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Abstract: Given the crucial importance of pavement marking retroreflectivity in ensuring visibility
for road safety, this research investigates the correlation between pavement marking reflectivity
and LiDAR data. Empirical data were collected from eight road sections using both a handheld
retroreflectometer and a mobile LiDAR. The approach proposed focuses on extracting important
features from pavement marking regions of the LiDAR point cloud. A comprehensive feature
extraction and feature selection process was employed. In addition, a well-rounded selection of
learning algorithms was evaluated. A rigorous hold-out evaluation was incorporated, ensuring
that the reported performance metrics were robustly generalizable. The best performing model was
able to achieve an R2 of 0.824 on unseen data. The findings of this study illuminate the potential
for leveraging relatively inexpensive mobile LiDAR sensors in combination with machine learning
techniques in conducting efficient pavement marking assessments, not only to detect completely
degraded markings, but to accurately estimate retroreflective properties.

Keywords: road marking retroreflectivity; LiDAR; intensity; machine learning; AI; road condition
assessment

1. Introduction

Pavement markings are a fundamental way of providing information to road users,
vehicle operators, and advanced driver assistance systems (ADAS). They give useful
information to help vehicle operators place their vehicles inside the traffic lane. Lane marker
retroreflectivity refers to the capacity of marks to reflect light back to the light source [1].
This attribute is especially important at night when pavement markings are mainly visible
because headlight light is reflected into drivers’ eyes by retroreflectors implanted in road
stripes [2]. Pavement markings’ nighttime visibility is typically measured in terms of the
coefficient of retroreflected luminance (RL).

The characteristics of lane markings, acceptable evaluation methods, and minimum
retroreflectivity requirements measured in millicandelas per square meter per lux (mcd/m2/lx)
are described in the Manual on Uniform Traffic Control Devices (MUTCD) [3] which sets
the national standard for traffic control devices. The MUTCD minimum retroreflectivity
requirement is 50 mcd/m2/lx for roads where speeds are between 35 and 50 mph, and
100 mcd/m2/lx on any roads with speeds equal to or higher than 55 mph. However,
one exception is two-lane roads with only centerline markings. For this type of road, the
minimum RL requirements are 100, and 250 mcd/m2/lux for ≥35 mph, and ≥55 mph roads
respectively. A detailed description of the acceptable evaluation methods is provided in [4].
ASTM D7585 “Standard Practice for Evaluating Retroreflective Pavement Markings Using
Portable Hand-Operated Instruments” [5], and ASTM E1710-18 “Standard Test Method
for Measurement of Retroreflective Pavement Marking Materials with CEN-Prescribed
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Geometry Using a Portable Retroreflectometer” [6] define standard techniques, including
sampling standards for measured retroreflectivity.

Traditional methods of measuring retroreflectivity, whether handheld or mobile, have
significant overheads in terms of cost and labor. Additionally, these methods are solely
focused on retroreflectivity, and the collected data cannot be applied to other purposes.
Light Detection and Ranging, often known as LiDAR, is a promising alternative that has
the potential to evaluate retroreflectivity while also being useful for a wide range of other
applications [7]. It is a remote sensing technology that makes use of light in the form
of a pulsed laser to detect distances. In a LiDAR point cloud, each X, Y, and Z point is
accompanied with a characteristic known as intensity, which acts as a measurement of
the strength of the return signal and is provided by most LiDAR systems [8]. The word
intensity in a LiDAR output refers to the amplitude of the return signal, which may be the
analog electrical signal produced from the photodetector or the digital waveform. One of
the fundamental advantages of LiDAR intensity is that it is connected to surface reflectance
and other surface properties. This is because LiDAR intensity represents the strength of
the laser beam reflected from the object surface back to the beam source, which means it is
inherently representative of the same properties as retroreflectivity.

2. Related Studies

There are a variety of confounding factors to which intensity is connected other than
the object reflectance, including data gathering geometry, the scanning environment, and
sensor characteristics [9]. There is no consensus in the literature on a method to perform
intensity correction. One of the reasons it is hard to find a single correction method is that
different LiDAR manufacturing companies are integrating various correction methods that
are typically not disclosed to the customer. For instance, in [10], researchers evaluated
the correction of LiDAR intensity for range and incidence angle using a Velodyne VLP-32
(Ultra Puck) LiDAR. The researchers selected a well-known model from the literature
(Equation (1)) and implemented the correction on 49,584 points in a distance range (2.3 m
to 16.1 m) and angle range (30.5 to 82.7). The study reported no correlation between the
intensity and any of the evaluated factors. The researchers concluded that raw intensity
from the tested LiDAR could be used directly to establish the correlation with RL.

Ic = I × D2

D2
re f

× 1
cosα

(1)

where:
Ic: corrected intensity.
I: intensity.
D: distance between sensor and target.
Dre f : user-defined reference range.
α: angle between the beam and the target.
In the same study [10], a correlation was established between the retroreflectivity

measured by a handheld device and the VLP 32 LiDAR intensity. The LiDAR was placed
at approximately 45 degrees from the horizon and the positioning was performed using a
global navigation satellite system (GNSS) corrected with real-time kinematic positioning
(RTK). The RTK base station was placed no further than 15 km from the location of the
vehicle. The established correlation used a single term exponential model and 64 data
points to establish the relationship. The model was validated by its ability to detect areas
with high marking degradation on new points.

In ref. [11], the study concluded that LiDAR pavement marking retroreflectivity
evaluation is a feasible method to inventory and manage pavement marking conditions
in transportation agencies. The researchers presented a framework that included: (1) data
collection using a surveying-grade LiDAR system (Reigl VMZ 2000), (2) pavement marking
point extraction from the point cloud using an improved version of the Road Marking
Extractor (RoME) method originally developed by Jung et al. in [12], (3) correlation
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of LiDAR intensity to retroreflectivity as measured by a mobile retroreflectometer, and
(4) tracking pavement marking deterioration over an 18-month period. It is noted that the
researchers performed radiometric intensity normalization in accordance with the findings
in [13], which was established based on the same LiDAR sensor.

The researchers in [14] established a correlation between the LiDAR intensity mea-
surements of four LiDAR sensors (three Velodyne HDL-32Es and one Velodyne VLP16)
and the retroreflectivity measurements obtained using a mobile retroreflectometer (Road
Vista Laserlux G7 (LLG7)). The data were collected over a 70-mile span of rural roads at a
speed of 50 mph. The study reported a positive linear relationship with r-squared values
up to 0.63 for the center skip line, and up to 0.87 for the right edge lane. In addition, it was
indicated that the rear-mounted LiDAR performed as well as, or even better than, other
installment locations on the vehicle. Previous studies that studied the intensity retroreflec-
tivity relationship for pavement markings found that the best relationship was established
using the intensity values in the top 10% in the active window region using a single term
power model, which was able to achieve 0.836 r-squared [15].

Several studies have considered the correlation between LiDAR intensity and pave-
ment marking retroreflectivity. Most of the studies have documented a correlation between
retroreflectivity and LiDAR intensity but have not tested if this correlation holds true for
new unseen data. This lack of validation raises concerns about the reliability of using this
correlation for future predictions beyond the original datasets analyzed. In addition, the
relationship is usually established with the mean or median of the intensity values. This
assumption may be overlooking other features that could be obtained from the LiDAR data
such as measures of intensity dispersion or variability within the marking area. Further-
more, some of the studies used expensive surveying-grade LiDAR systems, which means
that the relationships established in these studies might not be transferable to more widely
used, relatively inexpensive LiDAR sensors.

In this study, data were collected from several road sections with various low to
medium pavement marking conditions. The reference standard retroreflectivity was mea-
sured using a standard handheld retroreflectometer. LiDAR data were collected using
a Velodyne VLP32C sensor. Over 600 measured stations were used to establish the re-
lationship. A rigorous feature extraction and selection methodology was employed. In
addition, validation was performed using five-fold cross-validation as the performance
metric to ensure robustness and generalizability. Several machine learning algorithms were
evaluated, including linear models such as ridge, lasso, and elastic net; gradient boost-
ing implementations like XGBoost and lightGBM; as well as Random Forest, ExtraTrees,
and k-Nearest Neighbors. The methodology proposed in this study presents a promising
framework for leveraging machine learning techniques in conducting efficient pavement
marking assessments using relatively inexpensive LiDAR sensors.

3. Methodology
3.1. Data Acquisition Tools

The LiDAR data collection system consisted of three main components, namely a
LiDAR, a GNSS unit, and a computer for data acquisition and processing. The LiDAR used
in this study was a Velodyne VLP-32C Ultra Puck. The LiDAR used a 903 nm wavelength
and had 360◦ horizontal and 40◦ vertical fields of view (FOV), minimum vertical angular
resolution of 0.33◦ distributed nonlinearly across the FOV, horizontal angular resolution
ranging from 0.1◦ to 0.4◦, 200 m range, and a maximum of 1.2 million points per second
generated in the dual return mode. The LiDAR supports a frame rate of 5 to 20 Hz. The
intensity measurement obtained by the LiDAR is calibrated by the manufacturer using a
method that is not disclosed. Previous studies showed that the VLP32-C can be used to
estimate retroreflectivity using no more than the manufacturer’s intensity calibration [10].
The data acquisition and synchronization were conducted using a robot operating system
(ROS) framework. The LiDAR data collection system is displayed in Figure 1.
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Figure 1. LiDAR data collection system.

The reference standard retroreflectivity of the pavement marking was measured using
a handheld retroreflectometer. The retroreflectometer used was a Delta LTL-X Mark II
which is compliant with most standards adopted by national transportation agencies for
measuring pavement marking retroreflectivity [16]. The instrument has a reproducibility
of ±5% and a repeatability of ±2%. The process of collecting measurements using the
handheld retroreflectometer is depicted in Figure 2.
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Figure 2. Manual measurement using a LTL-X handheld retroreflectometer.

3.2. Test Sections and Experiment Description

A total of eight road sections were selected around the Cincinnati, Ohio area. The
map of sections locations is displayed in Figure 3. The sections were selected to represent
variable marking conditions. Figure 4 shows different pavement marking conditions. All
the images are from the tested sections. Control points were marked beforehand on the
ground at approximately 20 ft intervals. The retroreflectivity was measured with the
handheld device at each control point. For some sections, retroreflectivity measurements
were obtained only at the edge lines while in other sections single or double lines of the
centerline marking were included.
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3.3. Data Preparation

The LiDAR data were first adjusted to a local Cartesian coordinate system in which
the x-axis was parallel to the moving direction, the y-axis was transverse to it, and the road
surface was horizontal to the best extent possible. With the physical LiDAR configuration
angles α, β, γ representing the rotation in degrees around the x, y, and z axes respectively,
the rotation matrices are defined as follows:

Rx(α) =

1 0 0
0 cosα −sinα
0 sinα cosα



Ry(β) =

 cosβ 0 sinβ
0 1 0

−sinβ 0 cosβ



Rz(γ) =

cosγ −sinγ 0
sinγ cosγ 0

0 0 1


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The origin is taken as the physical center of the LiDAR; thus, no translation is necessary.
The rotation is performed around the origin (0, 0, 0). The combined rotation matrix R is
defined as:

R = Rz(γ)Ry(β)Rx(α)

Given a point cloud P represented as:

P = {p 1, p2, . . . , pn}

Each point pi in the point cloud is represented as a vector (in addition to a correspond-
ing intensity ii):

pi =

xi
yi
zi


The rotation matrix R is applied to each point in the point cloud P resulting in the

rotated point cloud P′:
p′i = Rpi

P′ = {p ′
1, p′2, . . . , p′n

}
All subsequent references to the point cloud P herein pertain to the rotated point cloud

P′, unless explicitly stated otherwise. An example of the top, cross-sectional, and intensity
cross-section views of a single scan are shown in Figure 5.
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To extract the lane marking data points from the LiDAR scans, a process was developed
to simplify manual segmentation. Rasterized graphs of the top view and intensity cross-
section were used to segment the lane marking. The image limits were independent from
the range of the point cloud used to plot it, so that each pixel in the rasterized image was
exactly matched to the dimensions in the original point cloud. Next, the rasterized images
were manually annotated to segment the points belonging to the pavement marking at
the retroreflectometer’s measuring window. The annotated bounding boxes were then
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translated back to actual dimensions. Finally, points belonging to the annotated areas were
extracted from the full point cloud. A rasterized intensity cross-section graph is shown in
Figure 6.
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After annotation and segmentation of the marking points, the output of this process at
each station is an array of shape (n, 4, where n is the number of point cloud points at the
measured station and 4 represents the x, y, z, and intensity readings. Figure 7 summarizes
the proposed data preparation process.
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3.4. Feature Extraction

After selecting points for each pavement marking location using the procedure dis-
cussed previously, the dataset was structured in such a way that each measured retrore-
flectivity value corresponded to a collection of point cloud points. The number of point
cloud points varied between locations, making it challenging to fit a regression model
without consistent input. To address this issue, features were extracted from the point
cloud data. This feature extraction process transformed the dataset into a standardized
format, where each pavement marking location was represented by a fixed set of features,
regardless of the original number of points in the point cloud. These extracted features
captured the relevant information from the point cloud data, providing a consistent shape
of input for the regression model. The shape of the dataset is described in Figure 8, where,
at location (N): SN is a subset of point cloud points of shape (n N × 4), (RL)N is the mea-
sured retroreflectivity value, and fN is the vector of extracted features of constant shape
(N f eatures).
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For the task of extracting and evaluating a wide range of features, the Python package
(tsfresh) proved to be a valuable tool. tsfresh is designed to automatically compute numer-
ous features from time series data [17]. In this study, the data could be treated as time series
data, such that the lateral axis (y axis) corresponded to the time axis. By using tsfresh, we
could leverage its functionality to extract a multitude of features for each channel of the
input data. These features included basic statistics (such as minimum, maximum, mean,
various percentiles, and skewness), complexity features (such as count above and below
mean), linear trend features, and entropy features, among many others. In general, the
feature names were encoded such that the first letter represented the variable from which
the feature was extracted, followed by double underscores and the feature family, followed
by any parameters used to define the feature. For example, i__quantile__q_0.7 was applied
to i which was the intensity, the feature family was the quantile, and the particular quantile
this feature represented was the 0.7 quantile. Following is a summary of the most important
extracted features:

Basic features:

These include the mean, median, mode, standard deviation, root mean square, ab-
solute energy, maximum, minimum, range, inter-quartile range, quantiles from 0.1 to 0.9,
skewness, kurtosis, sum of recurring values, and many other basic and statistical features
describing the central tendency, the variation, and the distribution shape of the data. The
full list of features extracted is described in [18].

Change quantiles features:

This family of features involves fixing a window with top and bottom limits based
on quantiles ql (the lower quantile) and qh (the higher quantile). Only values inside
this window are considered and consecutive changes of the values are determined. The
differences are taken either raw or as absolute values. Finally, the differences are aggregated
using an aggregate function f _agg such as mean, median, variance, etc.

C3 statistics:

This feature is a measure of the nonlinearity of the data values across the direction of
y (lateral distance). The feature is implemented in the tsfresh library and was proposed
in [19]. It is calculated as [20]:

1
n − 2lag

n−2lag

∑
j=0

i2j+2lag·ij+lag·ij (2)

where:
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n: is the number of data points.
i: is the intensity value.
lag: is the lag.

Aggregated linear trend features:

This family of features involves calculating the linear least-squares regression of values
aggregated over defined chunks. First, the series was divided into chunks of defined length
chunk_len. Next, an aggregation function f _agg was applied on each chunk to summarize
its values. The aggregation function could be max, min, mean, or median. Finally, a linear
regression was applied on the aggregated values. In this regression, the aggregated values
were the dependent variable, and the chunk number was the independent variable. The
attribute returned (attr) could be “p-value”, “r-value”, “intercept”, “slope”, or “stderr”.

3.5. Feature Selection

The feature extraction process from the previous section resulted in more than 3000 fea-
tures extracted. Dealing with such high dimensional data required rigorous observation to
exclude useless data. The feature selection process implemented in this study consisted of
multiple steps. The feature selection process is discussed in detail in the following subsection.

3.5.1. Filter Methods

The first step was simply to analyze the variance of the feature and observe that
it did not stay unchanged across the different samples. The second step of the feature
selection process utilized a set of three filter methods. The methods implemented included
Pearson’s correlation coefficient, Spearman’s rank correlation coefficient, and the maximal
information coefficient (MIC). These approaches were chosen for their ability to evaluate
features based on their relationship with the output variable, independent of any specific
model’s influence. Each method, with its unique properties, provided valuable insights
into the presence of a relationship for each feature with the measured retroreflectivity.
Thresholds were set for each of the filter methods used, and the final set of features was
selected based on passing the thresholds of the filter methods. This step drastically reduced
the number of features to be considered in the following steps. In general, the number of
features was reduced from more than 3000 features to sub 100 related features.

Variance thresholding:

The variance Var(X) of a feature X is calculated as:

Var(X) =
1
N

N

∑
i=1

(xi − x)2 (3)

where:
N: is the number of samples.
xi: is the value of the feature for the ith sample.
x: is the mean value of the feature across all samples.
The variance threshold method then checks the variance of each feature against a

specified threshold such that, if Var(X) < Threshold, then remove feature X.

Pearson’s correlation coefficient (r):

Pearson’s correlation coefficient is a metric measuring the linear association between
two continuous variables. Its value ranges between −1 and 1, with values near the extremes
indicating strong negative or positive linear relationships. When selecting features, a signifi-
cant Pearson’s correlation with the target variable can suggest the importance of the feature.
However, it is imperative to note that features with high inter-correlations can introduce
redundancy, suggesting the potential removal of overlapping features. Nonetheless, in this
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study, this will be addressed using a different method in later steps of feature selection.
The Pearson’s correlation coefficient (r) is calculated using the formula:

r =
∑n

i=1 (xi − x)(yi − y)√
∑n

i=1(xi − x)2 ∑n
i=1(yi − y)2

(4)

where:
n: is the number of data points.
xi and yi: are the individual data points of the feature x and the variable y.
x and y: the means of all the data points of x and y respectively.

Spearman’s rank correlation coefficient (ρ):

Spearman’s rank correlation coefficient is a non-parametric measure used to assess
the strength and direction of the monotonic relationship between two variables. The value
of Spearman’s rank coefficient can range from −1 to 1, with values close to the extremes
indicating a strong negative or positive monotonic relationship. The ranking process makes
Spearman’s method more robust to non-linear relationships and outliers compared to
methods that rely on actual data values, such as Pearson’s correlation.

Spearman’s rank correlation coefficient (ρ) is given by:

ρ = 1 − 6∑ d2

n(n2 − 1)
(5)

where:
d: is the difference between the ranks of the two variables for each data point. (The

ranks refer to the ordering of data points when sorted in ascending or descending order.)
n: is the number of data points.

Maximal information coefficient (MIC):

The maximal information coefficient (MIC) is a modern statistical measure used to
identify and quantify associations between two variables. The basis of MIC lies in the
concept of mutual information. Mutual information quantifies the amount of information
one can acquire about one variable by observing another. For MIC, the objective becomes
finding an optimal grid partitioning for the paired variables that pushes this mutual infor-
mation to its peak. Once the mutual information is computed, it undergoes a normalization
process which aims to confine the MIC values within a range of [0, 1]. A MIC value close to
0 would suggest a negligible association between the variables in question. In contrast, a
value veering towards 1 would be indicative of a pronounced association.

3.5.2. Exhaustive Search

After the preliminary round of feature selection, a refined subset of features remained.
The features that demonstrated their significance in the initial selection phase were then
subjected to a rigorous evaluation to observe their individual and combined performance
in a model. First, each feature was employed independently to train the model, after
which the model’s performance was gauged. This meticulous individual analysis aimed
to pinpoint the feature that, on its own, offered the most substantial contribution to the
model’s performance. After the singular evaluations, Exhaustive Search was employed
to explore all possible pairings of the shortlisted features. In practical terms, for a dataset
with n remaining features post the initial selection, Exhaustive Search would evaluate (n

2)
potential feature pairs. Each of these pairs was used to train the model, and its performance
was recorded.

3.5.3. Wrapper Feature Selection: Sequential Backward Selection

In general, wrapper methods are a type of feature selection technique where different
subsets of features are used to train a model. The performance of the models trained on
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the different subsets is then used to gauge the feature importance and select the features
that result in the best performance metrics. In contrast to filter methods where the feature
usefulness is determined by intrinsic properties of the data, wrapper method depend
on empirical performance of the model trained on the particular subset of features. In
sequential backward selection, the evaluation is initiated by including the full set of features
then sequentially removing the least important features. The decision to remove a feature is
based on the impact of its removal on the model performance. The process is repeated until
a desired number of features is reached, or until the removal of further features significantly
degrades the model performance.

3.6. Evaluated Models

In the comprehensive evaluation of potential models that correlate LiDAR data to
retroreflectivity, a diverse set of regression models was explored. Evaluating a diverse suite
of algorithms ensured that the analysis was both comprehensive and robust, catering to the
myriad possible structures and relationships within the data. Following is a discussion of
the evaluated models.

Linear Regression is one of the foundational algorithms in regression analysis. It
assumes a linear relationship between the independent and dependent variables, aiming to
find the best-fitting line that minimizes the sum of squared errors. While it offers simplicity
and interpretability, its assumption of linearity can be a limitation, especially when the true
relationship between variables is more complex.

Lasso Regression, which stands for Least Absolute Shrinkage and Selection Operator,
introduces L1 regularization to the traditional linear regression, adding a penalty equiv-
alent to the absolute value of the magnitude of coefficients. This often results in some
feature coefficients being exactly zero, effectively leading to feature selection. Lasso can be
particularly useful when it is suspected that many features are redundant or irrelevant.

Ridge Regression is another variant of linear regression that employs L2 regular-
ization. Instead of eliminating certain features as Lasso does, Ridge tends to shrink the
coefficients of less important features closer to zero, balancing out the contribution of all
features. It is especially beneficial in situations where features are highly correlated, known
as multicollinearity.

ElasticNet Regression offers a middle ground between Lasso and Ridge by combining
both L1 and L2 regularizations. This hybrid approach ensures that ElasticNet inherits the
strengths of both methods, making it versatile in handling various data structures.

Random Forest is an ensemble technique that builds multiple decision trees and
aggregates their results. By leveraging the power of multiple trees, it mitigates the risk
of overfitting, to which a single decision tree might be prone. Random Forest starts by
creating multiple sets of data from the original dataset using a technique called bootstrap
sampling. This means that for a dataset of size N, several samples each of size N are
randomly selected with replacement, such that a sample can be picked more than once.
Let us say that B bootstrapped samples are created. For each of these bootstrap samples, a
decision tree is constructed. However, instead of considering all features at each split, only
a random subset of the features is considered. The final prediction of the regression is then
the average of the predictions from all the trees.

Extra Trees, or Extremely Randomized Trees, is an ensemble method similar to Random
Forest. The primary distinction lies in how the trees are constructed: while splits in
Random Forest are based on the most discriminative thresholds, Extra Trees introduces
more randomness in selecting features and thresholds, often leading to increased diversity
among individual trees.

Gradient Boosting is another ensemble technique, but instead of building trees in
parallel like Random Forest, it constructs them sequentially. Each tree in the sequence
tries to correct the errors made by the previous ones. The algorithm starts with a simple
model, often a constant value representing the mean of the target variable. The primary
objective then becomes the minimization of residuals or the discrepancies between the
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predicted and actual values. As the algorithm progresses, each tree is specifically trained
on these residuals from the preceding model. This strategy ensures that every new tree in
the sequence addresses and rectifies the shortcomings of the previous ones.

XGBoost stands for eXtreme Gradient Boosting. It is an optimized and more efficient
implementation of the gradient boosting algorithm, known for its speed and performance.
XGBoost introduces regularization to the boosting process, reducing the risk of overfitting
and often leading to better generalization on unseen data.

LightGBM or Light Gradient Boosting Machine is another gradient boosting frame-
work designed for speed and efficiency. It differs from other boosting algorithms in its
approach to tree growth, opting for a leaf-wise strategy rather than the traditional depth-
wise approach.

kNN (k-Nearest Neighbors) for Regression is a non-parametric algorithm that predicts
output based on the average of the k nearest training examples in the feature space. It is
especially adept at capturing localized patterns within the data.

3.7. Performance Metrics

Two fundamental performance metrics in the context of regression modeling are the
coefficient of determination, R2, and the mean squared error (MSE). The coefficient of
determination, denoted as R2, quantifies the proportion of the variance in the dependent
variable that is predictable from the independent variables. It is mathematically defined as:

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − y)2 (6)

Here, yi is the actual value, ŷi is the predicted value, and y is the mean of the ob-
served data.

In this study, the coefficient of determination R2 was predominantly employed as the
performance metric. The primary rationale behind this choice was to maintain consistency
with the conventions established in related literature.

Cross-Validation

One of the foremost challenges in machine learning is overfitting, which occurs when
a model, while aiming to achieve the best possible performance on training data, becomes
overly complex, capturing not just underlying patterns but also the noise or random
fluctuations present. The result is a model that performs exceptionally on the training
set but falters when exposed to unseen data. Cross-validation emerges as a safeguard
against this. Furthermore, cross-validation provides an estimate of a model’s generalization
performance. If a model performs well across different cross-validation folds, it is more
likely to perform well on unseen data.

In k-fold cross validation, the dataset is randomly partitioned into k equal-sized
subsamples or folds. Of these k folds, a single fold is retained as the validation set, and
the remaining k − 1 folds are used as the training set. The model is then trained on the
k − 1 training folds and validated on the held-out fold. This process is repeated k times. At
the end of this process, k different models are obtained and k performance estimates are
calculated. The number of folds k can be selected based on multiple factors such as the
size of the dataset available. In this study, the number of folds k was selected to be 5. The
overall performance was then calculated as the mean of these k performance metrics. The
process is illustrated in Figure 9. Let us say that R2 is the performance metric used; the
overall R2 is calculated as:

R2 =
1
k

k

∑
i=1

R2
i (7)
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4. Results

First, it is important to observe the distribution of the measured retroreflectivity
represented in the dataset collected. The results show that the measured retroreflectivity of
the dataset was well distributed around values from 20 to 400 (mcd/m2/lx). While there
were some data with values higher than 400, these were less frequent. Nonetheless, since the
recommended thresholds for satisfactory retroreflectivity according to most transportation
agencies lay much lower, at around 50, 100, or 250 mcd/m2/lx, increasing the number of
points above 400 was not expected to have a significant impact on the usefulness of the
model for degraded evaluation. The distribution of retroreflectivity values in the dataset is
displayed in Figure 10.
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As discussed in Sections 3.3 and 3.4 the point cloud points belonging to the evaluated
pavement markings were used to generate a vast set of features which were initially fil-
tered on variance as described in (Variance thresholding). The total number of features
generated exceeded 3500 features. After initial filtering, by removing features with many
unreasonable or undefined values or stagnant features through simple variance threshold-
ing, 1367 features remained. Next, exploring the data began with calculating statistical
association metrics Pearson’s r, Spearman’s ρ, and maximal information coefficient (MIC).
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The results of these parameters are displayed in Figure 11. The criteria selected to filter
features for further exploration were set such that any feature that achieved an absolute
value of 0.5 on any of the coefficients was selected for further evaluation. As observed in
Figure 11, only a small subset of 82 features passed the threshold levels.
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The features with the highest score for each of the coefficients are displayed in Table 1.
For Pearson’s r the top feature with the highest score was i__quantile__q_0.7 with a value
of 0.845. This feature was the 70th percentile of the intensity values of the set of points in
the marking. This result suggests a high linear correlation of the feature with measured
retroreflectivity values. Figure 12a displays this relationship. On the other hand, the feature
with the highest Spearman’s ρ score and the highest MIC value was i__c3__lag_1 with
scores of 0.837 and 0.635, respectively. This feature clearly showed a monotonic nonlinear
correlation with retroreflectivity, as displayed in Figure 12b. The feature was a measure of
the nonlinearity of the intensity values across the direction of the y-axis (lateral distance).

All the different models were proceeded by standardization. The evaluation metrics
reported were the result of a five-fold cross-validation for each model. In particular, the
mean R2 of the five-folds was used for selection. The evaluation process started with the
full set of features after filter-based selection (a total of 82 features). Exhaustive Search
was used to evaluate all single-feature models, as well as all combinations of two features.
Sequential backward selection was used to find the best combinations of 5, 10, 20, 30, and
40 features. The results of the model evaluation on the full set of features are shown in
Table 2. The best performing model on the full set of features was the ExtraTrees model,
which was able to achieve a R2 value of 0.823. The model had an average inference time
of 18 ms on the test set, which was on the slow side compared to the methods evaluated.
Nonetheless, its speed was more than sufficient for potential real-time processing. The
LightGBM model achieved 0.809 R2 with a scoring time that was almost 10 times faster.
However, it was noted that the estimation of all 82 features required a lot of processing
power and time. In addition, in some cases lower feature dimensionality could increase the
performance of some models.
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Table 1. Top feature of each metric.

Metric Top Feature Name Value

Pearson’s (r) i__quantile__q_0.7 0.845
Spearman’s (ρ) i__c3__lag_1 0.837

MIC i__c3__lag_1 0.635
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Table 2. Model performance (all filtered features).

Model Score Time (s) Test MSE Test R2

ExtraTrees 0.018 1865.366 0.823
LightGBM 0.002 1919.982 0.809

RandomForest 0.017 1931.275 0.808
GradientBoosting 0.001 1951.247 0.807

XGBoost 0.002 1961.802 0.805
KNeighbors 0.035 2131.877 0.793

Lasso 0.002 2199.763 0.784
Ridge 0.001 2226.763 0.779

Elasticnet 0.001 2319.176 0.773
Linear 0.001 2376.140 0.764

Table 3 displays the results of the top single-feature performance for each model. The
best single-feature model performance was obtained using the i__quantile__q_0.7 and a
Ridge model, with Linear and Lasso models following very closely. It was noted that the
same feature also had the highest Pearson’s r. The best single-feature model had an average
scoring time less than 1 ms.
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Table 3. Top single-feature performance of each model.

Model Score Time (s) Test MSE Test R2 Feature

Ridge 0.000 3029.194 0.703 i__quantile__q_0.7
Linear 0.000 3029.060 0.703 i__quantile__q_0.7
Lasso 0.000 3030.795 0.703 i__quantile__q_0.7

LightGBM 0.001 3079.462 0.698 i__c3__lag_1
GradientBoosting 0.001 3282.211 0.678 i__c3__lag_1

KNeighbors 0.014 3296.097 0.676 i__c3__lag_1
RandomForest 0.019 3721.588 0.635 i__quantile__q_0.7

Elasticnet 0.000 3901.383 0.620 i__quantile__q_0.7
XGBoost 0.001 3953.639 0.613 i__c3__lag_3

ExtraTrees 0.013 3960.911 0.609 i__quantile__q_0.7

The results of Exhaustive Search and sequential backward feature selection are dis-
played in Figure 13. The R2 results are displayed versus the number of features selected.
The highest R2 value of 0.824 was achieved by the model using 40 features. For the models
using a single or two features, a linear model was the best performing model, while for
all others, an ExtraTrees model was able to achieve the best results. The figure shows a
clear increase in the performance when increasing the number of features utilized. This
difference is most significant in the beginning when moving from one to five features.
Adding more than 40 features did not improve the model’s performance. In a real-life sce-
nario, selecting the number of features to be utilized depends on the particular application.
For example, if the goal is to develop the best prediction model with no limitations on
time or computational power, more features can be used. On the other hand, if the goal is
to develop a real-time analysis pipeline for retroreflectivity prediction from LiDAR data,
utilizing the five-feature model would give a sufficient prediction performance with much
lower computational cost. Figure 14 displays the predicted results using the model trained
with one (a), five (b), 40 (c), and 82 (d) features versus the actual retroreflectivity values.
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5. Discussion and Conclusions 
Retroreflectivity stands as a pivotal property of road markings, playing a crucial 

role in maintaining visibility for drivers, especially during nighttime. This study was 
aimed at developing a framework for predicting pavement marking retroreflectivity us-
ing a mobile LiDAR sensor. Data were collected from several road sections with various 
low to medium pavement marking conditions. Data were collected using a standard 
handheld retroreflectometer and a relatively low-cost rotating-sensor mobile LiDAR. 
Over 600 measured stations from eight road sections were used to establish the relation-
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Figure 14. Predicted vs. actual retroreflectivity (mcd/m2/lx) from the best models trained with
(a) a single feature (R2 = 0.703); (b) five features (R2 = 0.801); (c) 40 features (R2 = 0.824); (d) full set
(82 features) (R2 = 0.823).

5. Discussion and Conclusions

Retroreflectivity stands as a pivotal property of road markings, playing a crucial role
in maintaining visibility for drivers, especially during nighttime. This study was aimed at
developing a framework for predicting pavement marking retroreflectivity using a mobile
LiDAR sensor. Data were collected from several road sections with various low to medium
pavement marking conditions. Data were collected using a standard handheld retrore-
flectometer and a relatively low-cost rotating-sensor mobile LiDAR. Over 600 measured
stations from eight road sections were used to establish the relationship. The methodology
proposed in this study included comprehensive feature extraction. The features described
the distribution of LiDAR data and their intensity within the marking regions. Next, a
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multi-level rigorous feature selection methodology was utilized, and validation was per-
formed using five-fold cross-validation as the performance metric to ensure robustness
and generalizability. Several machine learning algorithms were evaluated, including lin-
ear models such as Ridge, Lasso, and ElasticNet; gradient boosting implementations like
XGBoost and lightGBM; as well as Random Forest, ExtraTrees, and k-Nearest Neighbors.

The dataset obtained in this study had 615 measured retroreflectivity stations and was
well distributed in the range from 20 to 400 mcd/m2/lx. The dataset was focused on this
range because typically the specifications use 50, 100, or 250 mcd/m2/lx as the minimum
criteria for different road categories. The feature with the highest linear correlation (Pear-
son’s (r) = 0.845) to retroreflectivity was found to be the 70th quantile of the intensity values,
while the c3 statistic feature had the best monotonic relationship (Spearman’s (ρ) = 0.837).
The best model performance was obtained by an ExtraTrees model trained using 40 features.
The model achieved an average R2 of 0.824. It was noted that this performance was of
hold-out data never seen by the model. Thus, it should not be compared with the R2 values
reported in the literature describing the correlation of intensity–retroreflectivity values. An
acceptable performance was obtained using the ExtraTrees model trained with five features,
which achieved 0.801 R2 while requiring much less computational cost (fewer features to
extract and a smaller model).

The results of this study show the potential of accurate and generalizable prediction
of road marking retroreflectivity using machine learning techniques and a relatively low-
cost LiDAR. In future research, our focus will pivot towards evaluating the effect of
different factors on the methodology and outcome models developed in this study. The
factors include the effect of road environment such as wet road conditions, sensor factors
such as comparing different LiDAR sensors, the effect of intensity normalization and
calibration on the correlation of LiDAR data with retroreflectivity, and data collection
factors such as a vehicle’s lateral distance from the evaluated marking, vehicle speed, and
data collection direction.
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