 + 30,170.0x8 + 40,490.0x9

(10)

y3 = 151,900.0 − 0.1x1 − 858.3x2 − 34.2x3 − 181.1x4 + 50.1x5
−2222.0x6 − 2033.0x7 − 5898.0x8 − 7672.0x9

(11)

y4 = 541,400.0 − 4.8x1 + 7505.0x2 + 23,730.0x3 − 50,820.0x4 − 56,160.0x5
+16,740.0x6 + 36,670.0x7 + 43,020.0x8 + 47,500.0x9

(12)
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Table 11. Multivariate regression coefficients and fitting degree indexes of the annual energy con-
sumption prediction models for the “L” archetype.

Prediction Models for the “L” Archetype y1 (kWh/a) y2 (kWh/a) y3 (kWh/a) y4 (kWh/a)

Regression coefficients

β0 110,700.0 144,300.0 151,900.0 541,400.0
β1 −2.2 −2.4 −0.1 −4.8
β2 −87,050.0 95,410.0 −858.3 7505.0
β3 26,590.0 −2828.0 −34.2 23,730.0
β4 −51,220.0 586.5 −181.1 −50,820.0
β5 −57,020.0 805.0 50.1 −56,160.0
β6 58.2 18,900.0 −2222.0 16,740.0
β7 18,910.0 19,800.0 −2033.0 36,670.0
β8 18,750.0 30,170.0 −5898.0 43,020.0
β9 14,690.0 40,490.0 −7672.0 47,500.0

Fitting degree indexes R2 92.5% 91.6% 85.0% 84.2%

In Equations (9)–(12), y1, y2, y3, and y4 represent the annual heating energy consump-
tion, cooling energy consumption, lighting energy consumption, and comprehensive energy
consumption of the “L” archetype buildings, respectively, measured in kWh/a. The other
variables are the same as those in Equations (5)–(8).

4.2.3. Building Energy Consumption Prediction Models for the “U” Archetype

Table 12 presents the fitting degree indexes and multiple regression coefficients calcu-
lated through multivariate linear regression fitting analysis for the annual heating, cooling,
lighting, and comprehensive energy consumption of the “U” archetype public teaching
buildings at universities. The corresponding prediction models are represented, respec-
tively, by Formulas (13)–(16).

y1 = 102,400.0 + 0.2x1 − 99,050.0x2 + 33,750.0x3 − 62,420.0x4 − 72,820.0x5
+3725.0x6 + 27,740.0x7 + 28,740.0x8 + 25,950.0x9

(13)

y2 = 140,900.0 + 3.1x1 + 108,000.0x2 − 3532.0x3 − 3525.0x4 + 1213.0x5
+22,030.0x6 + 22,370.0x7 + 34,760.0x8 + 42,670.0x9

(14)

y3 = 147,100.0 + 5.4x1 − 816.2x2 − 28.3x3 + 208.6x4 + 7.6x5 − 1731.0x6
−1822.0x7 − 4515.0x8 − 6818.0x9

(15)

y4 = 523,900.0 + 8.7x1 + 8100.0x2 + 30,190.0x3 − 65,730.0x4 − 71,600.0x5
+24,030.0x6 + 48,290.0x7 + 58,990.0x8 + 61,810.0x9

(16)

Table 12. Multivariate regression coefficients and fitting degree indexes of the annual energy con-
sumption prediction models for the “U” archetype.

Prediction Models for the “U” Archetype y1 (kWh/a) y2 (kWh/a) y3 (kWh/a) y4 (kWh/a)

Regression coefficients

β0 102,400.0 140,900.0 147,100.0 523,900.0
β1 0.2 3.1 5.4 8.7
β2 −99,050.0 108,000.0 −816.2 8100.0
β3 33,750.0 −3532.0 −28.3 30,190.0
β4 −62,420.0 −3525.0 208.6 −65,730.0
β5 −72,820.0 1213.0 7.6 −71,600.0
β6 3725.0 22,030.0 −1731.0 24,030.0
β7 27,740.0 22,370.0 −1822.0 48,290.0
β8 28,740.0 34,760.0 −4515.0 58,990.0
β9 25,950.0 42,670.0 −6818.0 61,810.0

Fitting degree indexes R2 92.7% 91.9% 84.5% 86.5%
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In Equations (13)–(16), y1, y2, y3, and y4 represent the annual heating energy con-
sumption, cooling energy consumption, lighting energy consumption, and comprehensive
energy consumption of the “U” archetype building, respectively, measured in kWh/a. The
other variables are the same as those in Equations (5)–(8).

4.2.4. Building Energy Consumption Prediction Models for the “Courtyard” Archetype

Similarly, through multivariate linear regression analysis, the prediction models for
the annual heating, cooling, lighting, and comprehensive energy consumption of the
“Courtyard” archetype public teaching buildings at universities in Beijing were obtained, as
shown in Formulas (17)–(20). The corresponding regression coefficients and fitting indexes
are presented in Table 13.

y1 = 119,100.0 + 3.3x1 − 84,550.0x2 + 28,580.0x3 − 54,970.0x4 − 70,680.0x5
−1968.0x6 + 25,520.0x7 + 10,220.0x8 + 9093.0x9

(17)

y2 = 152,900.0 + 0.4x1 + 92,860.0x2 − 2827.0x3 + 128.6x4 + 236.7x5
+23,940.0x6 + 26,110.0x7 + 16,980.0x8 + 22,320.0x9

(18)

y3 = 155,200.0 − 11.1x1 − 1038.0x2 − 9.3x3 − 42.0x4 + 468.9x5
−5760.0x6 − 3336.0x7 − 9728.0x8 − 3297.0x9

(19)

y4 = 560,900.0 − 7.4x1 + 7266.0x2 + 25,740.0x3 − 54,890.0x4 − 69,970.0x5
+18,380.0x6 + 46,120.0x7 + 17,480.0x8 + 28,120.0x9

(20)

Table 13. Multivariate regression coefficients and fitting degree indexes of the annual energy con-
sumption prediction models for the “Courtyard” archetype.

Prediction Models for the “Courtyard” Archetype y1 (kWh/a) y2 (kWh/a) y3 (kWh/a) y4 (kWh/a)

Regression coefficients

β0 119,100.0 152,900.0 155,200.0 560,900.0
β1 3.3 0.4 −11.1 −7.4
β2 −84,550.0 92,860.0 −1038.0 7266.0
β3 28,580.0 −2827.0 −9.3 25,740.0
β4 −54,970.0 128.6 −42.0 −54,890.0
β5 −70,680.0 236.7 468.9 −69,970.0
β6 −1968.0 23,940.0 −5760.0 18,380.0
β7 25,520.0 26,110.0 −3336.0 46,120.0
β8 10,220.0 16,980.0 −9728.0 17,480.0
β9 9093.0 22,320.0 −3297.0 61,810.0

Fitting degree indexes R2 95.6% 96.6% 89.0% 92.9%

In Equations (17)–(20), y1, y2, y3, and y4 represent the annual heating energy con-
sumption, cooling energy consumption, lighting energy consumption, and comprehensive
energy consumption of the “Courtyard” archetype building, respectively, measured in
kWh/a. The other variables are the same as those in Equations (5)–(8).

4.2.5. Evaluation of Prediction Models

In order to evaluate the goodness of fit of the multivariate regression equation obtained
for building energy consumption, the model’s fit adequacy is further illustrated using the
coefficient of determination (R2). R2 represents the proportion of the original model’s
output that is explained by the linear regression model’s output [22].

R2 =
Sregression

Stotal
=

∑(ŷi − y)2

∑(yi − y)2 = 1 − Sresidual
Stotal

(21)
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where Stotal represents the total sum of squares of variation, which indicates the differences
among all data points. It is the sum of squared differences between each observed value
and the sample mean. Sregression is the part of the total variation that is explained by the
regression equation. Sresidual is the portion of the total variation that is not explained by the
regression equation.

If the regression equation explains and fits all the sample values, then:

Sresidual = ∑(yi − ŷi)
2 = 0 (22)

R2 = 1 (23)

Therefore, when R2 equals 1, the model system is linear, and the regression model
can explain all the model system outputs caused by the parameters. If R2 is closer to 1, it
indicates that the multivariate regression equation has a better degree of fit.

According to Tables 5–8, the R2 values for the four types of energy consumption
(heating, cooling, lighting, and comprehensive) in the “Rectangle” archetype buildings
are 87.2%, 79.7%, 87.2%, and 65.0%, respectively. Among these, two R2 values are greater
than 85%, and one is close to 80%, indicating that the regression models are relatively
reasonable. It should be noted that the fitting degree for comprehensive energy consump-
tion is relatively lower, suggesting that there are stronger nonlinear effects among the
parameters in comprehensive energy consumption. The R2 values for the four types of
energy consumption regression models in the “L” archetype buildings are 92.5%, 91.6%,
85.0%, and 84.2%,with two values over 90% and two close to 85%. This indicates a high
degree of explanation for all sample simulation values by the regression models, suggesting
the models are reasonable and relatively precise. The R2 values for the four types of energy
consumption in the “U” archetype buildings are 92.7%, 91.9%, 84.5%, and 86.5%, which
also indicates that the four regression equations for the “U” archetype are reasonable and
relatively precise. The R2 values for the four types of energy consumption regression
models in the “Courtyard” archetype buildings are 95.6%, 96.6%, 89.0%, and 92.9%, with
three values over 90% and one close to 90%, indicating a high degree of fit and suggesting
that the regression models are quite precise.

5. Conclusions

In this study, based on field research and relevant standard references, 28 types of
factors characterizing the energy consumption features of public teaching buildings at
universities in Beijing, including their values and distribution, were summarized and
extracted. Subsequently, ten more critical energy consumption factors were selected for re-
search, which were building shape, Orien, SHGC, Uwindow, Insuld-wall Insuld-roof, WWRnorth,
WWRsouth, WWReast, and WWRwest. Based on the building shape factor (four archetypes
including “Rectangle”, “L”, “U”, and “Courtyard”), the influence mechanism, sensitivity,
and prediction of energy consumption of the other nine building factors were explored.

By coordinating EnergyPlus, DesignBuilder, and jEPlus, a comprehensive dataset of
these nine energy consumption influencing factors was constructed for four architectural
archetypes including “Rectangle”, “L”, “U”, and “Courtyard”. Using the Latin Hypercube
Sampling (LHS) method, a total of 20,000 datasets were extracted to form samples for
computational analysis. Finally, the energy consumption data were processed using multi-
variate linear regression, with the obtained SRCs used to further determine the direction
and intensity of the impact of the nine energy consumption influencing factors on output
energy consumption. Additionally, prediction models for the nine energy consumption
influencing factors aimed at the output energy consumption of the four types of buildings
were derived and evaluated.
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(1) The influence mechanism among the nine energy consumption factors and four types
of output energy consumption

(I) Heating energy consumption:
Among the four architectural archetypes, the most significant influencing factor
on heating energy consumption is Uwindow. The second most influential factor
for heating energy consumption is SHGC. The factors that exhibit a moderate
impact include Insuld-wall, Insuld-roof, WWRnorth, WWRsouth, WWRwest, and
Orien. It is important to note that for the four different architectural archetypes,
the ranking of these six influencing factors varies. WWReast has the least impact
on heating energy consumption.

(II) Cooling energy consumption:
This influencing factor has the greatest impact on cooling energy consumption,
indicating that SHGC plays a decisive role in the changes in cooling energy
consumption. The factors showing a moderate impact on cooling energy con-
sumption include WWRsouth, WWRnorth, WWReast, WWRwest, and Uwindow.
Next in influence are Orien, Insuld-wall, and Insuld-roof. The SRCs for the Orien
factor in the four archetypes include both positive and negative numbers, in-
dicating an uncertain direction of impact between Orien and cooling energy
consumption and suggesting that this factor may have strong interactive ef-
fects. Insuld-wall and Insuld-roof have the weakest impact on the cooling energy
consumption of buildings.

(III) Lighting energy consumption:
Regarding the relationship between the nine types of energy consumption
influencing factors and energy consumption, overall, it was found that the
results for the “Rectangle”, “L”, and “U” archetypes are quite similar, while
the “Courtyard” archetype exhibits some differences. In the “Rectangle”,
“L”, and “U” archetypes, the two most significant factors affecting lighting
energy consumption are WWRsouth and WWRnorth. Factors with a moderate
impact include WWReast, WWRwest, Orien, and SHGC, whereas factors such as
Uwindow, Insuld-wall, and Insuld-roof have almost no impact on lighting energy
consumption. For the “Courtyard” archetype, the factors showing significant
influence are WWRnorth and WWReast, with Orien, WWRwest, WWRsouth, and
SHGC displaying moderate influence. The other factors are consistent with
the first three architectural archetypes.

(IV) Total energy consumption:
The ranking of the influence of various factors on comprehensive energy
consumption is more similar to that of heating energy consumption. Com-
prehensive energy consumption is primarily determined by both heating and
cooling energy consumption, with a somewhat greater influence from heating
energy consumption.

(2) Energy consumption prediction models

The goodness of fit R2 values for the prediction models of the four archetypes of
energy consumption in the “Rectangle” archetype are 87.2%, 79.7%, 87.2%, and 65.0%,
respectively; for the “L” archetype, they are 92.5%, 91.6%, 85.0%, and 84.2%; for the “U”
archetype, they are 92.7%, 91.9%, 84.5%, and 86.5%; and for the “Courtyard” archetype, the
R2 values are 95.6%, 96.6%, 89.0%, and 92.9%. Except for the slightly weaker performance in
comprehensive energy consumption for the “Rectangle” archetype, the obtained prediction
models can accurately forecast the annual heating, cooling, lighting, and comprehensive
energy consumption of the buildings.

The influence mechanisms and prediction models between the energy consumption
influencing factors and energy consumption obtained in this study can assist in param-
eter analysis, balancing, and decision-making during the early stage of the architectural
design of public teaching buildings at universities in Beijing. They can help to optimize the
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pre-construction design scheme and then improve the energy-saving level of the teaching
building. The aim is to enrich and supplement green architectural design methods, con-
tributing to the design of green public teaching buildings at universities and providing a
reference for relevant engineering practices and applications. The overall method of this
study has a certain universality and can be used to study other building types and other
building energy consumption parameters. It should be added that thermal comfort-related
content is indeed an important goal and function of university teaching buildings [33]. In
a follow-up study on the premise of ensuring the thermal comfort of buildings, we will
continue to explore the energy-saving design strategy of the teaching building. There are
some limitations in this study, such as the occupation and use schedule, the function and
use of the building depending on the influence of academic courses, etc. These limitations
will be studied and analyzed in detail in our future research.
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Abbreviations

Nomenclature Abbreviation Unit
Chinese Standard Weather Data CSDW —
heating, ventilation, and air conditioning HVAC —
solar heat gain coefficient SHGC —
thickness of roof insulation layer Insuld-roof mm
thickness of external wall insulation Insuld-wall mm
heat transfer coefficient of roof Uroof W/(m2·K)
heat transfer coefficient of exterior wall Uwall W/(m2·K)
heat transfer coefficient of exterior window Uwindow W/(m2·K)
orientation Orien ◦

east-facing window-to-wall ratio of the building WWReast %
north-facing window-to-wall ratio of the building WWRnorth %
south-facing window-to-wall ratio of the building WWRsouth %
west-facing window-to-wall ratio of the building WWRwest %
standardized regression coefficients SRCs —
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