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Abstract: Traditional cast-in-place beam–column joints have the defects of high complexity and high
construction difficulty, which seriously affect the efficiency and safety of the building construction line,
and precast beam–column joints (PBCJs) can greatly improve the construction efficiency and quality.
At present, the investigations on the seismic behavior of precast reinforced concrete structures are still
mainly focused on experiments, while the numerical simulations for their own characteristics are still
relatively lacking. In the present study, the seismic behavior of novel precast beam–column joints with
mechanical connections (PBCJs-MCs) is investigated numerically. Based on the available experimental
data, fiber models for four PBCJs-MCs are developed. Then, the simulated and experimental seismic
behaviors of the prefabricated BCJs are compared and discussed. Finally, the factors influencing
the seismic behavior of the PBCJs-MCs are further investigated numerically. The numerical results
indicate that the fiber models can consider the effect of the bond–slip relationship of concrete and
reinforcement under reciprocating loads. The relative errors of the simulated seismic behavior
indexes are about 15%. The bearing capacity and displacement ductility coefficients of the PBCJs-MCs
decrease rapidly as the shear-to-span ratio (λ) increases. It is recommended that the optimum λ for
PBCJs-MCs is 2.0–2.5. The effect of the axial load ratio on the seismic behavior of PBCJs-MCs can be
negligible in the case of the PBCJs-MCs with a moderate value of λ.

Keywords: precast beam–column joints; mechanical connection; seismic behavior; fiber models;
bond–slip; load–displacement curves

1. Introduction

Compared with cast-in-place concrete structures, the most prominent feature of pre-
cast concrete structures is that the main concrete elements are prefabricated in the factory, a
feature that allows them to show many advantages during construction. Each prefabricated
component is equivalent to further discretizing the overall concrete structure. The composi-
tion of its basic units is more adapted to standardization and parameterization compared
to the overall structure, which can enable the standardized design and factory flow pro-
duction upstream and downstream of the whole industry [1]. With the main components
prefabricated in the factory, the environmental pollution of the on-site construction can be
effectively controlled, while the construction waste such as waste water and waste gas can
be significantly reduced under the flow-through production method, and the turnover rate
of auxiliary materials such as formwork can be improved to achieve energy conservation
and environmental protection [2]. The standardized design is in line with the development
trend of construction informationization, and, combined with BIM technology, big data
technology, and information and communication technology, it can effectively improve the
degree of informationization in the construction industry and realize modernization [3].
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Precast reinforced concrete (PRC) structures have been widely used in civil engineer-
ing [3,4]. Beam–column joints (BCJs) in PRC structures are the core force-bearing parts,
which not only affect the seismic behavior of PRC structures but also directly relate to
the convenience and economy of construction. According to the presence or absence of
post-cast sections at the joints, the precast concrete BCJs are divided into wet and dry con-
nection forms [2,5]. At present, the investigations on the seismic behavior of PRC structures
are still mainly focused on experiments [6–9], while numerical simulations for their own
characteristics are still relatively lacking [10]. The experimental investigations on precast
frame joint specimens are focused on the influence of parameters such as the connection
methods on the seismic performance of BCJs [5]. However, most of the experimental studies
on the seismic behavior of specimens are limited by the test conditions, time, and funding.

With the continuous development of elastic–plastic finite element theory and the rapid
improvement of computer operation and processing capability, numerical simulation meth-
ods with good accuracy [10–12] have been widely applied in civil engineering. On one hand,
numerical simulation can carry out a wide range of parameterized analyses on the basis of
experiments and obtain richer analysis data while reducing the test input. On the other
hand, numerical simulation can be used for structural optimization analysis, which can
play an important role in guiding the experimental design and actual engineering design.
Combined with experiment investigations, numerical methods are important for predicting
the structural response of buildings. So far, many finite element models (FEMs) [13] have
been developed to simulate the seismic behavior of reinforced concrete (RC) members.
Precast BCJs are subjected to complex stresses and are prone to the formation of structural
defects that lead to stress concentrations. In practical engineering, while the entire structure
is often in an elastic phase, the joints may have transitioned to a plastic phase and suffered
severe damage. This can eventually lead to structural failure. Therefore, it is crucial to
focus on BCJs analysis for RC frame structures in numerical modeling. How to use the
numerical simulation analysis to effectively reflect the seismic behavior of precast BCJs is
of great significance to promote their development. Kremmyda et al. [14] simulated the
hysteretic properties of precast joints using the ABAQUS software (ABAQUS 2011). In
FEMs, a reasonable contact was set at the connection interface to simulate the shear damage
of splice joints under reciprocating loads. Zoubek et al. [15] simulated the hysteresis perfor-
mance of precast pin connection joints using the ABAQUS software. In Zoubek’s model,
solid elements were used for the beam–column members and concealed pins, which can
simulate the slip effect of concealed pin connections under seismic action more accurately.
Cao et al. [16] carried out an in-depth study on the numerical simulation method of PBCs
using the OpenSees software, proposing a more refined analysis model applicable to both
types of joints with wet and dry connections. In the model, the influence of energy dissipa-
tion elements such as prestressing and angles on the structure was considered. The seismic
behavior of ten different types of precast joints was simulated to validate the accuracy of the
FEMs. Most of the existing numerical simulation methods for precast concrete structures
can be divided into two categories according to their modeling ideas: numerical simulation
methods based on beam–column link elements and 3D solid elements [17]. The two types
of numerical simulation methods either pursue the convenience of use or the accuracy of
the mechanism; it is difficult to achieve unity in efficiency and precision, and each has its
own advantages and disadvantages. Therefore, combined with the characteristics of the
assembled concrete structures, the development of fine and efficient numerical simulation
methods is still worthy of in-depth study.

The existing numerical simulation methods can approximate the specific force charac-
teristics of precast structures such as bond–slip, shear behavior at the joint, etc. The accuracy
of FEMs is closely related to the selected material constitutive model [18]. Currently, the
OpenSees software has been widely adopted in various countries to conduct numerous
simulations regarding practical engineering and tests. The accuracy and efficiency of the
simulation results using the software have been verified [13,18]. In the OpenSees software,
there are three main types of models used for the simulation of reinforced concrete members
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with link elements, namely member models based on test data, section models based on
section stress–strain, and fiber models at the material level. Among them, the fiber models
are computationally inexpensive, easy to model, and have better accuracy [17]. Paulay [19]
pointed out that the deformation of BCJs consisted mainly of the shear deformation of joint
shear blocks and corner deformation of the beam–column intersection through. Panta-
zopoulou and Bonacci [20] pointed out that the slip of reinforcement would lead to blocked
load transfer at the intersection and further lead to damage of the joint shear blocks. The
beam–column joint element proposed by Lowes and Altoontash [21] and improved by
N-Mitra [22] consisted of three components to simulate different damage behaviors at
the BCJs. The shear panel component in the middle of the beam–column joint element is
used to simulate the shear behavior of the stiffness and strength degradation of the joint
core under shear damage. Under low-cycle reciprocating loads, bond–slip occurs between
the reinforcement and the concrete, which in turn leads to hysteresis loop pinching. A
reinforcement bond–slip model, Bar–Slip, is developed in the OpenSees software using the
reinforcement stress–slip relationship proposed by Eligehausen and Hawkins [23,24]. It
can take into account the effects of the material properties of concrete strength, reinforce-
ment, and the degree of anchorage, and thus analyzes the effect of the slip on the overall
joint performance.

In a previous study [2], novel precast BCJs using mechanical connections (PBCJs-MCs)
were proposed to improve the reliability and construction efficiency of PRC structures
(see Figure 1). In Figure 1, the steel bars in the columns are bolted to the nuts [2]. Currently,
there are some investigations on the seismic behaviors of PRC BCJs. Paul and Tanaporn-
raweekit [25] evaluated the seismic performance improvement of composite BCJs using the
LS-DYNA finite element software (Version 11 R 11.0.0). Yang et al. [26] tested and simu-
lated the seismic performance of precast BCJs and found that the accuracy of the simulated
results obtained from the ABAQUS software was good. Bohara et al. [27] evaluated the
seismic behavior of composite wide BCJs and found that the simulated result using the
LS-DYNA finite element software was in agreement with the experimental result. However,
there are few numerical simulation studies on the seismic behavior of PBCJs-MCs.
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(a) J-B1C2-F1 (b) J-B2C2-D1 and J-B2C2-F1 

Figure 1. Mechanical connection of reinforcements.

Whether the existing constitutive models of concrete or reinforcement can accurately
simulate the seismic behavior of PBCJs-MCs should be verified. Moreover, the parameters
influencing the seismic behavior of PBCJs-MCs need to be analyzed using the numerical
simulation method. In this present study, selecting appropriate element types and material
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constitutive models, the FEMs of PBCJs-MCs are established to analyze the seismic behavior
of novel precast BCJs with mechanical connections. The simulation results are compared
with the experimental results. Based on this, the factors influencing the seismic behavior of
PBCJs-MCs are further investigated numerically.

2. Numerical Models of PBCJs-MCs
2.1. Overall Design of the Quasi-Static Test Program

Four PBCJs-MCs (specimens J-B1C2-F1, J-B2C2-D1, J-B2C2-F1, and J-B2C2-D2) from
Ref. [2] are selected for the numerical simulation. The axial load ratios (n) of the four
PBCJs-MCs are all 0.15. The shear-to-spans (λ) of the four PBCJs-MCs are all 2.0. The
design drawing of the four specimens is described in Figure 2. In Figure 2, C denotes
HPB300 steel bars and D denotes HRB400 steel bars. All precast columns are specified by
mechanical connections. Other design details of the four PBCJs-MCs are listed in Table 1.
The concrete grade of precast beams and columns are composed of C35. From Ref. [2], the
material properties of concrete and steel bars can be obtained.
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Table 1. Design parameter details of the four PBCJs-MCs.

Specimen Precast Beam Differences in the Joint Zone

J-B1C2-F1 Anchor connection PCFRC
J-B2C2-D1 Mechanical connection PCC
J-B2C2-F1 Mechanical connection PCFRC
J-B2C2-D2 Mechanical connection PCC

Note: PCFRC represents post-cast fiber reinforced concrete; PCC represents post-cast concrete.

2.2. Establishment of FEMs

The fiber model is used for the FEMs, as shown in Figure 3. S1 area represents the
core concrete, i.e., the confined concrete area. S2, S3, S4, and S5 areas outside the confined
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concrete area represent the unconfined concrete area. The fiber cross-sections can be mainly
discretized into confined concrete fibers, unconfined concrete fibers, and reinforcing fibers.
Fiber cross-section model with the number of segments and the number of integration
points of the number of segments increases, and the distribution of sectional curvature in
the direction of the extended height of the member is more reasonable, but the amount of
calculation also increases. Gauss–Legendre formula is used to set 4 integration points for
the segmentation basis of the finite element of the rod system [28]. The fiber cross-section
is divided uniformly with the number of 30–50 [29], which can ensure accuracy while
significantly reducing the computational effort.
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Figure 3. Schematic diagram of the fiber model.

The beam or column of the finite element model is simulated using the displacement-
based nonlinear beam–column element. The action of the longitudinal reinforcement and
stirrups is considered using the fiber cross-section in Figure 3. Concrete02 model is used
for concrete fibers, and Reinforcing Steel model is used for steel fibers. Figure 4 shows a
schematic diagram of the finite element model. Five fiber column elements are established
(nodes 1–6). Six fiber beam elements are established (nodes 8–15). Beam–column joint
elements are established between nodes 3, 4, 10, and 11 to simulate the bond–slip behavior
of the reinforcement concrete at the joint and the shear behavior at the core of the joint. The
loading mode of the FEMs (see Table 2) is the same as that of the test in Ref. [2], being drift
ratio-controlled loading modes.
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Table 2. Lateral load loading mode of PBCJs-MCs.

Loading Level Drift Ratio (%) Displacement (mm) Number of Cycle

1 0.10 1.50 3
2 0.30 4.50 3
3 0.50 7.50 3
4 0.75 11.25 3
5 1.00 15.00 3
6 1.50 22.50 3
7 2.00 30.00 3
8 2.75 41.25 3
9 3.50 52.50 3

2.3. Element

Displacement-based nonlinear beam–column element is used to simulate beam and
column elements, together with the fiber model (see Figure 4). Its advantage is that the
internal force distribution of the element is more stable. The mechanical behavior of the
concrete member can be simulated using fewer elements, but it is prone to the phenomenon
of computational non-convergence. Beam–column joint element improved by N-Mitra [22]
(see Figure 5) is used to simulate different damage behaviors of BCJs.
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Four zero-width shear springs (interface-shear springs) connecting external nodes 1–4 and
internal nodes 5–8 are applied to simulate the beam–column interfacial shear transfer failure
mechanism. Four interface-shear springs are used to simulate the degradation of shear
transfer capacity at the joint interface. Because plastic hinge rotation is at the beam–column
joint during the test without significant vertical sliding, interface-shear spring element
is defined as an elastic material with high elasticity to weaken the shear transfer failure
mechanism in the fiber model.

2.4. Constitutive Models
2.4.1. Concrete

In nonlinear fiber beam–column elements, it is necessary to assign corresponding
constitutive relationship to concrete fibers [15,16]. The Concrete02 model is used. Based
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on the improved Kent–Park concrete model, Concrete02 constitutive model (see Figure 6)
is proposed to effectively consider the tensile properties of concrete [30], thus being able
to simulate the hysteretic properties of confined concrete in tension and compression.
Introducing the confinement factor K, the confining effect of stirrup reinforcement on the
strength and ductility of concrete in the core zone can be considered in the FEMs, which
can more accurately simulate the concrete constitutive relationship.
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2.4.2. Reinforcement

The hysteresis curve of reinforced concrete members is more closely related to the
uniaxial constitutive model of reinforcement with the increase in the loading displacement.
The selection of a reasonable and accurate constitutive model of reinforcement is the key
to the accuracy of numerical simulation. There are currently eight constitutive models of
reinforcement available in the OpenSees Version 3.0.0 software, including Steel01, Steel02,
and Reinforcing Steel. Table 3 lists the different constitutive models of reinforcement; thus,
Reinforcing Steel model (see Figure 7) is selected. In Figure 7, fy, fu are the reinforcing
yield strength and ultimate strength, respectively; εsh is the reinforcing strain hardening
point strain and εu is the reinforcing strain corresponding to fu; Es is the initial modulus
of elasticity of reinforcement; Esh is the reinforcing starting point modulus. The above
parameters can be obtained from the material property tests of reinforcement in Ref. [2].
Dhakal–Maekawa buckling model [17] is used to simulate the buckling of compressed
reinforcement [17]. The Coffin–Manson model is applied to simulate the adverse effects of
the low-cycle fatigue accumulation damage of reinforcing steel [17]. It has three parameters,
namely the strength degradation parameter Cd, the fatigue damage parameter Cf, and the
fatigue damage index α2. According to the previous study in Ref. [17], the three parameters
in the Coffin–Manson model can be taken as 0.140, 0.379, and 0.379, respectively.

Table 3. Comparison of different constitutive models of reinforcement.

Constitutive Model Stress–Strain Curve
Shape

Bauschinger Effect Is
Considered?

Compression Flexure
Effect Is Considered?

Fatigue Damage Effect
Is Considered?

Steel 01 Bending Lines No No No
Steel 02 Smooth curves Yes No No

Reinforcing Steel Smooth curves Yes Yes Yes
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Figure 7. Reinforcing Steel model.

2.4.3. Shear Panel

The constitutive model of the shear panel is Pinching4 model (see Figure 8). It can
synthesize the characteristics of strength degradation, stiffness degradation, and pinch
shrinkage effect of joints. In this model, the skeleton curve envelope is multilinear and the
unloading–reloading path is trilinear. The key to defining this material model is to define
16 parameters for the 8 characteristic points of the skeleton curve envelope in positive and
negative directions, 6 key parameters for the unloading–reloading path, and stiffness and
strength degradation criteria.
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Pinching4 model skeleton curves reflect the shear capacity of BCJs. The modified mild
compression field theory (MCFT) assumes that the shear force is uniformly distributed and
that the shear force is transmitted only through the diagonal compression bar, considers
the tensile stress effect after concrete cracking, establishes the deformation compatibility
condition and stress balance relationship between reinforcement and concrete, and is widely
used in concrete shear calculation. According to the modified MCFT, the Membrane-2000
Version 1.0 software proposed by Bentz and Collins was used to calculate the parameters
related to the characteristic points of the skeleton curve [31].

2.4.4. Constitutive Model of Bar–Slip Springs

Under low-cycle reciprocal loading, bond–slip between the reinforcing steel and
concrete occurs. It leads to hysteresis loop pinching and has a great influence on the
load–displacement curves. A reinforcement bond–slip model, Bar–Slip, was developed in
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the OpenSees Version 3.0.0. software using the stress–slip relationship for reinforcing steel
proposed by Eligehausen and Hawkins [23,24]. The Bar–Slip model can consider the effects
of concrete strength, reinforcement material properties, and the degree of anchorage, and
thus analyze the effect of the slip on reinforcement on the overall performance of BCJs.

It should be noted that the simulation of the reinforcement bond–slip effect can
be achieved more accurately with the Pinching4 constitutive model by setting two co-
coordinate points and assigning fiber sections to the ends of beams and columns consid-
ering the reinforcement stress–slip relationship. After that, the bending moment–angle
relationship curves were obtained from the proposed fiber section analysis and converted
to the skeleton curve parameters in Pinching4 model. Considering that the mechanical
connection of the specimen is at a certain distance from the end of the beam and that the
stress–slip relationship cannot be accurately expressed, the Bar–Slip springs (uniaxial mate-
rial constitutive) are used in the establishment of the beam–column joint element model.

2.4.5. Constitutive Model of Reinforcement Bond–Slip

There are differences in construction quality, curing conditions, and methods between
wet precast concrete joints and post-cast zone concrete, and the adhesion between rein-
forcement and concrete is susceptible to the effects of greater reinforcement slippage in the
specimens, as shown by the experimental hysteresis curves [2]. Therefore, the reinforcement
at the end of the beam and column is provided a uniaxial constitutive model, Bond_SP01
model [17] (see Figure 9), to simulate the bond–slip effect of the reinforcement at the end of
the beam and column, while the voids inside the mechanical joints are also equated to this
reinforcement bond–slip effect. It has a total of 6 parameters, namely the yield strength fy,
slip at yield Sy, slip at failure Su, intensification factor at the initial intensification phase b,
and hysteresis factor R. Zhao and Sritharan [32] calculated and analyzed a large amount of
pull-out test data to obtain a fitting formula for Sy, as well as the recommended range of
parameters Su, b, and R.
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Figure 10 shows the stress–slip curves of HRB400 steel bars-reinforced C35 concrete
and PVA FRC in uniaxial tension (S is the slip value). Before yielding, the slip of the
reinforcement increases very slowly and the slip value is small. After yielding, the slip
of the reinforcement increases rapidly with essentially no increase in stress and the slip
phenomenon is very obvious. This is also consistent with the phenomenon that the degra-
dation rate of the bond between the steel bars and concrete (or FRC) gradually increases
after the concrete or FRC has gone through the stages of cracking and crushing in the test.
The slip value of the reinforcement with a greater diameter is large under the same stress
conditions and its bond–slip effect is more significant, which is consistent with the findings
in Ref. [33].
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Figure 10. Stress–slip curves of HRB400 reinforcement.

3. Numerical Simulation Results and Discussion

Due to the experimental hysteresis curves in Ref. [2] being affected by various factors,
the measured hysteresis curves in the positive direction (+) and negative direction (−)
demonstrate asymmetric characteristics, while the numerical models are established with-
out distinguishing the loading directions. The Pinching4 model is based on the principle
that the envelopes of the skeleton curves are identical in the positive and negative directions.
The specific hysteresis rules and loading and unloading stiffness in the positive and nega-
tive directions of the numerical model are adjusted according to the experimental results so
that the difference between the simulated hysteresis curves in the positive and negative
loading directions is minimal. Therefore, the experimental hysteresis curves are moderately
shifted to compare the accuracy of the FEMs, which has no effect on the calculation of the
relevant seismic behavior indexes. The comparison of the experimental and simulated peak
loads of the PBCJs-MCs is shown in Table 4. The errors of the peak loads are below 7.0%, re-
flecting a better simulation effect. It is worth mentioning that the peak loads obtained from
the simulations are generally small compared to the experimental results. Because there are
differences between the strengths of new-to-old concrete in the specimens (J-B2C2-D1 and
J-B2C2-D2), the Concrete 02 model does not reflect the mechanical properties of FRC in an
integrated manner (J-B1C2-F1 and J-B2C2-F1), and the numerical model does not effectively
consider the strength provided by the additional U-shaped reinforcement (J-B2C2-D2).

Table 4. Comparison of simulation and experimental peak loads.

Specimen No.
Test Result T (kN) Simulated Result S (kN) Er (%)

+ − + − + −
J-B1C2-F1 94.3 −93.9 90.1 −90.2 −4.5 −3.9
J-B2C2-D1 96.7 −89.2 91.8 −91.3 −5.1 2.4
J-B2C2-F1 100.8 −99.7 99.8 −99.6 −1.0 −0.1
J-B2C2-D2 97.9 −101.2 94.4 −94.3 −3.6 −6.8

3.1. Hysteresis Curves

The simulated and experimental hysteresis curves of the PBCJs-MCs are compared
in Figure 11. The simulation results basically match the experimental results, reflecting
the loading–unloading paths and directions of the experimental hysteresis curves, and
the selected element types and material constitutive models can better reflect the shear
effect and reinforcement bond–slip effect at the core zone of the joint. For specimen
J-B1C2-F1, the simulation is able to simulate the differences between the positive and
negative hysteresis curves by adjusting the relevant hysteresis rules and degradation
parameters in the Pinching4 model. In general, the numerical simulation model, element
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types, and material constitutive relationships selected reflect the force characteristics of the
PBCJs-MCs more accurately and have a good simulation effect on the reinforcement slip
effect reflected by the hysteresis curve.
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Figure 11. Comparison of experimental and simulated hysteresis curves for each specimen.

3.2. Skeleton Curves

The simulated and experimental skeleton curves of the PBCJs-MCs are compared in
Figure 12. The simulated skeleton curves are closer to the experimental ones during positive
loading, while the experimental results during negative loading are influenced by the larger
loading device, with very slow growth initially, but the two are also closer in the later
stages of loading. The rising section of the simulated skeleton curve of specimen J-B1C2-F1
is better simulated. The simulated skeleton curve also reflects the process of decreasing the
bearing capacity of specimen J-B1C2-F1 after the damage of the column end. The falling
section of the simulated skeleton curve is similar to the experimental results. For specimens
J-B2C2-D1, J-B2C2-F1, and J-B2C2-D2, the slow growth of the skeleton curve during the
loading displacement amplitudes of 7.5–15 mm occurs due to the existence of internal voids
in the mechanical joints, causing the reinforcing steel to slip. The rising sections of the
simulated skeleton curves are rather consistent after the loading displacement amplitude
of 7.5 mm.
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3.3. Energy Dissipation Capacity

The normalized cumulative hysteretic energy coefficient EN is calculated using the
same method in Ref. [17]. The total cumulative hysteretic energy dissipation curves of the
numerical simulations and experiments are calculated in Table 5. The normalized cumula-
tive hysteretic energy coefficients of the numerical models and experimental specimens are
shown in Figure 13. The total cumulative energy dissipation of the FEMs is relatively close
to the experimental results. The maximum relative error of the simulated results is less
than 15%. At the last loading displacement, the increase in the simulated total cumulative
energy dissipation of each specimen is smaller than the experimental result. For specimen
J-B2C2-F1, the obvious differences between the energy dissipation–displacement curves of
the test and simulation results are due to the insufficient accuracy of the model data for the
bond–slip relationship, which needs to be improved by supplementing the bond–slip tests
in the subsequent study. In addition, the unloading stiffness of the model at large displace-
ments has a decreasing process with the unloading process. The Pinching4 model cannot
effectively simulate this phenomenon, which needs to be corrected in further research.
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Table 5. Numerical simulation results and accuracy of the total cumulative hysteretic energy dissipation.

Specimen No. Test Value T (kN·m) Numerical Simulation Value S (kN·m) Relative Error ((S-T)/T)

J-B1C2-F1 40.9 37.7 −7.8%
J-B2C2-D1 41.9 37.0 −11.7%
J-B2C2-F1 41.9 36.1 −13.8%
J-B2C2-D2 69.5 69.1 −0.6%
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3.4. Stiffness Degradation

The average loop stiffness K [17] is used to measure the stiffness degradation of the
PBCJs-MCs. The stiffness degradation curves of the numerical simulation and experiment
are compared as described in Figure 14. Some distinct branches are detectable in the
stiffness degradation of the PBCJs-MCs. This is first due to the individual differences of the
test specimens. Secondly, there is a slight increase in stiffness in the range of 15–20 mm,
which is due to the over-limit of bond stress in the longitudinal reinforcement in the plastic
hinge zone of the beam–column joints, leading to a surge in sliding displacement and
resulting in the above phenomenon. The average loop stiffness of each specimen at a
loading displacement of 4.5 mm differs from the experimental data to a certain extent,
probably because the experimental data at this stage are susceptible to interference from
external factors. After 4.5 mm, the trend of the simulated stiffness degradation curves is
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almost the same as that of the experiment, and the average loop stiffness values of the
numerical simulation and experiment are very close to each other.
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each specimen.

4. Parametric Analysis of Effect Factors
4.1. Effect of the Shear-to-Span Ratio

The difference in the shear span ratios of the generally recognized members affects
the difference in the damage form of the concrete member. The damage of long columns
with λ > 2, is calculated, which is mainly ductile damage. The normal shear span ratio of
columns in ordinary RC structures is between 2 and 3, so it is not urgent to consider the
shear span ratios greater 4. The effect of the shear-to-span ratio (λ) on the seismic behavior
of PBCJs-MCs is analyzed. λ is set to 2.0, 2.5, 3.0, and 3.5 to study the seismic behavior of
the PBCJs-MCs with the other parameters of specimen J-B2C2-D2 (n = 0.15) unchanged. The
simulated skeleton curves of the PBCJs-MCs are shown in Figure 15. The simulated bearing
capacity and displacement ductility coefficients of the PBCJs-MCs are shown in Table 6.
The bearing capacity of the PBCJs-MCs gradually decreases as λ increases. Displacement
ductility is the ability of a structure or member to withstand displacement before failure.
With the increase in λ, the ultimate displacement of the PBCJs-MCs under the damage state
because of the limit value of the PBCJs-MCs with the change in λ is not much different,
but the yield displacement with the increase in λ regarding the PBCJs-MCs occurs with an
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increase in the yield displacement; the coefficient of ductility ratio decreases accordingly.
The coefficient of ductility is a criterion for evaluating the ductility of the member. It
can be concluded that the displacement ductility of the PBCJs-MCs gradually decreases
as λ increases. When λ is greater than 2.5, the ductility coefficient of the PBCJs-MCs is
greater than 3.0. Therefore, it is recommended that the optimum range of λ for PBCJs-MCs
is 2.0–2.5.
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Table 6. Bearing capacity and displacement ductility of PBCJs-MCs with different shear-to-span ratios.

λ Fyc (kN) ∆yc (mm) Fmc (kN) ∆uc (mm) µc

2.0 68.7 19.6 93.4 63.8 3.3
2.5 59.2 21.1 82.5 63.8 3.0
3.0 52.8 25.9 73.1 63.8 2.5
3.5 45.9 29.9 65.2 63.8 2.2

Note: ∆yc and ∆uc indicate the numerical displacements at the numerical yield load Fyc and ultimate load Fuc,
respectively; Fmc is the numerical maximum load; µc is the numerical ductility coefficient, and µc = ∆uc/∆yc.

If common building structures (e.g., classrooms, houses, hospitals, etc.) with columns
have a shear span ratio greater than 3, it is not necessary to add seismic measures for
the use of such RC structures. The use of columns with λ > 3 is limited in the buildings
with seismic classifications of Class I and Class II. Because of the high energy dissipation
capacity and ductility requirements of the columns in regions prone to both seismic and
high wind events, it is prudent to use columns with λ > 3.

4.2. Effect of the Axial Load Ratio

The effect of the axial load ratio (n) on the seismic behavior of the PBCJs-MCs is also
analyzed. Indeed, n is set to 0.1, 0.15, 0.3, 0.4, 0.5, and 0.7 to study the seismic behavior
of the PBCJs-MCs with the other parameters of specimen J-B2C2-D2 (λ = 2.0) unchanged.
The simulated skeleton curves of the PBCJs-MCs are described in Figure 16. The simulated
skeleton curves basically demonstrate no differences as n increases. When n is not greater
than 0.4, the bearing capacity of the PBCJs-MCs increases slightly; when n is greater than 0.4,
the bearing capacity of the PBCJs-MCs is almost unchanged. From the parametric analysis
of λ, it can be concluded that the effect of n on the seismic behavior of the PBCJs-MCs can
be negligible in the case of the PBCJs-MCs with a moderate value of λ.
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When the shear-to-span ratio is between 2 and 3, the axial load has less influence on
the bearing capacity and ductility of the column, so, for such columns, the axial load ratio
limit is appropriately relaxed, and, for the reinforced concrete frame structures of seismic
Class I and Class II, the axial load ratio of the center column can be increased from 0.65 and
0.75, which are stipulated in the specification, to 0.85, which can reduce the column section
under the premise of ensuring the seismic performance of the structure, save the amount of
reinforcing steel and concrete, and increase the structural internal space.

5. Conclusions and Measurements

In the present study, the seismic behavior of PBCJs-MCs is investigated numerically.
The following conclusions are obtained.

(1) The Concrete02 model and Reinforcing Steel model can accurately simulate the con-
stitutive relationship of concrete and reinforcement, respectively. The beam–column
joint elements can accurately simulate the different damage behaviors of the joint zone.
The Bond_SP01model can accurately simulate the bond–slip between the reinforcing
steel, concrete, and mechanical connections.

(2) The simulated hysteresis curves and skeleton curves of the PBCJs-MCs are similar to
the experimental results. The simulated seismic behavior indexes, such as bearing
capacity, energy dissipation capacity, and stiffness degradation, are not much different
from the experimental results, with a relative error of about 15%.

(3) The bearing capacity and displacement ductility coefficients of the PBCJs-MCs de-
crease rapidly as λ increases. It is recommended that the optimum λ range for
PBCJs-MCs is 2.0–2.5. Regarding the high energy dissipation capacity and ductility
requirements of the members in regions prone to both seismic and high wind events,
it is prudent to use columns with λ > 3.

(4) The axial load ratio has a very small influence on the seismic behavior of the PBCJs-
MCs. The effect of the axial load ratio on the seismic behavior of the PBCJs-MCs can be
negligible in the case of the PBCJs-MCs with a moderate value of shear-to-span ratio.

In reflecting on the broader implications of the study’s findings for seismic design
standards and building codes, the following measures can be taken to incorporate these
insights into regulatory frameworks in a manner that both promotes innovation in precast
construction techniques and ensures the safety and resilience of structures in earthquake-
prone areas.

(1) Researchers should be down-to-earth, strictly abide by academic ethics, rigorously
conduct research to ensure the validity of research results and the reliability of research
conclusions, and actively maintain cooperation with enterprises so that the benign
development of the assembly building industry can be ensured.
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(2) For prefabricated assembly building construction technology, the government should
take assembly building as a key research support area and provide multi-party sup-
port in terms of research funding and research conditions, strengthen the industry’s
supervision and review mechanism to ensure the safety of the technology, and leave
its beneficial attributes to the market to decide.

The numerical model and related measures obtained in the present study help to
provide an effective theoretical basis and technical support for the application of PBCJs-MCs
in assembled building structures.
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