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Abstract: This paper introduces a deep learning (DL) tool capable of classifying cities and revealing
the features that characterize each city from a visual perspective. The study utilizes city view data
captured from satellites and employs a methodology involving DL-based classification for city
identification, along with an Explainable Artificial Intelligence (AI) tool to unveil definitive features
of each city considered in this study. The city identification model implemented using the ResNet
architecture yielded an overall accuracy of 84%, featuring 45 cities worldwide with varied geographic
locations, Human Development Index (HDI), and population sizes. The portraying attributes of
urban locations have been investigated using an explanatory visualization tool named Relevance
Class Activation Maps (CAM). The methodology and findings presented by the current study enable
decision makers, city managers, and policymakers to identify similar cities through satellite data,
understand the salient features of the cities, and make decisions based on similarity patterns that can
lead to effective solutions in a wide range of objectives such as urban planning, crisis management,
and economic policies. Analyzing city similarities is crucial for urban development, transportation
strategies, zoning, improvement of living conditions, fostering economic success, shaping social
justice policies, and providing data for indices and concepts such as sustainability and smart cities
for urban zones sharing similar patterns.

Keywords: city identification; city similarity; urban planning; satellite data; machine learning; deep
learning; explainable AI; saliency map

1. Introduction

Currently, the majority of the global population lives in cities, and urbanization
rates are expected to continue rising [1]. Thus, cities play a significant role in shaping
the sociological, economic, and environmental landscapes of the world. Their growing
importance makes it vital to analyze and measure them accurately [2]. However, this is
complicated by the unique identity and urban features of each city.

In general, spatial similarity refers to the extent to which two geographical entities
share the same characteristics [3]. Cities can be compared based on different aspects, in-
cluding, infrastructure, layout, societal and cultural peculiarities, historical background,
economic situation, and even local user-generated content [3]. Moreover, understanding ur-
ban similarities could be important in shaping decisions that effectively improve the living
conditions across cities with comparable features. In addition, analysis of the commonali-
ties of cities can be helpful in the analysis of economic growth and understanding which
features lead to the success of one city [4]. Furthermore, city commonality analyses can be
used as data for further research, for example, index or ranking system development [3].

Identifying cities and developing knowledge about salient features can be used to
guide the urban development of cities, for example, to keep or change their unique identity.
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In addition, such features can be useful in city categorization or analysis of city similarity [5].
Easy classification of city patterns can also aid in developing industrial solutions for natural
resource management (air, water, and waste) [2]. Nevertheless, creating such a tool might
be complicated because of rapid urbanization rates, which could change the urban typology
and morphology.

While early research in measuring city similarity often relied on versatile data sources
and distinct city features, to the best of our knowledge, there is limited evidence of ded-
icated efforts to identify cities based on satellite images. Analyzing separate features in
isolation may offer a focused perspective on cities, but it can also lead to strong biases and
an overwhelming reliance on them, potentially overlooking complex similarity patterns.
In this regard, satellite images might serve as an integrated source capable of capturing
a wealth of urban characteristics, including architectural patterns, transportation routes,
geographical peculiarities, temporal and climatic conditions, and even air pollution rates.
Several studies [2,6,7] have focused on classifying certain urban features based on satellite
images, demonstrating the high accuracy of such models. This justifies considering satellite
images as a reliable source for capturing various measurable traits, thereby integrating mul-
tiple features within themselves. Although these visual recognition methods prove highly
accurate in specific cases, their use across multiple cities can be resource intensive and time
consuming. Hence, a more adaptable methodology is needed to enable the development of
more ubiquitous tools for the classification of cities.

Considering the gaps mentioned above, this research offers a novel artificial intelli-
gence (AI)-driven city classification method which provides a homogeneous and unbiased
result, employing visual and publicly accessible data focusing on factual circumstances
and complex visual causalities. It offers a new perspective in the research domain by
developing a deep learning (DL) tool that analyzes visual information from city satellite
image patches. The main research question was to investigate the efficiency of a DL tool
in classifying urban areas and identifying cities that exhibit similar characteristics using a
collected dataset of satellite images. The contributions of this work are as follows:

• We introduce a dedicated DL model for Satellite-based Identification of Cities with
Enhanced Resemblance (DL-SLICER). Our model for identifying cities uses the ResNet
architecture with various numbers of layers (18, 34, 50, 101). This model is the first
DL city classification model in the literature, achieving an 84% accuracy rate for
identifying a city from a satellite patch covering a 200 m by 200 m area.

• We also present an open-source and publicly available dataset containing satellite
images from 45 cities worldwide, labeled 565,938 satellite patches of 200 m by 200 m
regions.

• With the open-source data and models, our work can serve as a benchmark for
identifying cities.

• We conducted experiments using one of the latest Explainable AI tools, Relevance-
CAM, to determine the features that characterize the cities from top views.

This paper is structured into six sections. This introduction is followed by a literature
review (Section 2) focused on the scholarly challenges of using AI or satellite images in city
assessments. Section 3 details the methods and tools we used and developed. Section 4
provides the main findings and discussions. Finally, Section 5 offers our concluding
remarks, and Section 6 discusses future implementations and limitations and explores the
practical and scholarly implications of the results.

2. Literature Review
2.1. City Similarity Tools

A comprehensive and uniform method to measure the similarity between cities does
not exist. Frequently, cities are compared on the basis of certain characteristics such as
basic indicators, including income distribution, costs, and ethnic composition. However,
these characteristics only capture a small facet of the identity of a city, mostly related to
economic and social dimensions. Earlier attempts at city clustering and identifying similar
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features can be found in the existing literature, and they use different data types and distinct
methodologies.

Within academic research, the number of tools available for measuring city similarity
is limited. For example, Saxena et al. developed a tool to identify cities similar to Delhi
based on air quality metrics [8]. Cheng et al. (2022) developed an urban classification
tool that aids in understanding and identifying urban environmental patterns [2]. This
approach allowed them to measure the perception of city users through the photos they
produced and shared. The researchers used certain city identity attributes for the image
analysis, such as green areas, water resources, urban transportation systems, architectural
forms, buildings, sports, and social activities.

In another study focusing on 385 European cities, researchers found that cities could
be clustered according to their typology and environmental features [9]. A peer city
identification tool was used for 960 cities in the United States (US), grouping them based on
tabular data related various topics such as equity, resilience, outlook, and housing [10]. The
authors of [11] conducted city map clustering using k-means of smart card data, aiding in
the identification of city structures and clusters [11]. Costa and Tokuda (2022) investigated
the similarity of 20 European cities based on their topology, utilizing a clustering method
of street networks [4]. Seth et al. (2011) [12] found city similarities through query logs,
suggesting that cities could be grouped not only by geographic location but also by the
professional occupations of the populations (e.g., university students, high-tech companies,
and defense contractors). For example, in their analysis of US cities, they found similarities
among cities such as Boston, Brookline, New York, and Bethesda as well as Bethesda VA,
Arlington VA, and Fort Myer VA [12]. A summary of early methods for measuring city
similarity is provided in Table 1. The majority of the tools under consideration utilize
unsupervised machine learning methods, which can result in reduced accuracy in certain
instances.

Table 1. Summary of city similarity methods.

City similarity Method # of Cities Region Data Source Analyzed Features Method

Zhou et al. (2014) [13] 21 Asia, Europe,
North America

geo-tagged
images

green areas, water
resources, transport,
architectural forms,
buildings, sport and
social activities

SVM classifier

Gregor et al. (2018) [9] 385 Europe tabular data typology and envi-
ronmental features clustering

Federal Reserve Bank of
Chicago [10] 960 United States tabular data

equity, resilience,
outlook, and hous-
ing

clustering

Kim et al. (2019) [11] 1 South Korea city maps, smart
card data

spatial interactions,
city structure clustering

Costa and Tokuda
(2022) [4] 20 Europe topology, street

networks
Jaccard and interior-
ity indices

K-means
clustering

Seth et al. (2011) [4] 20 Europe query logs professional occupa-
tion clustering

Ours 45 Worldwide satellite images urban areas, unique
salient city features

deep learning
(ResNet)

Many non-academic methods for comparing and assessing cities focus on the cost
of living. Examples include “Numbeo” [14], “Forbes Calculator” [15], and others [16,17].
The Urban Observatory, on the other hand, offers city comparisons across a variety of
topics, including the type of work, transportation, and population density [18]. The
ArcGIS Similarity Search tool allows for city comparisons based on attributes such as
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population, crime, and education [19]. ArcGIS developers emphasize the utility of this
tool for various stakeholders, including retailers, policymakers, human resource specialists,
law enforcement agencies, and academia. Shell has developed a tool that compares cities
by considering such factors as the population density, the use of energy, and the need for
energy resources [20].

In the case of tools focusing exclusively on US cities, they often compare cities using
metrics related to the cost of living, employment, housing, and metropolitan statistical
areas [21–23]. Additionally, some tools assess the impact of COVID-19 on local businesses
as a basis for city comparisons [24]. It is worth noting that the majority of city similarity
tools originate from the business sector rather than academic research.

2.2. Use of AI and Satellite Images in Urban Planning

AI techniques have been applied to analyze urban designs and city characteristics.
These include fuzzy logic (FL), genetic algorithms (GA), neural networks (NNs), and
simulated annealing (SA) [25]. NNs have been commonly used to predict land pollution
(noise, air, water, waste) and changes in land use and form [26]. One of the stirring
applications has been forecasting extreme temperatures and possible droughts in urban
environments [27]. AI prospects in the field of urban construction and building design are
also promising. Applications include the design of sustainable structures, structural health
monitoring, soil analysis, and energy efficiency enhancements (e.g., variable heat flow and
efficient use of solar panels) [25,28].

The combination of satellite imagery and AI has become increasingly prevalent, facili-
tating the analysis of parking, agricultural crops, and geological implications. Despite its
increasing accessibility thanks to technological advancements, this approach is challenging
due to imprecisions and artifacts in satellite imagery [29,30]. Convolutional NNs, namely
U-Net and Mask R-CNN, have proven successful in satellite image understanding for
building detection [29]. Other research has demonstrated the utility of deep neural net-
works (DNNs) for clustering urban land images even in low-resolution aerial photos [31].
In another study, Google Earth data were used to train an AI model to categorize cities by
their formality level [2].

AI applications in geography extend to recognizing terrain features and land classifi-
cation [32]. In one case, satellite images of green spaces in Colombo helped to predict air
quality in the city [33]. Researchers also studied how a city grows using satellite images and
applying NN algorithms as well as maximum likelihood and shortest distance methods [34].
Researchers have also studied urban growth using satellite images and NN algorithms al-
gorithms as well as maximum likelihood and shortest distance methods [34]. Object-based
image analysis (OBIA) and a SVM have been employed to understand urban expansion
using satellite imagery from different regions (e.g., Canada, Sweden, and China) [35]. In
another study, satellite images were processed to identify poor urban regions, which are
also indexed by ten categories, from slums to more structured neighborhoods [36].

Overall, DL methods are frequently employed for land classification with satellite
imagery. They are instrumental in mapping urban areas over different years using high-
resolution satellite images for further analysis of urban development [37]. Pixel-based
satellite images are commonly preferred over object-based ones for city mapping because of
their efficiency [38]. However, the existing literature suggests a research gap concerning the
use of satellite images and urban plans for city indexing, rating, or ranking, particularly for
purposes such as sustainability assessment or district similarities, thus warranting further
investigation. This limitation indicates a gap in the development of a more adaptable and
efficient methodology. Such a methodology is essential for enabling broader application
of tools in the classification of cities, reducing the need for extensive resources and time
commitment. The research gap, therefore, lies in creating a scalable and less resource-
intensive approach that maintains accuracy while being applicable to a diverse range of
urban environments across multiple cities. Furthermore, there is a notable deficiency in
the comprehensive analysis of Central Asian cities within the existing literature on urban
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studies. This research gap highlights the need for more focused inquiries to comprehend
the unique characteristics of this region.

Analyzing Central Asian cities has been a missed opportunity in the global spectrum
of urban patterns that can be extracted from satellite data. The region is often overlooked
in literature, including city knowledge databases, owing to its historical background
and barriers imposed by socio-economic development levels. Nevertheless, the region
holds significant interest for audiences thanks to the intersection of unique cultural and
historical traits in Central Asia, rooted in Turkic groups, and echoing the Soviet Era through
city infrastructure and architecture. Central Asia comprises Kazakhstan, Kyrgyzstan,
Tajikistan, Turkmenistan, and Uzbekistan. After the collapse of the Soviet Union in 1991,
these countries emerged as separate entities, often omitted in most geographic-related
studies. Despite the centralized management of these countries, each Central Asian nation
possesses distinct cultural and architectural peculiarities specific to the region, yet shares
some commonalities. In our study, we included either the capital city or economically
significant metropolitan areas of each country in Central Asia.

3. Methods

This work deals with a DL task that relies on a classification model. The aim of the
developed model is to identify a city by a given satellite image patch. This section provides a
detailed flow of the work, covering the description of the data collection process—Section 3.1,
the structure of the collected dataset—Section 3.2, the data preprocessing steps—Section 3.3,
the DL-SLICER model—Section 3.4, and explanatory visualizations—Section 3.5 related to the
performance of the model.

3.1. Data Collection

To train a city classification model, we collected a dataset consisting of images captured
by satellites for 45 global cities, ensuring a diverse representation in terms of geographical
locations and socioeconomic development levels. Additionally, we included eight cities
(Almaty, Ankara, Ashgabat, Astana, Baku, Bishkek, Shymkent, and Tashkent) from regions
of the world that are underrepresented in city studies, with most of the cities being located
in Central Asia. Figure 1 presents all cities in the dataset, offering key details about each
city, including a city code, population, human development index (HDI), country, continent,
latitude, and longitude. This figure illustrates the breadth of the dataset, covering cities from
various regions across the globe, exhibiting not only diverse geographical locations but also
a wide range of population sizes and HDI values. Corresponding tabular representation of
the same data can be found in Table A1 presented in Appendix A.

For each city, high-resolution satellite images (4800 × 4800 pixels) of 2 km × 2 km
regions from the Google Earth Pro 7.1 software in jpg format were downloaded. A min-
imum of three regions (on average, 3.1 regions) with high construction activity for each
city were chosen. The ‘Historical Imagery’ feature of Google Earth Pro was used to collect
available images from 2018 to 2022, resulting in an average of 35 images for each city. This
approach provides longitudinal information as it includes images of the same region for
different dates. Images with substantial cloud coverage, bold shadows, and other artifacts
were removed to ensure the dataset consists of high-quality images. Examples of such
low-quality images are shown in Figure 2. The final dataset contains 1585 satellite images
with a total size of 16 GB. The images for the dataset were downloaded manually.
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Figure 1. Allocation of cities in the presented dataset by Population and Human Development Index
(HDI) on the world map.
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Figure 1. Allocation of cities in the presented dataset by Population and Human Development Index
(HDI) on the world map.
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Figure 2. Omitted image samples with (a) substantial cloud coverage, (b) bold shadows, and (c) other
image artifacts.

3.2. Dataset Structure

The naming convention for each satellite image follows the format ‘City IATA Code_#
of the site_year_month_day.jpg’, where the IATA code represents a unique three-letter
code assigned by the International Air Transport Association. For example, the Al-
maty city image from site 1, captured on 9 August 2022, was saved with the filename
‘ALA_S1_2022_08_09.jpg’. For example, an image of Almaty city from site 1, captured on 9
August 2022, was saved with the filename ‘ALA_S1_2022_08 _09.jpg’.

In the dataset, each city is organized into a dedicated folder, and within this folder,
there is a subfolder for each region. These subfolders contain images of the region captured
on different dates, along with a metadata text file. The metadata file is named according to
the convention ‘City IATA Code_# of the site.txt’ and provides information in text format,
including the lower-left pixel coordinates, upper-right pixel coordinates, and camera

Figure 2. Omitted image samples with (a) substantial cloud coverage, (b) bold shadows, and (c) other
image artifacts.

3.2. Dataset Structure

The naming convention for each satellite image follows the format ‘City IATA Code_#
of the site_year_month_day.jpg’, where the IATA code represents a unique three-letter
code assigned by the International Air Transport Association. For example, the Al-
maty city image from site 1, captured on 9 August 2022, was saved with the filename
‘ALA_S1_2022_08_09.jpg’. For example, an image of Almaty city from site 1, captured on 9
August 2022, was saved with the filename ‘ALA_S1_2022_08 _09.jpg’.

In the dataset, each city is organized into a dedicated folder, and within this folder,
there is a subfolder for each region. These subfolders contain images of the region captured
on different dates, along with a metadata text file. The metadata file is named according to
the convention ‘City IATA Code_# of the site.txt’ and provides information in text format,
including the lower-left pixel coordinates, upper-right pixel coordinates, and camera
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elevation details. The corresponding folder structure for all three sites of a city is illustrated
in Figure 3.

Figure 3. Dataset folder structure for raw and processed parts. Here, the files for Almaty city are
shown, consisting of raw satellite images at different dates (left), processed patches for machine
learning, and associated metadata for each region (right).

3.3. Data Preprocessing

The developed DL models are designed to predict a city based on small satellite image
patches. Given that the original satellite images covered 2 km by 2 km regions, we created
200 m by 200 m patches (equivalent to 480 × 480 resolution) with a 240-pixel overlap. As
a result, 373 processed patches were generated for each raw satellite image, leading to a
total of 565,938 image patches in the ‘preprocessed’ part of the dataset. This ‘preprocessed’
portion of the dataset occupies 35.7 GB of storage. The folder structure for this part is
depicted in Figure 3.

Images from region S3 (or S4 for cities where four sites were available) were split into
east and west halves. The east halves were assigned to the validation set, whereas the west
halves were used as an independent test set. Patches from the remaining regions (S1 and
S2) of each city were utilized for machine-learning model training. As a result, the training,
validation, and test splits contain 370,386, 86,526, and 86,526 patch images, respectively.
To provide an illustration, the regions for Astana and a selection of sample patches are
presented in Figure 4.
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Figure 4. Division of the images from one region into training, validation, and test splits. Sample
patches generated out of raw images are also shown.

3.4. DL-SLICER Model for City Classification

One of the most influential DL models for image recognition in computer vision is the
Deep Residual Networks architecture, also known as ResNet [39]. Since its introduction, it
has proven to be highly effective for various tasks. The complexity of the ResNet model
can be adjusted by changing the number of its layers, resulting in variants such as ResNet-
18, ResNet-34, and ResNet-50. In these model names, the numbers indicate the ResNet
architecture with a specific number of NN layers.

ResNet is a special type of Convolutional Neural Networks (CNN), which enables
training of extremely deep neural networks without running into a “vanishing gradient”
problem. The emergence of CNNs in the literature facilitated performance of deep learning
models in image-related tasks such as object detection, image classification, or segmentation.
The state-of-the-art performance of CNNs was achieved by sparse connection usage instead
of fully-connected layers, weights sharing applied across the whole image and the concept
of pooling. While it was noted that adding more layers to the CNNs saturated performance
of models, too many layers in the underlying architecture has demonstrated degradation
of accuracy due to the “vanishing gradients” [39]. The introduction of residual blocks
comprising ResNets has resolved the 0 gradient problem. The main idea behind the
mechanics of residual blocks is a process called skip connections, during this process
activations of layers are bridged via skipping some layers in between. The advantage of
such an approach lies in skipping layers that damage the performance of architecture by
regularization. This way very deep networks with 100–1000 layers can be trained without
0 gradient problem, and get a significant boost in model performance.

For the purposes of this work, ResNet versions with 18, 34, 50, and 101 layers were
trained to address a city classification task. The city classification models were trained
for 100 epochs with a learning rate of 10−3 and a batch size of 128 using the Adam opti-
mizer [40]. To evaluate the model performance for city classification, we employed the
accuracy score (1), which represents the ratio of correctly identified samples to the total
number of samples:

Accuracy score =
TP + TN

TP + TN + FP + FN
, (1)
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where TP corresponds to the number of correctly identified positive testing samples,
TN indicates the number of correctly identified negative testing samples, FP shows the
number of misclassified positive samples, and FN stands for the number of misclassified
negative items.

3.5. Explanatory Visualizations

To identify the features that have the most significant impact on the performance of
the DL model, we conducted an explanatory visualization analysis. While the primary
source of input features is satellite images, which can cover various elements, such as archi-
tectural patterns, transportation routes, geographical characteristics, temporal and climatic
conditions, and even visual representations of air pollution rates, it is not immediately
evident which specific patterns influence the ability of a model to identify a particular city.
This part of AI, which sheds light on the decision-making processes occurring within the
“black box” of machine learning models, is known as Explainable AI.

One of the latest Explainable AI tools available for inspecting classification algorithms
and deducing the salient features of computer vision models is Relevance CAM [41].
Relevance CAM relies on class activation maps (CAM) [42] and layer-wise relevance
propagation to compute the features that play a conclusive role in a class identification
problem. It produces saliency maps highlighting image areas with significant weight in
determining the city class. In our research, we utilized this tool to identify the visual
features of cities that influenced the model decision in class determination.

4. Results and Discussions
4.1. City Classification

Our findings demonstrate that the DL method, using satellite images of cities, is a
powerful tool that provides superior and objective visual information on the city classifica-
tion challenge. Table 2 presents the results obtained for city classification using different
ResNet architectures.

Table 2. City classification results for different ResNet models.

Model Training Time
(h)

Epoch # at Best
Validation
Accuracy

Validation
Accuracy Test Accuracy

ResNet-18 17.5 88/100 0.8336 0.8228

ResNet-34 18 54/100 0.8337 0.8287

ResNet-50 18.5 80/100 0.8511 0.8390

ResNet-101 25 60/100 0.8484 0.8340

We identified the epoch number that yielded the best performance on the validation
set and subsequently evaluated the model on the independent test set. The results from
both the validation and test sets consistently indicate that ResNet-50 delivers the best
performance for the city classification task. The overall testing accuracy achieved 83.9%
in the classification task using the ResNet-50 model. These results for validation and test
performance reflect a high degree of accuracy, affirming the effectiveness of the method in
classifying cities based on their visible urban characteristics. It should be noted that our de-
veloped methodology specifically focuses on visible urban characteristics, including urban
morphology, structures, and the overall appearance of buildings and other urban assets.

It is well known that some cities share similar urban characteristics, which can pose
a significant challenge to achieving higher prediction performance in city classification.
To comprehend how these city similarities impact the classification performance of the
proposed method, we present additional test results in Tables 3 and 4, demonstrating the
best and worst performing ten cities, along with a list of the three most frequently confused
cities (those classified as the target city).
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Table 3. Best performing ten cities for city identification along with three most similar cities and
corresponding similar sample patches (based on % of accuracy).

City Accuracy Three Most Similar Cities

Ankara (ESB) 100% - - -

Buenos Aires (AEP) 100% - - -

Cairo (CAI) 100% - - -

Chicago (CHI) 100% - - -

Hanoi (HAN) 100% - - -

Mumbai (BOM) 100% - - -

Oslo (OSL) 99.8%

Manila (0.2%)

- -

Seoul (ICN) 98.6%

Shymkent (0.4%) Beijing (0.2%) Hong Kong (0.2%)

Melbourne (MEL) 98.4%

Mumbai (0.6%) Kinshasa (0.4%) Oslo (0.2%)

Lisbon (LIS) 97.0%

Seoul (0.8%) Washington (0.6%) Milan (0.2%)

High classification accuracy underscores the presence of unique urban patterns that
are prevalent across most areas within the designated urban districts. The best-predicted
cities in the classification analysis include Ankara, Buenos Aires, Cairo, Chicago, Hanoi,
Mumbai, Oslo, Seoul, Melbourne, and Lisbon (Table 3).
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Table 4. Worst-performing ten cities for city identification along with three most similar cities and
corresponding similar sample patches (based on % of accuracy).

City Accuracy Three Most Similar Cities

Astana (NQZ) 25.2%

Almaty (14.8%) Baku (14.0%) Bishkek (12.8%)

Baku (GYD) 52.0%

Tashkent (9.8%) Ashgabat (7.8%) Istanbul (6.2%)

Istanbul (IST) 55.8%

Ankara (11.6%) Sao Paulo (6.6%) Hong Kong (5.6%)

Shymkent (CIT) 56.4%

Baku (12.6%) Bishkek (12.6%) Tashkent (5.2%)

Singapore (SIN) 61.8%

Dublin (6.0%) Bangkok (5.4%) Sao Paulo (5.2%)

Milan (MIL) 68.2%

Munich (5.6%) Ankara (5.0%) San Francisco (3.4%)
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Table 4. Cont.

City Accuracy Three Most Similar Cities

Bishkek (FRU) 70.8%

Shymkent (20.6%) Astana (3.0%) Baku (0.8%)

Paris (PAR) 71.0%

Hong Kong (5.8%) Dublin (3.6%) Lisbon (3.6%)

Brisbane (BNE) 72.2%

Sydney (12.4%) Nairobi (8.2%) Sao Paulo (3.0%)

Tashkent (TAS) 72.6%

Shymkent (8.2%) Bishkek (4%) Astana (2.8%)

For example, Cairo (see Figure 5) is distinguishable by its specific housing shapes
and the prevalent use of brown-colored materials for house walls and roofs. This specific
spatial organization has been highlighted in [43] as an influence of Islamic culture, while
the common use of brick as a wall material aligns with the findings of the tool. Ankara is
identified by its distinctive red roofs. Thus, one of the Milan patches was misclassified as
Ankara because of the presence of red roofs (see Figure 6). Meanwhile, Hanoi is identified
through its unique densely populated areas with red roofs and the presence of water objects.
The tremendous urban density in Hanoi, resulting in its distinct urban typology, has also
been emphasized in other works [44,45].

In contrast, the cities with the lowest prediction accuracy were Astana, Baku, Istanbul,
Shymkent, Singapore, Milan, Bishkek, Paris, Brisbane, and Tashkent. The confusion or
misclassifications may be attributed to the selection of patches used during training, as the
distinctive features of these cities were not sufficiently represented in the training data for
the model to learn. In addition, these cities may share similar features, such as patterns,
designs, forms, or other characteristics (Table 4).
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Most of the cities that were similarized to each other are either located in the same
country or neighboring countries. Refer to Table 2 for instances of such confusions, such
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as Astana, Almaty, Baku, Tashkent, Bishkek, Shymkent, and Paris, Dublin, Lisbon). Geo-
graphic proximity is claimed to be a contributing factor to the similarity of cities, as noted
in [13]. Munich and Milan, which are frequently confused, are also grouped together
because of shared characteristics such as high administrative area, population density, and
a low presence of green spaces [9].

In contrast, Paris, Lisbon, and Dublin, which were confused in this study, are entirely
different clusters in the study of Gregor et al. [9], while another study observes the similari-
ties of the cities of such countries as France-Spain-Germany, and Italy-Spain-Germany [4].

Similarly, the current research confuses Italian and German cities (e.g., Milan and
Munich) but does not find many similarities between French (Paris) and Spanish and other
German cities. In another study, Paris, Vienna, Prague, and Barcelona were claimed to be
similar in terms of architectural attributes [13].

With respect to US cities, it has been suggested that resilient features, such as economic
change and labor conditions, are similar in Boston, Chicago, and Washington [10], and
these cities were also confused with each other in the current study. Chicago and Boston
were found to share similarities in terms of the economic impacts of COVID-19 by another
city similarity tool [24].

It has been observed that South Asian cities are losing their uniqueness due to rapid
urbanization rates, making them appear more similar, particularly in terms of skyscrap-
ers and contemporary glass buildings. Strong analogies have been noted between Kuala
Lumpur and Beijing [46]. However, in contrast, this study did not find classification confu-
sion between these two cities. Complete confusion matrix of 45 cities and corresponding
confused labels are provided in Figure A1 of Appendix B.

Overall, the diverse geographic locations of the cities enhance the strength of the study
in terms of big data; however, it also dilutes its focus. It is worth noting that some of the
referenced studies and tools [4,9,10] focus on smaller amount of urban areas of a particular
region (e.g., the US or Europe), making their findings more specific.

4.2. Salient Features of Urban Patterns

The saliency feature maps have been created for all the cities whose satellite images were
used in this study. In this section, specific attention is given to cities from different continents,
such as Almaty, Paris, Tokyo, and San Francisco. Subsequently, a discussion on the most
and least accurate classifications is presented. All the saliency feature maps are accessible via
our Github repository (https://github.com/IS2AI/city-identification, accessed on 1 February
2024).

4.2.1. Almaty

Founded in 1854, Almaty is the former capital of Kazakhstan. It is located in the
vicinity of the Ile Alatau mountains. The city is famous for being an industrial center (food
and light industries). The name is associated with the abundance of apple trees growing in
the region. Because of the close proximity of mountains, there is a significant geological
risk for the city, which has already been subject to dangerous earthquakes and mudflow.
The city is secured with a 140 m dam to prevent potential mudflows [47].

An examination of the saliency map for Almaty (see Figure 7) reveals several salient features.
Notably, the map highlights the presence of private housing with grey and brown-colored roofs
situated near or intertwined with trees. This recurring pattern led to misclassifications of Almaty
with cities such as Astana and Tashkent, which exhibit similar urban characteristics.

4.2.2. San Francisco

San Francisco (CA, USA) serves as both a hub for culture and finance in the west side
of the US and stands out as one of the nation’s most diverse and metropolitan cities. San
Francisco is situated on a hilly and square-shaped landmass at the northern end of a penin-
sula. Because early city planners favored a grid pattern, downtown streets were located
along hills. San Francisco’s urban landscape features office buildings in the central area,

https://github.com/IS2AI/city-identification
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green spaces in the western part, and residential buildings in other districts. Residential
buildings are known for pastel-colored plastering on houses and multi-colored wooden
buildings. Another significant and historic city feature is its cable tram transportation,
which is still in operation [48]. San Francisco is distinguished by its unique tram cars [13].
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features that contribute to the classification of San Francisco. These include (1) grey and
light grey roofs, (2) high-rise buildings with discernible long shadows, and (3) triangular-
shaped building blocks characterized by two roads intersecting at acute angles. The
misclassification of San Francisco with Tashkent primarily occurs when satellite images
contain red-colored large roofs.

4.2.3. Paris

Paris, the capital of France, is located along the river Seine, which historically divides
the city into the Central part, the Left bank (an intellectual center), and the Right bank (an
economic heart). In general, the shape of the city is circular and consists of 20 districts.
Paris is renowned for preserving its architectural heritage, including buildings, gardens,
and streets. The city is full of green areas, which include parks, gardens, and squares [49].

The Relevance CAM results for Paris in Figure 9 highlight salient patterns that enable the
identification of Paris. These patterns include (1) dense, high, and circular-shaped trees, (2)
mid-height buildings with minimal shadows on satellite images, and (3) specific arrangements
of buildings characterized by narrow, non-linear roads between housing rooftops.
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The Relevance CAM results in Figure 8 for explainable visualization identify specific
features that contribute to the classification of San Francisco. These include (1) grey and
light grey roofs, (2) high-rise buildings with discernible long shadows, and (3) triangular-
shaped building blocks characterized by two roads intersecting at acute angles. The
misclassification of San Francisco with Tashkent primarily occurs when satellite images
contain red-colored large roofs.

4.2.3. Paris

Paris, the capital of France, is located along the river Seine, which historically divides
the city into the Central part, the Left bank (an intellectual center), and the Right bank (an
economic heart). In general, the shape of the city is circular and consists of 20 districts.
Paris is renowned for preserving its architectural heritage, including buildings, gardens,
and streets. The city is full of green areas, which include parks, gardens, and squares [49].

The Relevance CAM results for Paris in Figure 9 highlight salient patterns that enable
the identification of Paris. These patterns include (1) dense, high, and circular-shaped trees,
(2) mid-height buildings with minimal shadows on satellite images, and (3) specific arrange-
ments of buildings characterized by narrow, non-linear roads between housing rooftops.
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These saliency patterns align with the findings of other research on Parisian urban
typology, emphasizing the presence of balconies with railings and arranged in a grid
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pattern, lamp posts on tall bases, mid-height buildings arranged in a regular pattern, and
distinctive vegetation [50]. Our findings support these observations.

4.2.4. Tokyo

Tokyo, the capital of Japan, is situated in the northern part of Tokyo Bay along the
Pacific coastline of central Honshu. Unlike cities with a central business district, Tokyo
features multiple urban areas clustered around railway stations, surrounded by department
stores, hotels, corporate towers, and cafés. The architectural landscape in these districts
spans from historic stone and brick constructions to modern skyscrapers made of concrete
and steel. Traditional Japanese wooden houses are also prevalent, and green gardens dot
the urban landscape [51]. In terms of transportation attributes, Tokyo features narrow
streets—a consequence of its high population density [13].

The saliency map for Tokyo, as shown in Figure 10, reveals that our instrument
identifies Tokyo primarily through patterns of private houses with various colors of roofs
(blue, red, brown, grey, and green) located in close proximity to one another.
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In the given research work, we approached the well-known city similarity problem
from a different perspective and solved it in an AI-based dimension. The important finding
of this research is that DL-based methodology using satellite data is applicable for resolving
a city similarity problem and has been proven effective and comparable to the research
results conducted via different approaches. In the present state of scientific problem
solving, a city similarity was measured often via clustering and other machine learning
methods such as a SVM, employing tabular data and street topologies which might capture
limited information. In addition, historical data usage is mostly missed without regards to
retrospective of urban locations in the past unlike in the given study. However, the research
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In the given research work, we approached the well-known city similarity problem
from a different perspective and solved it in an AI-based dimension. The important finding
of this research is that DL-based methodology using satellite data is applicable for resolving
a city similarity problem and has been proven effective and comparable to the research
results conducted via different approaches. In the present state of scientific problem
solving, a city similarity was measured often via clustering and other machine learning
methods such as a SVM, employing tabular data and street topologies which might capture
limited information. In addition, historical data usage is mostly missed without regards to
retrospective of urban locations in the past unlike in the given study. However, the research
still contains some limitations due to the inherent nature of satellite data. There is a lack in
capturing the social parameters since they do not have an effective footprint in the satellite
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images. In addition, hidden infrastructure like the subway in London or Paris can not be
extracted from satellites unless this information is explicitly provided as input.

The city classification method developed in this research has the potential to open a
new direction for urban developers and the remote sensing research community.

5. Conclusions

This study conducts a comprehensive analysis of satellite maps from 45 different
cities, successfully identifying cities with similar characteristics.The findings suggest that
cities can exhibit similarities based on their visual layouts. These similarities often result
from factors such as historical and geographical proximity, the use of similar structural
materials (e.g., roofing materials or contemporary glass in buildings), and the proportion
of administrative areas relative to green spaces. This research emphasizes the potential for
using visual features in satellite imagery to discern patterns and commonalities in urban
design, highlighting the influence of history, geography, and urban planning choices on the
visual identity of cities.

Despite the fact that there are a number of tools presented in the literature dedicated to
finding similarity patterns across metropolitan areas, urban locations lack analysis from the
AI perspective. The global trends are actively recruiting AI techniques to solve a number
of tasks, and the purpose of the presented study is to showcase the efficiency of AI-based
techniques to solve the well-known problem of city similarity. The results of the given
work enables extension of the similarity accuracy and generalizability of the results in the
AI-based dimension. This in turn can facilitate analysis of other related tasks by AI in urban
studies such as sustainability indexes prediction.

Nonetheless, the present study is subject to several limitations that warrant discussion.
The scope of data employed in this study may be regarded as inadequate to compre-
hensively capture the full complexity of sustainable city development. As mentioned
in earlier sections, the findings do not provide the underlying factors that inform the
classification challenges of AI, attributable to the inherent “black box” characteristics of
DL methodologies. This limitation could be mitigated by increasing the number of city
maps incorporated into the analytical model, which would enable a more comprehensive
and nuanced assessment of sustainable urban development across diverse geographical
contexts. Furthermore, this study has not extensively explored cities in Latin America
and Africa, presenting a valuable opportunity for future research to delve into these re-
gions. We suggest that further investigation into these areas could significantly enhance
our understanding of urban similarities and differences on a global scale. To improve
the model by expanding the geographical coverage of cities, our models, the dataset
(both original and pre-processed), and the code base are publicly available in our GitHub
(https://github.com/IS2AI/city-identification, accessed on 1 February 2024) repository
and can be further extended.

6. Implementations

The instrument formulated in the present investigation exhibits multifaceted utility
across diverse domains. One of its manifold applications lies in enabling the analysis of
urban saliency maps, which, in turn, facilitates the development of an AI model for urban
area identification. With its efficacy and versatility, this tool presents itself as a promising
addition to the arsenal of urban planners and policymakers with a wide range of goals.
The current study benefited from implementing exploratory data analysis through data
visualization techniques, enhancing its capacity to investigate and identify potential con-
stituents of the input images that correspond with the visual urban characteristics employed
in regression analysis. Another possible application is that real-time traffic data can be
incorporated into traffic congestion heatmaps to provide a dynamic view of the transporta-
tion efficiency of a city or the impact of certain activities, such as construction operations
and sites on urban traversability. Furthermore, the overlay of zoning data on satellite
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imagery could deliver a visually compelling portrayal of land use and zoning compliance,
highlighting the extent to which a city adheres to its urban planning regulations.

Meanwhile, assessing public space accessibility, water body condition, and the preser-
vation of cultural heritage sites through the lens of satellite imagery deepens our under-
standing of the sustainability journey of a city.

Lastly, the visual representation of waste disposal sites and landfills can elucidate
waste management practices, making the assessment more tangible. These enhancements
are some of the numerous future implementation potentials that can be supported by
the tool developed in this research, and they provide a robust and scientifically sound
evaluation of urban sustainability, empowering city planners and policymakers with a
potent tool to drive cities toward a more sustainable future.
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Appendix A

Table A1. List of cities in the dataset, along with their key characteristics.

City IATA Code Population HDI Country Continent Latitude Longitude

Almaty ALA 1,977,011 0.855 Kazakhstan Asia 43°16′39′ ′ N 76°53′45′ ′ E

Ankara ESB 5,747,325 0.832 Turkiye Asia 39°55′48′ ′ N 32°51′0′ ′ E

Ashgabat ASB 1,031,992 0.770 Turkmenistan Asia 37°56′15′ ′ N 58°22′48′ ′ E

https://doi.org/10.48333/2yyk-qw88
https://doi.org/10.48333/2yyk-qw88


Buildings 2024, 14, 551 20 of 23

Table A1. Cont.

City IATA Code Population HDI Country Continent Latitude Longitude

Astana NQZ 1,136,008 0.840 Kazakhstan Asia 51°10′0′ ′ N 71°26′0′ ′ E

Baku GYD 2,293,100 0.826 Azerbaijan Asia 40°23′43′ ′ N 49°52′56′ ′ E

Bangkok BKK 8,305,218 0.814 Thailand Asia 13°45′9′ ′ N 100°29′39′ ′ E

Beijing PEK 21,893,095 0.904 China Asia 39°54′24′ ′ N 116°23′51′ ′ E

Bishkek FRU 1,074,075 0.745 Kyrgyzstan Asia 42°52′29′ ′ N 74°36′44′ ′ E

Bogota BOG 8,034,649 0.813 Colombia South
America 4°42′40′ ′ N 74°4′20′ ′ W

Boston BOS 675,647 0.956 United States North
America 42°21′40′ ′ N 71°3′25′ ′ W

Brisbane BNE 2,472,000 0.937 Australia Oceania 27°28′12′ ′ S 153°1′15′ ′ E

Buenos Aires AEP 3,003,000 0.882 Argentina South
America 34°36′12′ ′ S 58°22′54′ ′ W

Cairo CAI 10,025,657 0.751 Egypt Africa 30°2′40′ ′ N 31°14′9′ ′ E

Chicago CHI 2,746,388 0.934 United States North
America 41°52′54′ ′ N 87°37′23′ ′ W

Dublin DUB 554,554 0.965 Ireland Europe 53°21′0′ ′ N 6°15′37′ ′ W

Hanoi HAN 8,426,500 0.748 Vietnam Asia 21°1′42′ ′ N 105°51′15′ ′ E

Hong Kong HKG 7,413,070 0.949 China Asia 22°18′10′ ′ N 114°10′38′ ′ E

Istanbul IST 15,636,000 0.846 Turkiye Europe 41°0′49′ ′ N 28°57′18′ ′ E

Jakarta CGK 11,261,595 0.773 Indonesia Asia 6°12′0′ ′ S 106°49 0′ ′ E

Kinhasa FIH 17,071,000 0.577 Congo Africa 4°19′30′ ′ S 15°19′20′ ′ E

Kuala-
Lumpur KUL 8,420,000 0.867 Malaysia Asia 3°8′27′ ′ N 101°41′35′ ′ E

Lagos LOS 7,937,932 0.675 Nigeria Africa 6°27′18.1′ ′ N 3°23′2.69′ ′ E

Lahore LHE 11,126,285 0.564 Pakistan Asia 31°32′59′ ′ N 74°20′37′ ′ E

Lisbon LIS 544,851 0.901 Portugal Europe 38°43′30′ ′ N 9°9′0.07′ ′ W

Manila MNL 1,846,513 0.732 Philippines Asia 14°35′44′ ′ N 120°58′37′ ′ E

Melbourne MEL 4,917,750 0.941 Australia Oceania 37°48′51′ ′ S 144°57′47′ ′ E

Mexico City MEX 9,209,944 0.784 Mexico North
America 19°26′0′ ′ N 99°8′0′ ′ W

Milan MIL 3,149,000 0.912 Milan Europe 45°27′52′ ′ N 9°11′18′ ′ E

Mumbai BOM 12,479,608 0.697 India Asia 19°4′34′ ′ N 72°52′39′ ′ E

Munich MUC 1,488,202 0.956 Germany Europe 48°8′15′ ′ N 11°34′30′ ′ E

Nairobi NBO 4,397,073 0.665 Kenya Africa 1°17′11′ ′ S 36°49′2′ ′ E

Oslo OSL 634,293 0.975 Norway Europe 59°54′48′ ′ N 10°44′20′ ′ E

Paris PAR 2,165,423 0.947 France Europe 48°51′23′ ′ N 2°21′8′ ′ E

Riga RIX 614,618 0.933 Latvia Europe 56°56′56′ ′ N 24°6′23′ ′ E

San Francisco SFO 873,965 0.936 United States North
America 37°46′39′ ′ N 122°24′59′ ′ W

Sao Paulo GRU 12,400,232 0.791 Brazil South
America 23°33′0′ ′ S 46°38′0′ ′ W

Seoul ICN 9,765,869 0.943 South Korea Asia 37°33′36′ ′ N 126°59′24′ ′ E

Shymkent CIT 1,200,000 0.808 Kazakhstan Asia 42°19′0′ ′ N 69°35′45′ ′ E
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Table A1. Cont.

City IATA Code Population HDI Country Continent Latitude Longitude

Singapore SIN 5,453,600 0.938 Singapore Asia 1°17′25′ ′ N 103°51′7′ ′ E

Sydney SYD 5,231,150 0.945 Australia Oceania 33°51′54′ ′ S 151°12′35′ ′ E

Taipei TPE 2,704,810 0.916 Taiwan Asia 25°4′0′ ′ N 121°31′0′ ′ E

Tashkent TAS 2,750,000 0.807 Uzbekistan Asia 41°18′0′ ′ N 69°16′0′ ′ E

Tokyo TKY 37,274,000 0.944 Japan Asia 35°39′10′ ′ N 139°50′22′ ′ E

Vancouver YVR 2,632,000 0.960 Canada North
America 49°14′46′ ′ N 123°6′58′ ′ W

Washington IAD 5,434,000 0.946 United States North
America 47°45′3′ ′ N 120°44′24′ ′ W

Appendix B

Figure A1. Full confusion matrix of city classification model featuring 45 cities, and revealing ratio of
correctly identified patches as well as misclassificed samples on a test set.



Buildings 2024, 14, 551 22 of 23

References
1. Berry, B.J. Urbanization. In Proceedings of the Urban Ecology: An International Perspective on the Interaction Between Humans and

Nature; Marzluff, J.M., Ed.; Springer: Berlin, Germany, 2018; pp. 25–48.
2. Cheng, Q.; Zaber, M.; Rahman, A.M.; Zhang, H.; Guo, Z.; Okabe, A.; Shibasaki, R. Understanding the urban environment from

satellite images with new classification Method—Focusing on formality and informality. Sustainability 2022, 14, 4336. [CrossRef]
3. McKenzie, G.; Romm, D. Measuring urban regional similarity through mobility signatures. Comput. Environ. Urban Syst. 2021,

89, 101684. [CrossRef]
4. Costa, L.d.F.; Tokuda, E.K. A similarity approach to cities and features. Eur. Phys. J. B 2022, 95, 155. [CrossRef]
5. Bell, D.A.; de Shalit, A. Introduction: Cities and identities. Crit. Rev. Int. Soc. Political Philos. 2022, 25, 637–646. [CrossRef]
6. Fumega, J.; Niza, S.; Ferrão, P. Identification Of Urban Typologies Through The Use Of Urban Form Metrics For Urban Energy

And Climate Change Analysis. In Proceedings of the Urban Futures-Squaring Circles: Europe, China and the World in 2050,
Lisbon, Portugal, 10–11 October 2014.

7. Albert, A.; Kaur, J.; Gonzalez, M.C. Using Convolutional Networks and Satellite Imagery to Identify Patterns in Urban
Environments at a Large Scale. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, New York, NY, USA, 23 June 2017; pp. 1357–1366. [CrossRef]

8. Saxena, P.; Jagdeesh, M.K. Similarity indexing & GIS analysis of air pollution. arXiv 2019, arXiv:1906.08756.
9. Gregor, M.; Löhnertz, M.; Schröder, C.; Aksoy, E.; Fons, J.; Garzillo, C.; Wildman, A.; Kuhn, S.; Prokop, G.; Cugny-Seguin, M.

Similarities and Diversity of European Cities: A Typology Tool to Support Urban Sustainability. ETC/ULS Report 03/2018,
European Topic Centre on Urban, Land and Soil Systems (ETC/ULS), Environment Agency Austria, Spittelauer Lände 5, A-1090
Vienna, Austria. 2018. Available online: http://www.eionet.europa.eu/ (accessed on 21 September 2023).

10. Federal Reserve Bank of Chicago. About the Peer City Identification Tool. Available online: https://www.chicagofed.org/
region/peer-cities-identification-tool/pcit (accessed on 30 October 2023).

11. Kim, K. Identifying the structure of cities by clustering using a new similarity measure based on smart card data. IEEE Trans.
Intell. Transp. Syst. 2019, 21, 2002–2011. [CrossRef]

12. Seth, R.; Covell, M.; Ravichandran, D.; Sivakumar, D.; Baluja, S. A Tale of Two (Similar) Cities: Inferring City Similarity Through
Geo-Spatial Query Log Analysis. In Proceedings of the International Conference on Knowledge Discovery and Information
Retrieval, Paris, France, 26–29 October 2011.

13. Zhou, B.; Liu, L.; Oliva, A.; Torralba, A. Recognizing city identity via attribute analysis of geo-tagged images. In Proceedings of
the Computer Vision—ECCV 2014: 13th European Conference, Zurich, Switzerland, 6–12 September 2014; Proceedings, Part III
13; Springer: Berlin, Germany, 2014; pp. 519–534.

14. Numbeo. Numbeo—Cost of Living. 2023. Available online: https://www.numbeo.com/cost-of-living/rankings_by_country.jsp?
title=2023 (accessed on 21 September 2023).

15. Forbes. Forbes—Cost of Living Calculator. 2023. Available online: https://www.forbes.com/advisor/mortgages/real-estate/
cost-of-living-calculator/ (accessed on 21 September 2023).

16. NerdWallet. NerdWallet—Cost of Living Calculator. 2023. Available online: https://www.nerdwallet.com/cost-of-living-
calculator (accessed on 21 September 2023).

17. Move. Moving.com—Compare Cities. 2023. Available online: https://www.moving.com/real-estate/compare-cities/ (accessed
on 21 September 2023).

18. Urban Observatory. Urban Observatory. 2014. Available online: https://www.urbanobservatory.org (accessed on 21 September
2023).

19. ArcGIS Pro Documentation. How Similarity Search Works—ArcGIS Pro|Documentation, n.d. Available online: https://pro.
arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/how-similarity-search-works.htm# (accessed on 21 September
2023).

20. Shell. Shell Energy and Innovation—Compare Cities. 2023. Available online: https://www.shell.com/energy-and-innovation/
the-energy-future/future-cities/compare-cities.html (accessed on 21 September 2023).

21. Select Georgia. Research Tool Spotlight: City Comparison, n.d. Available online: https://www.selectgeorgia.com/services/
research-solutions-2021/city-and-state-comparisons/ Accessed on 21 September 2023).

22. AreaVibes. City Comparison, n.d. Available online: https://www.areavibes.com/city-comparison/ (accessed on 21 September
2023).

23. Dwellics. Dwellics. 2023. Available online: https://dwellics.com (accessed on 21 September 2023).
24. Homebase. Homebase—City-Wise Comparison Data. 2023. Available online: https://joinhomebase.com/data/city-wise-

comparison/ (accessed on 21 September 2023).
25. Mehmood, M.U.; Chun, D.; Han, H.; Jeon, G.; Chen, K. A review of the applications of artificial intelligence and big data to

buildings for energy-efficiency and a comfortable indoor living environment. Energy Build. 2019, 202, 109383. [CrossRef]
26. Casali, Y.; Aydin, N.Y.; Comes, T. Machine learning for spatial analyses in urban areas: A scoping review. Sustain. Cities Soc. 2022,

85, 104050. [CrossRef]
27. Huntingford, C.; Jeffers, E.S.; Bonsall, M.B.; Christensen, H.M.; Lees, T.; Yang, H. Machine learning and artificial intelligence to

aid climate change research and preparedness. Environ. Res. Lett. 2019, 14, 124007. [CrossRef]

http://doi.org/10.3390/su14074336
http://dx.doi.org/10.1016/j.compenvurbsys.2021.101684
http://dx.doi.org/10.1140/epjb/s10051-022-00420-y
http://dx.doi.org/10.1080/13698230.2021.1881737
http://dx.doi.org/10.1145/3097983.3098070
http://www.eionet.europa.eu/
https://www.chicagofed.org/region/peer-cities-identification-tool/pcit
https://www.chicagofed.org/region/peer-cities-identification-tool/pcit
http://dx.doi.org/10.1109/TITS.2019.2910548
https://www.numbeo.com/cost-of-living/rankings_by_country.jsp?title=2023
https://www.numbeo.com/cost-of-living/rankings_by_country.jsp?title=2023
https://www.forbes.com/advisor/mortgages/real-estate/cost-of-living-calculator/
https://www.forbes.com/advisor/mortgages/real-estate/cost-of-living-calculator/
https://www.nerdwallet.com/cost-of-living-calculator
https://www.nerdwallet.com/cost-of-living-calculator
https://www.moving.com/real-estate/compare-cities/
https://www.urbanobservatory.org
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/how-similarity-search-works.htm#
https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/how-similarity-search-works.htm#
https://www.shell.com/energy-and-innovation/the-energy-future/future-cities/compare-cities.html
https://www.shell.com/energy-and-innovation/the-energy-future/future-cities/compare-cities.html
https://www.selectgeorgia.com/services/research-solutions-2021/city-and-state-comparisons/
https://www.selectgeorgia.com/services/research-solutions-2021/city-and-state-comparisons/
https://www.areavibes.com/city-comparison/
https://dwellics.com
https://joinhomebase.com/data/city-wise-comparison/
https://joinhomebase.com/data/city-wise-comparison/
http://dx.doi.org/10.1016/j.enbuild.2019.109383
http://dx.doi.org/10.1016/j.scs.2022.104050
http://dx.doi.org/10.1088/1748-9326/ab4e55


Buildings 2024, 14, 551 23 of 23

28. Manzoor, B.; Othman, I.; Durdyev, S.; Ismail, S.; Wahab, M.H. Influence of artificial intelligence in civil engineering toward
sustainable development—A systematic literature review. Appl. Syst. Innov. 2021, 4, 52. [CrossRef]

29. Mohanty, S.P.; Czakon, J.; Kaczmarek, K.A.; Pyskir, A.; Tarasiewicz, P.; Kunwar, S.; Rohrbach, J.; Luo, D.; Prasad, M.; Fleer, S.; et al.
Deep learning for understanding satellite imagery: An experimental survey. Front. Artif. Intell. 2020, 3, 534696. [CrossRef]

30. Sisodiya, N.; Dube, N.; Thakkar, P. Next-Generation Artificial Intelligence Techniques for Satellite Data Processing. In Artificial
Intelligence Techniques for Satellite Image Analysis; Hemanth, D., Ed.; Springer: Berlin, Germany, 2020; Chapter 11, pp. 235–254.
[CrossRef]

31. Cao, R.; Zhu, J.; Tu, W.; Li, Q.; Cao, J.; Liu, B.; Zhang, Q.; Qiu, G. Integrating aerial and street view images for urban land use
classification. Remote Sens. 2018, 10, 1553. [CrossRef]

32. Hu, Y.; Li, W.; Wright, D.J.; Aydin, O.; Wilson, D.; Maher, O.; Raad, M. Artificial Intelligence Approaches. In The Geographic
Information Science & Technology Body of Knowledge; Wilson, J.P., Ed.; University Consortium for Geographic Information Science
Symposium: Pasadena, CA, USA, 2019; Volume 3.

33. Senanayake, I.; Welivitiya, W.; Nadeeka, P. Urban green spaces analysis for development planning in Colombo, Sri Lanka,
utilizing THEOS satellite imagery—A remote sensing and GIS approach. Urban For. Urban Green. 2013, 12, 307–314. [CrossRef]

34. Nazmfar, H.; Jafarzadeh, J. Classification of satellite images in assessing urban land use change using scale optimization in
object-oriented processes (a case study: Ardabil city, Iran). J. Indian Soc. Remote. Sens. 2018, 46, 1983–1990. [CrossRef]

35. Furberg, D. Satellie Monitoring of Urban Growth and Indicator-Based Assessment of Environmental Impact. Ph.D. Thesis, KTH
Royal Institute of Technology, Stockholm, Sweden, 2014.

36. Taubenböck, H.; Kraff, N.J.; Wurm, M. The morphology of the Arrival City—A global categorization based on literature surveys
and remotely sensed data. Appl. Geogr. 2018, 92, 150–167. [CrossRef]

37. Wang, H.; Gong, X.; Wang, B.; Deng, C.; Cao, Q. Urban development analysis using built-up area maps based on multiple
high-resolution satellite data. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102500. [CrossRef]

38. Jamil, A.; Al-Shareef, A.; Al-Thubaiti, A. Classifications of Satellite Imagery for Identifying Urban Area Structures. Adv. Remote
Sens. 2020, 9, 1. [CrossRef]

39. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

40. Kinga, D.; Adam, J.B. A method for stochastic optimization. In Proceedings of the International Conference on Learning
Representations (ICLR), San Diego, CA, USA, 7–9 May 2015; Volume 5, p. 6.

41. Lee, J.R.; Kim, S.; Park, I.; Eo, T.; Hwang, D. Relevance-CAM: Your model already knows where to look. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 14944–14953.

42. Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning Deep Features for Discriminative Localization. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016.

43. Abdelkader, R.; Park, J.H. Spatial Principles of Traditional Cairene Courtyard Houses in Cairo. J. Asian Archit. Build. Eng. 2018,
17, 245–252. [CrossRef]

44. Ho, T.P.; Stevenson, M.; Thompson, J.; Nguyen, T.Q. Evaluation of Urban Design Qualities across Five Urban Typologies in Hanoi.
Urban Sci. 2021, 5, 76. [CrossRef]

45. Hibayama, H.; Duan, O.D.; Mamoru, S. Studies on Hanoi Urban Transition in the Late 20th Century Based on GIS/RS. Southeast
Asian Stud. 2009, 46, 4.

46. Chepelianskaia, O. Why Should Asia Build Unique Cities? Isocarp Review; International Society of City and Regional Planners
(ISOCARP): The Hague, Netherlands, 2019.

47. Britannica, E. Almaty. 2023. Available online: https://www.britannica.com/place/Almaty-Kazakhstan (accessed on 10 March
2023).

48. Britannica, E. San Francisco. 2023. Available online: https://www.britannica.com/place/San-Francisco-California (accessed on
10 March 2023).

49. Britannica, E. Paris. 2023. Available online: https://www.britannica.com/place/Paris (accessed on 10 March 2023).
50. Nice, K.A.; Thompson, J.; Wijnands, J.S.; Aschwanden, G.D.P.A.; Stevenson, M. The “Paris-End” of Town? Deriving Urban

Typologies Using Three Imagery Types. Urban Sci. 2020, 4, 27. [CrossRef]
51. Britannica, E. Tokyo. 2023. Available online: https://www.britannica.com/place/Tokyo (accessed on 10 March 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/asi4030052
http://dx.doi.org/10.3389/frai.2020.534696
http://dx.doi.org/10.1007/978-3-030-24178-0_11
http://dx.doi.org/10.3390/rs10101553
http://dx.doi.org/10.1016/j.ufug.2013.03.011
http://dx.doi.org/10.1007/s12524-018-0850-7
http://dx.doi.org/10.1016/j.apgeog.2018.02.002
http://dx.doi.org/10.1016/j.jag.2021.102500
http://dx.doi.org/10.4236/ars.2020.91002
http://dx.doi.org/10.3130/jaabe.17.245
http://dx.doi.org/10.3390/urbansci5040076
https://www.britannica.com/place/Almaty-Kazakhstan
https://www.britannica.com/place/San-Francisco-California
https://www.britannica.com/place/Paris
http://dx.doi.org/10.3390/urbansci4020027
https://www.britannica.com/place/Tokyo

	Introduction
	Literature Review
	City Similarity Tools
	Use of AI and Satellite Images in Urban Planning

	Methods
	Data Collection
	Dataset Structure
	Data Preprocessing
	DL-SLICER Model for City Classification
	Explanatory Visualizations

	Results and Discussions
	City Classification
	Salient Features of Urban Patterns
	Almaty
	San Francisco
	Paris
	Tokyo


	Conclusions
	Implementations
	Appendix A
	Appendix B
	References

