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Abstract: Alkali-activated concrete (AAC) features excellent mechanical properties and sustainability.
The incorporation of crumb rubber (CR), recycled concrete aggregates (RCAs), and recycled steel
fibers (RSFs) can further enhance environmental sustainability. This paper mainly investigated the
dynamic behaviors of a novel rubberized AAC incorporating RCAs and RSFs (RuAAC) through
Split-Hopkinson Pressure Bar (SHPB) tests. The variables included three types of RSF content (1%,
2% and 3%), five types of rubber content (0%, 5%, 20%, 35% and 50%) and five impact pressures
(0.5 MPa, 0.6 MPa, 0.7 MPa, 0.8 MPa and 0.9 MPa). Dynamic stress–strain curves, dynamic strength,
the dynamic increase factor (DIF), impact toughness and the synergistic effects of RSF and CR were
discussed. The results show that increasing RSF and CR contents could improve the impact resistance
of RuAAC under impact loading. The RuAAC exhibited significant strain rate sensitivity, and the
sensitivity increased with larger contents of RSF and CR. The increase in strain rate sensitivity was
more pronounced with higher CR contents, which was reflected in larger dynamic increase factor
(DIF) values. Under high impact pressure, the impact toughness was obviously enhanced with higher
RSF contents, while the contribution of increased CR content to impact toughness was not apparent,
which may be attributed to the fact that this study only calculated the integral under the dynamic
stress–strain curve before the peak stress to determine impact toughness, neglecting the potential
contribution of CR particles after the peak point. The obvious strain sensitivity exhibited by the
RuAAC in the SHPB tests indicated superior impact performance, making it particularly suitable for
architectural structures prone to seismic or explosive impacts.

Keywords: rubberized alkali-activated concrete; recycled steel fiber; recycled aggregate; impact
loading; SHPB test

1. Introduction

Alkali-activated concrete (AAC) is a three-dimensional inorganic binder material
formed by precursor materials under the action of alkali activation [1–3]. Precursors
often consist of industrial solid waste rich in silica and alumina, such as fly ash (FA),
ground granulated blast-furnace slag (GGBS), steel slag (SS), coal ash (CA), and metakaolin
(MK), rather than the cement used in traditional concrete [1,4,5]. Cement, a construction
material that is widely used globally, emits a substantial amount of carbon dioxide during
its production (approximately 1 ton of CO2 per ton of cement) [6], contributing to the
greenhouse effect and hindering sustainable development in the construction industry [7].
To mitigate global greenhouse gas emissions, novel materials and structures are necessary
for carbon reduction [8–10]. AAC, capable of achieving similar or even superior mechanical
properties to conventional concrete without cement clinker, has become a prominent topic
in the field of concrete materials research [11–13]. However, continuous growth in the
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demand for natural aggregates (NAs) in concrete places significant pressure on resources
and the environment. Utilizing construction waste, discarded tires, and other solid wastes
to produce recycled concrete aggregates (RCAs) as substitutes for NAs can alleviate the
demand for NAs in construction and reduce environmental pollution [14–17].

In recent years, extensive research has been conducted on the reaction mechanism and
products of AAC [18–20]. Under conditions of strong alkali solution stimulation, chemical
bonds in the precursor materials break, leading to the formation of two main reaction prod-
ucts with cross-linked and disordered structures, N-A-S-H and C-A-S-H gels [20,21]. With
the continuous generation and precipitation of the main reaction products, AAC ultimately
achieves mechanical properties comparable to traditional concrete [22,23]. Reports in the
literature indicated that the compressive strength of AAC was mainly influenced by the
ratio of precursors, alkali activator content (alkali activator/precursor), alkali activator con-
centration, and so on [24–26]. Lian, et al. [23] developed AACs with average compressive
strengths exceeding 30 MPa (FA/GGBS = 9.0) and 60 MPa (FA/GGBS = 1.0) by adjusting
the FA/GGBS ratio and water-to-binder ratio. It was noted that an excessively high fly
ash content or inappropriate alkali activator dosage was detrimental to the compressive
strength development of AAC, consistent with some literature reviews [24–26].

Due to its rapid setting characteristics and excellent mechanical properties, AAC
also has potential for applications in military construction. Combining RCAs, CRs, RSFs
and other recycled materials can further enhance the environmental friendliness of AAC.
Currently, research has only been conducted on AAC using a single type or two types
of recycled raw materials [27]. RCAs derived from construction waste should undergo
quality control, including proper screening and crushing, as well as the removal of impuri-
ties and adhering mortar [28]. The presence of residual mortar, cracks and high porosity
on RCA surfaces typically leads to a decline in the mechanical properties of concrete.
For instance, shear strength tests conducted by Imjai et al. [29] indicated a consistent de-
crease in shear strength when an RCA replaces an NA. Regarding structural performance,
Imjai et al. [30] observed that in fiber-reinforced and polymer-reinforced slabs with compa-
rable reinforcement ratios, the maximum capacity of recycled aggregate concrete (RAC)
slabs consistently fell below that of their counterparts using natural aggregate concrete.
Furthermore, Kefyalew et al. [31] noted a modest reduction in flexural capacity, with a
7% decrease in slabs incorporating 100% RCA. However, the impact on the slabs’ energy
absorption was more substantial, showing a more pronounced reduction of up to 22%.
Overall, RAC exhibited lower mechanical properties depending on the level of replacement
with an RCA. However, experimental results still showed inconsistencies, especially when
employing a significant amount of RCA, such as complete substitution (100% replacement
of NA). Therefore, further research in this area is deemed necessary.

When a large amount of CR was used in AAC, regardless of the precursor, alkali
solution and curing conditions, the compressive strength tended to decrease [32,33]. The
decrease in compressive strength was usually attributed to weaker interfacial transition
zones (ITZs), the lower elastic modulus of rubber particles, uneven mixing caused by
rubber and increased bubbles, among other factors [34,35]. Meanwhile, fibers are commonly
employed to mitigate brittle failure due to AAC’s more pronounced brittleness compared
to ordinary concrete [36,37]. RSFs derived from discarded tires exhibited mechanical
properties similar to industrial steel fibers (SFs), making them a suitable replacement for
SFs [38,39]. Peng et al. [40] demonstrated that RSFs significantly enhanced the strength
and toughness of ultra-high-performance concrete (UHPC), contributing to preventing
immediate fiber pull-off. Test results from Zhuo, et al. [39] indicated that the incorporation
of CR would decrease the mechanical properties of UHPC, while RSFs contributed to
improve ductility and compressive strength properties due to their crack-bridging effect.
Chen, et al. [4] developed high-performance geopolymer concrete (R-HPGC) with RSFs
and CR, indicating that the compressive performance of the R-HPGC was influenced
by the mechanical properties and interactions among the combined aggregates, matrix
and RSFs. Furthermore, the synergistic effect of RSFs and CR was demonstrated by
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Liu et al. [41]. However, despite the appeal of combining RCAs, RSFs and CR in rubberized
AAC (RuAAC), there is still limited research on the impact performance of such materials.

This paper proposed a novel RuAAC that combines CR, RCAs and RSFs. The influence
of different RSF and CR contents on the static and dynamic compressive mechanical
properties of the RuAAC were studied using axial compression tests and SHPB tests. The
discussion below includes the failure mode, stress–strain curves, dynamic compressive
strength, DIF and toughness of the RuAAC. Furthermore, the toughening mechanisms of
RSFs and CR in the RuAAC ae discussed.

2. Experimental Program
2.1. Materials and Mix Proportion

The raw materials used in this paper are shown in the macroscopic morphology images
in Figure 1 and are mainly divided into precursors, aggregates, alkali activators, fibers
and a retarder. The precursors included FA (Class F) and GGBS (S95), with their particle
size distribution and microscopic morphology under scanning electron microscopy (SEM)
shown in Figure 2. Additionally, X-ray diffraction (XRD) patterns of the precursors are
shown in Figure 3. And the chemical compositions of the FA and GGBS were determined
using an X-ray fluorescence (XRF) test, the results of which are shown in Table 1. The
alkaline activator was a mixture of sodium hydroxide (SH) and sodium silicate (SS). The SH
was sourced from Xilong Scientific Co., Ltd. (Shenzhen, China) and was a white, uniformly
granular solid with a purity of ≥96.0%. (NaOH). Detailed parameters of the SS are listed in
Table 2. Note that the alkali-activated solution was prepared by mixing a pre-prepared SH
solution with SS. The molarity of the SH solution was 10 mol/L.
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Figure 3. XRD patterns for FA and GGBS (M = mullite; Q = quartz; C = Ca3Al2Si2).

Table 1. Chemical compositions of GGBS and FA (unit: wt%).

CaO SiO2 Al2O3 SO3 Fe2O3 MgO TiO2 Others LOI (%)

GGBS 34.00 34.50 17.70 1.64 1.03 6.01 / 5.12 0.84
FA 4.01 53.97 31.15 2.20 4.16 1.01 1.13 2.37 4.60

Note: LOI denotes loss on ignition.

Table 2. Detailed parameters of SS solution.

Molarity Density (g/cm3) SiO2 (%) Na2O (%) H2O (%)

SS 2.25 1.5 29.99 13.75 56.26

The aggregates consisted of recycled coarse aggregates (RCAs), river sand (RS) and
crumb rubber (CR). According to GB/T 14685-2022 [42], the RS was medium sand with a
fineness modulus of 2.34 and an apparent density of 2650 kg/m3. To eliminate the influence
of particle size on the performance of the RuAAC, the particle size distribution of the CR
used in this paper was similar to that of the RS, with a particle size of 0.3–1.1 mm, as shown
in Figure 4. The RCA was a continuous graded recycled concrete aggregate with a particle
size of 5–10 mm, and its basic performance indicators are shown in Table 3. Furthermore,
in this study, recycled steel fibers (RSFs) were adopted instead of the commonly used
copper-plated steel fibers. RSFs were recovered from steel wires in shredded waste tires. In
order to characterize the length of RSFs, previous studies have employed multiple random
samplings to measure and count the lengths of 460 RSFs and fitted them using a log-normal
distribution function. The frequency distribution of RSF lengths can be found in Ref. [4].
In addition, barium chloride (BaCl2) was used as a retarding agent to prevent the rapid
setting of the RuAAC.

Table 4 presents the mix proportions for the seven groups of RuAAC. In this paper,
the seven groups of RuAAC were prepared and named SFa-Rb, where a and b represent
the volume content of RSFs (1–3%) and the rubber content (0–50%), respectively. The fiber
content of 1–3% adopted in this study was generally used in previous studies [4,17,40]. The
rubber content was limited to below 50% because an excessively high rubber content will
lead to poor workability based on trial-and-error experiments and existing studies [4,43].
To satisfy the workability and setting time requirements of RuAAC, the water-to-binder
ratio was fixed at 0.35. It is worth noting that the volume of water included the water in
the solutions of SH and SS. The binder-to-aggregate ratio was fixed at 3.5. Additionally, the
weight of the added BaCl2 was controlled at 1% of the binder material.
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Table 3. Basic properties of recycled concrete aggregate.

Size (mm) Apparent Density (kg/m3) Bulk Density (kg/m3) Water Absorption (%)

5–10 2658 1301 4.71

Table 4. Mix proportions (unit: kg/m3).

Mix IDs FA 1 GGBS 2 RCA 3 RS 4 CR 5 SS 6 SH 7 Water BaCl2 RSF 8

RSF1-R0 390.0 260.0 1083.3 541.7 0 220.2 20.2 103.6 6.5 78.5
RSF2-R0 390.0 260.0 1083.3 541.7 0 220.2 20.2 103.6 6.5 157.0
RSF3-R0 390.0 260.0 1083.3 541.7 0 220.2 20.2 103.6 6.5 235.5
RSF2-R5 390.0 260.0 1083.3 514.6 12.2 220.2 20.2 103.6 6.5 157.0

RSF2-R20 390.0 260.0 1083.3 433.7 48.5 220.2 20.2 103.6 6.5 157.0
RSF2-R35 390.0 260.0 1083.3 352.1 85.0 220.2 20.2 103.6 6.5 157.0
RSF2-R50 390.0 260.0 1083.3 270.9 121.4 220.2 20.2 103.6 6.5 157.0

1 fly ash; 2 ground granulated blast-furnace slag; 3 recycled concrete aggregates; 4 river sand; 5 crumb rubber;
6 sodium silicate; 7 sodium hydroxide; 8 recycled steel fibers.

2.2. Specimens and Preparation

The preparation process of RuAAC is shown in Figure 5. The preparation of RuAAC
in this study used a forced mixer with a mixing speed of 48 r/min. Before mixing, the mixer
was wetted with water. To ensure uniform mixing of binder materials and aggregates, FA
and GGBS were first added and mixed for 3 min. RCAs, RS and CR were then added and
mixed for another 3 min. The alkali-activated solutions were added and stirred for 3 min to
form a homogeneous alkali-activated mortar. Finally, fibers were slowly added and stirred
for 3 min to ensure even dispersion. The freshly mixed RuAAC was poured into molds,
placed on a vibrating table, and compacted using a tamping rod simultaneously with
vibration. After compaction, the surfaces of the specimens were smoothed. Finally, a thin
plastic film was placed over the specimens to avoid water evaporation. All the specimens
were demolded and subsequently underwent preservation in room for 24 h. The specimens
were cured by sprinkling water on them for 27 d until formal tests were conducted.

The test specimens for the axial compression test in this study were cylindrical spec-
imens with a diameter of 100 mm and a height of 200 mm, while the specimens for the
SHPB test were disk-shaped specimens with a diameter of 100 mm and a height of 50 mm.
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3. Experimental Setup and Procedure
3.1. Axial Compression Test

Test equipment for a static axial compression test is shown in Figure 6. As per ASTM
C469 [44], a static axial compression test was conducted on cylindrical specimens using
a testing machine with a maximum capacity of 4000 kN. Initially, gypsum was used to
level the top and bottom of each specimen to avoid loading eccentricity. Four 50 mm strain
gauges were attached to each specimen’s surface to obtain axial strains and hoop strains.
Meanwhile, two symmetrically placed linear variable differential transformers (LVDTs)
with a gauge length of 80 mm were adopted to obtain axial deformation at mid-height of
the specimens. In order to obtain complete stress–strain curves, a displacement loading
mode with a rate of 0.12 mm/min was applied. Displacement, axial strain, hoop strain and
force were acquired simultaneously using a TDS-530 high-speed static strain gauge with a
data acquisition frequency of 1 Hz.
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3.2. Split-Hopkinson Pressure Bar Test

This paper employed the Split-Hopkinson Pressure Bar (SHPB) test method, and the
experimental setup and schematic diagram are illustrated in Figure 7, with the critical pa-
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rameters of the test equipment for the SHPB test shown in Table 5. The SHPB experimental
apparatus includes a striker and incident, transmission and absorption bars, as specifically
shown in Figure 7. To avoid the influence of surface roughness at the contact interface on
the RuAAC’s impact performance, the contact surfaces of the specimens were polished
before the experiment to ensure that the surface roughness was less than 0.02 mm [45,46].
To eliminate the high-frequency influence of stress waves and prolong the rising time
of the incident wave, a brass pulse shaper with a diameter of 20 mm and a thickness of
2 mm was used [45,47,48]. Strain gauges were attached to the incident and transmission
bars to measure dynamic strains, which were collected at a frequency of 1 MHz using a
dynamic strain acquisition instrument. The dynamic stress, dynamic strain and strain rate
of specimens can be calculated using the following equations:

σ(t) =
AbEb
2A0

[εi(t) + εr(t) + εt(t)] (1)

ε(t) =
Cb
l0

∫
[εi(t)− εr(t)− εt(t)]dt (2)

.
ε(t) =

−2Cb
l0

εr(t) (3)

where σ(t) and ε(t) are the dynamic stress and strain of the specimens, respectively. Ab, Eb
and Cb are the cross-sectional area, elastic modulus and elastic wave velocity of the bars.
A0 and l0 are the cross-sectional area and height of the specimen, respectively.
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Table 5. Critical parameters of the test equipment for the SHPB test.

Parameters Values

Young’s modulus 206 GPa
Density 7.71 × 103 kg/m3

Diameter 100 mm
Elastic wave velocity 5169 m/s
The length of striker 1000 mm

The length of incident bar 5500 mm
The length of transmission bar 3500 mm

4. Results and Discussions
4.1. Static Compressive Behaviors
4.1.1. Failure Mode

The failure modes of the RuAAC groups during the static axial compression test are
depicted in Figure 8. While exhibiting slight variations among different RuAAC groups, all
specimens maintained structural integrity and displayed a diagonal shear failure mode.
The incorporation of RSFs and CR into the RuAAC matrix enabled a ductile failure mode.
As the load increased, microcracks initiated and propagated in the matrix, activating the
bridging effect of the fibers and providing lateral confinement to the specimen during crack
propagation. Therefore, cracks along the loading direction were controlled, delaying the
failure of the specimens.
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With increases in RSF and CR contents, the main crack angle of the specimens in-
creased, leading to diagonal shear failure accompanied by multiple diagonal cracks, which
was consistent with the test results from Chen, et al. [4]. In particular, when the CR content
increased to 50%, the surfaces of the specimens were filled with diagonal cracks, indicating
the enhanced deformability and ductile failure of the RuAAC. The augmented ductility
could be interpreted via reduced flowability, increasing voids with CR incorporation, as
well as poor bonding between the matrix and CR [45]. Additionally, as shown in Figure 8,
cracks traversed the entirety of the specimens, with some protrusions in the middle but
no spalling. This may be attributed to the effective bridging effect of the RSFs, which
suppressed the number and width of cracks, preserving the integrity of the specimens.
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4.1.2. Stress–Strain Curves

Figure 9 shows representative stress–strain curves for different RSF and CR contents.
From Figure 9a, it can be observed that the peak stress of the concrete increased as the
RSF content increased. The slope of the ascending branches of the curves show no clear
pattern of change, while the descending branches become more moderate, indicating that
RSFs could improve both the strength and ductility of RuAAC. This may be related to the
inhibition effect of RSFs on crack propagation. Due to the bridging effect of RSFs, the lateral
deformation of the RuAAC was constrained, leading to delayed failure and increased peak
stress. The toughening effect of RSFs has been observed in previous studies, consistent
with the results of this research [4]. It is worth noting that the toughening effect may be
slightly lower than that of SFs due to the varying lengths of RSFs, as demonstrated in other
studies [4,39].
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Figure 9. Representative stress–strain curves of RuAAC under axial compression: (a) RSF content;
(b) rubber content.

However, no clear pattern in the influence of the RSF content on the elastic modulus
can be found. The elastic modulus was likely primarily influenced by the CR content, as
the addition of rubber made the concrete more prone to deformation, as shown in Ref. [39].
As seen in Figure 9b, with an increase in CR content, both the ascending and descending
branches of the curves become more moderate while the peak stress obviously declines,
showing that CR reduced the compressive strength of the RuAAC but, to some extent,
improved its deformability. This can be attributed to the increase in bubbles when CR
was introduced and the discontinuity between the matrix and the CR, as well as the low
strength and elastic modulus of the CR itself.

4.1.3. Compressive Strength and Elastic Modulus

The results of the static axial compression test are presented in Table 6. Figure 10 shows
the effect of different RSF and rubber contents on the static axial compressive strength and
elastic modulus of the RuAAC. It could be seen that among all mix proportions, RSF3-R0
reached the highest strength (81.2 MPa). The axial compressive strength of the RuAAC
continuously increased with the increase in the RSF content but decreased continuously
with the increase in the CR content. As mentioned before, the main reason for this may
be that CR has much lower mechanical properties than RS and a poorer rubber–matrix
bonding interface. Moreover, the addition of rubber increased the internal pores in the
concrete, weakening its compressive strength. The bridging effect of RSFs within the matrix
constrained the lateral deformation of the concrete, improving its bearing capacity and
ductility. This indicated that the bridging effect of RSFs could compensate for the negative
impact of CR on compressive performance to some extent.
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Table 6. Results of static compression test.

Mix IDs Compressive Strength
/MPa

Elastic Modulus
/GPa

RSF1-R0 66.3 (2.0) 19.2 (0.6)
RSF2-R0 79.6 (1.7) 23.4 (1.7)
RSF3-R0 81.2 (2.1) 21.0 (3.1)
RSF2-R5 70.3 (1.7) 22.6 (5.1)

RSF2-R20 56.7 (1.5) 13.7 (0.8)
RSF2-R35 43.3 (1.2) 11.6 (1.0)
RSF2-R50 30.7 (1.8) 8.0 (0.1)
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Figure 10. Influence of recycled steel fiber content and rubber content on static compressive strength
and elastic modulus.

For the elastic modulus, the increase in RSF content showed no clear pattern of
influence, while increasing the CR content ha a noticeable negative impact; in particular,
RSF2-R50 reached an elastic modulus of only 8.0 GPa. It was worth noting that the elastic
modulus of the RuAAC was significantly lower than that of ordinary Portland concrete
(OPC) with the same strength, consistent with existing research results [1,3]. Current
prediction models for OPC tend to overestimate the elastic modulus of AAC. It should be
noted that the general relationship between the elastic modulus and compressive strength
of AAC was still unclear due to limited available data and the variability of the components
in AAC.

4.2. Dynamic Compressive Behaviors
4.2.1. Failure Mode

Figure 11 presents the failure modes of the RuAAC at various impact pressures. From
Figure 11, it can be observed that the damage to the RuAAC samples with different RSF and
rubber contents became more severe with increasing impact pressure. The RuAAC only
exhibited a few microcracks, staying relatively intact under low impact pressure, while the
RuAAC was completely destroyed and presented a powder-like or fine-chunk state under
high impact pressure. Additionally, it can be seen from Figure 11 that the integrity of the
RuAAC at the same impact pressure was greater with an increasing RSF content, indicating
that RSFs can enhance impact resistance. Similarly, the integrity of the RuAAC specimens
also improved to some extent when the rubber content increased. In short, when subjected
to impact loading under similar impact pressures, the impact performance of RSF2-R5 was
superior to RSF2-R50, with greater integrity. The higher the bridging effect provided by
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RSFs, the greater the integrity of the RuAAC. With a greater RSF content, the RuAAC had
higher strength and maintained greater integrity. It was worth noting that the extent of
RuAAC damage may also be related to the size of the RSFs, since these types of fibers are
irregular in length and shape, which may result in different toughening effects on concrete.
Additionally, adding CR particles to the RuAAC helped improve its crack resistance ability.
When cracks began to propagate toward the center of the specimens, CR played a role
in inhibiting crack expansion. The slowing down of the crack propagation rate can be
interpreted as the energy dissipation of CR under impact loading. The mechanism allowed
the CR to effectively absorb and mitigate the effect of sudden impacts.
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4.2.2. Dynamic Stress–Strain Curves

Figure 12 illustrates the dynamic stress–strain curves of RuAAC samples with varying
contents of RSF and CR under different impact pressures. From Figure 12, it can be observed
that the dynamic stress–strain curves of the RuAAC can be divided into ascending and
descending branches. First, the curves gradually rose, starting to descend after reaching
peak stress. With increasing RSF and CR contents, the descent of the curves became more
gradual. At different impact pressures, there was no clear pattern in the rising segments of
the curves, but the peak stress was significantly increased, indicating a noticeable strain
rate effect in the RuAAC. When the RSF content increased, the peak stress significantly
increased, with the slope of the rising segments of the curves slightly increasing, while
the falling segments became more gradual. On the other hand, when the rubber content
increased, the peak stress decreased, with the slope of the rising segments of the curves
slightly decreasing, while the falling segment remained relatively smooth. This indicates
that both RSFs and rubber particles delayed the development of cracks and the ultimate
failure, demonstrating a significant synergistic toughening effect. Although the SHPB test
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results for RuAAC are relatively limited, these observations are generally consistent with
the strain rate effect observed in previous studies on rubberized AAC [27,49,50].
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Figure 12. Representative stress–strain curves of RuAAC under different impact pressures.

4.2.3. Dynamic Compressive Strength and DIF

Table 7 summarizes the dynamic compressive strength and dynamic increase factor
(DIF) of the RuAAC at different impact pressures. Figure 13 presents the influence of
different levels of impact pressure on the dynamic compressive strength of the RuAAC,
and Figure 14 illustrates the crack propagation patterns of the RuAAC specimens under
different impact pressures. From Figure 13, it can be seen that RuAAC showed obvious
sensitivity to impact pressure, with the dynamic compressive strength increasing with an
increase in impact pressure. A generally linear relationship between impact pressure and
dynamic compressive strength can be observed. For example, the dynamic compressive
strength of RSF3-R0 at impact pressures of 0.5 MPa, 0.6 MPa, 0.7 MPa, 0.8 MPa and 0.9 MPa
increased to 126.2 MPa by 55.4%, 137.4 MPa by 69.2%, 145.8 MPa by 79.6%, 151.0 MPa by
86.0%, and 165.2 MPa by 103.4%, respectively, attributed to changes in crack propagation
paths under impact loading. When high impact loading was applied, cracks propagated
through stronger regions in the concrete, thereby augmenting the dynamic compressive
strength. Conversely, as shown in Figure 14, cracks propagate along weaker regions, such
as the interface transition zone, leading to lower static compressive strength in quasi-static
tests. Meanwhile, it was found that the dynamic compressive strength was enhanced with
an increasing RSF content, whereas it declined with an increasing CR content. RSFs were
demonstrated to play a role in bridging cracks and inhabiting crack propagation, thus
enhancing dynamic compressive strength, which was demonstrated in previous studies at
both macro and micro levels [4]. However, an increase in CR particles was found to cause
the formation of more soft spots inside the concrete due to CR’s poor mechanical properties
and the weak bonding between CR and concrete, leading to a decreasing trend in dynamic
compressive strength [51]. It was demonstrated from a microscopic perspective by the test
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results by Ma et al. [52]. The smooth ITZ and the presence of pores within the RuAAC
remained noticeable after CR peeling. The widespread existence of these minuscule pores
in the aggregate’s ITZ contributed to a notable reduction in the dynamic compressive
strength of the RuAAC.

Table 7. Results of SHPB test.

Mix ID Static Compressive
Strength/MPa

Pressure
/MPa

Dynamic Compressive
Strength/MPa DIF Toughness

/(kJ/m3)

RSF1-R0 66.3

0.5 109.5 1.65 272.0
0.6 113.0 1.70 261.5
0.7 128.0. 1.93 471.5
0.8 136.0 2.05 426.7
0.9 146.8 2.21 503.5

RSF2-R0 79.6

0.5 115.4 1.45 271.0
0.6 122.3 1.54 320.1
0.7 134.3 1.69 482.3
0.8 147.8 1.86 605.7
0.9 156.0 1.96 668.9

RSF3-R0 81.2

0.5 126.2 1.55 301.1
0.6 137.4 1.69 436.0
0.7 145.8 1.80 540.2
0.8 151.0 1.86 633.8
0.9 165.2 2.03 688.8

RSF2-R5 70.3

0.5 109.5 1.56 272.0
0.6 118.3 1.68 345.4
0.7 129.6 1.84 540.9
0.8 140.0 1.99 538.4
0.9 148.0 2.11 634.0

RSF2-R20 56.7

0.5 103.6 1.83 268.0
0.6 109.6 1.93 358.7
0.7 117.4 2.07 413.9
0.8 127.7 2.25 536.7
0.9 139.5 2.46 669.3

RSF2-R35 43.3

0.5 87.7 2.03 248.6
0.6 90.2 2.08 307.9
0.7 100.4 2.32 410.1
0.8 108.3 2.50 467.0
0.9 121.6 2.81 582.9

RSF2-R50 30.7

0.5 73.0 2.38 180.3
0.6 82.7 2.69 217.5
0.7 95.5 3.11 303.7
0.8 103.4 3.37 360.8
0.9 114.2 3.72 537.8

Figure 15 shows the influence of different impact pressures on the dynamic increase
factor (DIF) of the RuAAC. The DIF is the ratio of the dynamic compressive strength to
the quasi-static compressive strength and is used to quantify the stress–strain sensitivity
and characterize the extent of strength enhancement in materials under impact loading.
An increase in the DIF value typically indicates that a material’s strength is enhanced
compared to static loading conditions. Specifically, a higher DIF value implies that the
material exhibits greater toughness or durability under high-speed loading conditions.
From Table 7 and Figure 15, the DIF was found to be greater than 1 and increased with the
impact pressure increasing. Figure 15a indicated that the DIF of the RuAAC was between
1.6 and 2.2, with no clear pattern when the RSF content increased. This may be because the
inclusion of RSFs can cause a bridging effect and inhibit crack development when subjected



Buildings 2024, 14, 322 14 of 19

to impact loading, limiting the lateral deformation of the RuAAC. This results in a transition
from a one-dimensional stress state to a two-dimensional strain state, leading to an increase
in the DIF. Figure 15b shows that the DIF also increased when the CR content increased.
For RSF2-R50, the DIF values at impact pressures of 0.5 MPa, 0.6 MPa, 0.7 MPa, 0.8 MPa
and 0.9 MPa were 2.37, 2.69, 3.11, 3.37 and 3.73, respectively, corresponding to increases
of 63.4%, 74.7%, 84%, 82.2% and 90.3% compared to RSF2-R0. This may be because when
cracks pass through CR particles, the crack-arresting mechanism of stress relaxation due to
CR particles reduced the crack propagation rate. Additionally, the low elastic modulus of
CR particles enhanced the strain capacity of the RuAAC, thereby significantly improving
the energy dissipation capacity. It is worth noting that under the same impact pressure, as
shown in Figure 15b, the addition of rubber consistently increased the DIF of the RuAAC
when the RSF content was 2%. This demonstrated a synergistic effect between the RSFs and
CR, enhancing the impact resistance performance of the RuAAC, consistent with the results
in Ref. [41]. Overall, the high DIF values, that is, the obvious strain rate sensitivity exhibited
by the RuAAC in the SHPB tests, indicated a superior impact performance particularly
suitable for architectural structures prone to seismic or explosive impacts.
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Figure 13. Influence of different levels of impact pressure on dynamic compressive strength: (a) RSF
content; (b) rubber content.
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Figure 14. Crack propagation patterns of RuAAC specimens under different impact pressures.
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4.2.4. Toughness

Concrete’s ability to resist impact loads is determined by its combination of load-
carrying and energy-absorbing capacities, referred to as impact toughness [53]. Previous
studies have proposed various methods to define impact toughness [36,53–55]. In SHPB
tests, impact toughness is commonly calculated based on the pre-peak area of stress–strain
curve [56]. While this approach might overlook the contribution of the post-peak portion
of the curve to toughness, the unloading of impact forces may occur after the peak point,
potentially not accurately reflecting the concrete’s true stress–strain state [53]. Therefore,
the commonly adopted method in previous studies was to use the integration before the
curve’s peak point as a measure of impact toughness [56–58]. Specifically in this study,
Equation (1) was adopted to calculate the impact toughness of the RuAAC.

ω =
∫ ε0

0
σ(ε)dε (4)

where ε0 is the peak strain corresponding to the peak stress of the dynamic stress–strain curve.
Figure 16 presents the variation in the impact toughness of the RuAAC at different

levels of impact pressure. As seen in Figure 16a, the toughness of the RuAAC increased
with an increase in impact pressure, showcasing obvious sensitivity to impact pressure in
the RuAAC. Under static loading, with the input of energy, concrete cracks continuously
propagated along weaker areas, slowly releasing energy and accumulating damage until
ultimate failure. However, under impact loading, the concrete accumulated a significant
amount of energy in a short period. Due to the short loading time, internal cracks in the
concrete traversed through the aggregates rather than ITZs to rapidly release the energy,
thus dissipating a substantial amount of energy and presenting greater toughness [45,51].

Moreover, as the RSF content increased, the toughness of the RuAAC improved
continuously. For instance, the toughness of RSF3-R0 was 22.4% and 66.7% higher than
RSF2-R0 and RSF-R0 under 0.7 MPa of impact pressure, respectively. This suggests that
RSFs significantly enhanced the energy absorption capacity of the RuAAC, attributed to
the bridging effect and the failure delay resulting from the RSFs. In Figure 16b, it can be
observed that the toughness of the RuAAC slightly decreased with increasing content,
and when the CR content reached 50%, the decrease in impact toughness became more
pronounced. On one hand, this may be due to the fact that this study only calculated the
integral under the dynamic stress–strain curve before the peak stress as impact toughness,
neglecting the contribution of CR particles after that. On the other hand, since the value of
impact toughness mainly depends on the magnitude of peak stress and its corresponding
strain, the decrease in impact toughness with the increasing CR content in this study may
also be attributed to the significant strength loss that occurred when a large number of
CR particles was introduced, as shown in Table 7. In fact, although a decrease in impact
toughness was observed, it was not significant in the case of RSF2-R35. In comparison,
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RSF2-R35 showed a significant decrease in dynamic compressive strength compared to
RSF2-R0, indicating the contribution of CR particles to the energy absorption capacity of
the RuAAC. The high impact toughness of the RuAAC indicated that it was crucial for
optimizing its performance in real-world applications, ensuring structural integrity and
enhancing safety in impact-prone environments.
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5. Conclusions

This study proposed an environmentally friendly rubberized alkali-activated concrete
incorporating an RCA and RSFs (RuAAC) which is composed mostly of solid waste.
Experimental studies on its static and dynamic compressive properties were conducted
through axial compression tests and SHPB tests. Variables included different RSF contents
(1–3%) and CR contents (0–50%) and five impact pressure levels (0.5 MPa, 0.6 MPa, 0.7 MPa,
0.8 MPa and 0.9 MPa). The main discussion focused on the variation patterns of the
RuAAC’s failure modes, dynamic stress–strain curves, dynamic compressive strength,
DIF and impact toughness. The synergistic effect of the RSFs and CR was discussed. The
conclusions of this study can be summarized as follows:

(1) The addition of RSFs enhanced the static mechanical performance of the RuAAC.
RSFs can inhibit crack propagation in specimens during loading, thus delaying failure
and reducing the brittleness of RuAAC, leading to higher static compressive strength.
When CR particles were added, both the strength and elastic modulus of the RuAAC
were slightly reduced, attributed to the increased bubbles introduced by the CR,
the discontinuity between the matrix and CR particles and the low strength and
modulus of elasticity of the CR itself. But RSFs can alleviate the decrease in mechanical
properties caused by CR.

(2) With the increases in the RSF and rubber contents, the impact performance of the
RuAAC under impact loads improved. Under the same impact pressure level, the
integrity of the RuAAC was enhanced.

(3) The RuAAC exhibited significant strain-rate sensitivity which increased with higher
rubber and RSF contents, with a more pronounced increase when the rubber content
was higher. The synergistic effect of RSFs and CR effectively enhanced the impact
resistance of the RuAAC, manifesting in larger DIF values. This evident strain-rate
sensitivity and substantial DIF values suggest that the RuAAC has significant potential
for applications in building structures susceptible to impact and explosive forces.

(4) At high impact pressures, increasing the RSF and CR contents significantly improved
the impact toughness of the RuAAC. The contribution of CR particles to the energy
absorption capacity of the RuAAC may have been understated when the integral
under the dynamic stress–strain curve before the peak stress was taken as the impact
toughness, which neglected potential contributions from CR particles after peak stress.
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(5) RuAAC is a concrete material prepared from various solid wastes which demon-
strates excellent impact resistance and presents itself as a prospective substitute for
conventional concrete. Subsequent research endeavors should focus on two principal
domains: firstly, exploring more environmentally friendly and cost-effective retarders
and activators; and secondly, devising strategies to enhance the efficacy of constituents
such as RSFs, CR and RCAs within the RuAAC matrix to improve its properties.
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