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Abstract: The effectiveness of a recently proposed methodology for the identification of damage in
planar, multistory, reinforced concrete (RC) moment frames, which develop a plastic yield mechanism
on their beams, is showcased here via the examining of a group of such existing multistory frames
with three or more unequal spans. According to the methodology, the diagram of the instantaneous
eigenfrequencies of the frame in the nonlinear regime is drawn as a function of the inelastic seismic
roof displacement by the performance of a sequence of pushover and instantaneous modal analyses
with gradually increasing target displacement. Using this key diagram, the locations of severe
seismic damage in an existing moment frame can be evaluated if the instantaneous fundamental
eigenfrequency of the damaged frame, at an analysis step within the nonlinear area, is known in
advance by “the monitoring and the identification of frequencies” using a local network of uniaxial
accelerometers. This is a hybrid technique because both procedures, the instrumental monitoring of
the structure and the pushover analysis on the frame (M and P technique), are combined. A ductile,
five-story, planar RC moment frame with three unequal spans is evaluated in this paper by the M
and P technique. The results show that the seismic roof displacement, the lateral stiffness matrix,
and, finally, the damage image of this existing frame, are fully compatible with the eigenfrequencies
identified by the monitoring and are calculated with high accuracy.

Keywords: damage identification; instantaneous eigenfrequencies diagram; pushover capacity curve;
seismic target displacement; beam-sway plastic mechanism

1. Introduction

The identification of damage in reinforced concrete (RC) structures can be conducted by
the detection of variations in their dynamic characteristics with reference to the undamaged
state. This identification process contributes to the creation of reliable structural models
for advanced nonlinear analyses of the inherent building seismic capacity. To detect the
eigenfrequencies (and mode shapes) of existing RC structures, instrumental monitoring
of the structure by an installed local multichannel network system of accelerometers is
necessary; then, an analytic processing of the recorded response should be performed by
using the various stochastic and deterministic procedures that were developed in the past.
For instance, the “frequency domain decomposition” technique was used in “operational
modal analysis” [1–4]. Also, much information about ambient vibration monitoring can
be found in the book by Wenzel and Pichler [5]. Moreover, several techniques have been
proposed using “stochastic subspace identification”. These techniques are based on the
classic books by Overschee and De Moor [6], in which they directly fit the measured
responses to the parametric models. Three distinct algorithms have been used in stochastic
subspace techniques: principal component, canonical variate analysis algorithms, and the
unweighted principal component. In all cases, random data analysis and operational modal
analysis are the main field of analysis of the recorded accelerograms [7–9]. Based on the
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aforementioned techniques, the “modal time-histories method” was proposed [10]; this
method is suitable for structures subjected to earthquake ground excitation at their bases or
structures loaded with strong wind pressure. Using the “modal time-histories method”,
eigenfrequencies, mode shapes and modal damping ratios have been calculated in the linear
domain in various structures [11]. Another important work on the detection of damage in
structures was proposed by Zimmerman and Kaouk [12,13]. This is the so-called minimum
rank perturbation theory (MRPT), in which a non-zero entry in the damage vector is
interpreted as an indicator of the damage location. Also, another technique was developed
by Domaneschi et al. [14,15], in which the discontinuity of the forms of mode shapes
was used. One more technique, which uses an artificial neural network, was developed
by Nazari and Baghalian [16] for simple symmetric beams. Moreover, the idea of the
damage stiffness matrix is presented in interesting works, such those of Peeters [3], Amani
et al. [17], and Zhang et al. [18]. It is also worth mentioning the recent research efforts by
Reuland et al. [19], which led to a comprehensive review of data-driven damage indicators
for rapid seismic structural health monitoring, as well as those by Martakis et al. [20],
which considered a combination of traditional structural health monitoring techniques
with novel machine learning tools. With regard to the rapid spread and application of
machine learning (ML), such as artificial neural networks (ANN), in structural engineering,
some recent research works in this field are mentioned that consider different types of
loading on structures [21–25]. Some other works combine structural health monitoring
techniques with pushover analysis to detect damage in structural elements [26] and in
frame structures [27]. In [28], damage in steel–concrete composite beams is identified using
acoustic emission (AE) measurements. Also, some other works investigate the damage in
terms of the mechanical behavior of various strengthened structural elements with different
combined loading conditions [29] or after fire exposure [30] and the progressive collapse
resistance of strengthened structural elements in multistory RC frames [31,32].

However, detecting the location and the severity of damage in the structure, as well as
the significance of the damage, is still an open issue for investigation. To fill a significant
part of this gap, an alternative, hybrid procedure for the damage identification in existing
planar RC frames has been developed recently by Makarios [33], mainly for the case of
seismic loading or wind loading. The last methodology is based, on the one hand, on
the development of eigenfrequency curves by performing two pushover analyses in a
suitable nonlinear model of the planar moment frame; on the other hand, it is based
on the fundamental eigenfrequency (or on the first to the third eigenfrequencies) of the
damaged frame, which is (or are) identified by the instrumental monitoring of its structural
integrity. Using the fundamental eigenfrequency of the damaged moment frame identified
by the instrumental monitoring, all the other higher eigenfrequencies of the moment frame
are determined from the diagram of the instantaneous eigenfrequencies of the frame in
the nonlinear regime (namely the key diagram). Furthermore, the modal shapes of the
damaged frame are determined by instantaneous modal analysis (at the examined step
of pushover analysis), where all the calculations are performed in the examined step of
the nonlinear area of analysis. Lastly, the damage stiffness matrix of the moment frame
is calculated at the examined step to consider all the plastic hinges and the degradation
of the member stiffness; therefore, it determines the extent of the damage to the moment
frame. Finally, the damage image of the planar RC moment frame, i.e., the location and
the magnitude of damage, is obtained from the state of the developed plastic hinges at
the corresponding step of pushover analysis. In planar frames, two pushover analyses are
performed, the first one along the positive direction and the second one along the negative
direction. In both analyses, the floor lateral forces are distributed triangularly (or according
to the first mode shape) in the height.

In order to verify the recently proposed methodology mentioned above [33], in frames
that develop a beam-sway plastic mechanism, a suitable extended parametric analysis
is conducted. In more detail, a group of existing ductile, multistory, multi-span, planar
RC frames with various lengths and story heights is examined in this paper in order to
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determine the damage state; here, a numerical example of a five-story RC moment frame
with three unequal spans is presented. All the steps of the proposed methodology (which
we call the “M and P” technique in this paper, where M means “Monitoring” and P means
“Pushover”) are clearly presented in the corresponding section below and applied during
the presentation of the numerical example. The article focuses, on the one hand, on the
determination of the eigenfrequency curves of the damaged moment frame as a function
of the seismic roof displacement, which are drawn by performing a sequence of pushover
and instantaneous modal analyses with gradually increasing target displacement; on the
other hand, the article focuses on the evaluation of the damage stiffness matrix of the
moment frame. In addition, a new load pattern appropriate for tall multistory frames is
incorporated in the pushover analysis to take account of the effects of higher modes in the
distribution of damage along the height of the frame. Finally, for each case, the damage
matrix of the frame is calculated, and the damage image of the frame is illustrated.

Therefore, by using the present methodology, the identification of damage (location
and severity) in planar RC frames which develop a beam-sway plastic mechanism can be
successfully accomplished numerically by combining the results of monitoring methods
with those of pushover analysis. This is an alternative, hybrid technique for damage
detection in ductile frame structures, the accuracy of which is ensured by “the monitoring
and the identification of frequencies”. It is therefore a self-evident process. In the present
work, it is shown that for a given damage image in an existing, ductile, frame structure, the
stiffness matrix of the healthy state of the structure changes, resulting in a change in the
eigenfrequencies of the structure which are identified experimentally by the monitoring
procedure. Then, using the key diagram of the method, the seismic roof displacement of
the building is determined, which, on the one hand, corresponds to the damage image,
and, on the other hand, ensures the same values of eigenfrequencies as those measured in
the field.

2. Materials and Methods

The free vibration differential equation of motion of a multi-degree-of-freedom system
(MDOF) without damping due to an initial forced displacement or velocity is:

m
..
u(t) + kou(t) = 0 (1)

where m is the mass matrix of the frame and ko is the stiffness matrix of the frame,
while u(t) and

..
u(t) are the time-varying displacement and acceleration vectors of the

system, respectively.
Next, it is assumed that this is an existing system that presents a damage image due to

any cause. Then, the stiffness matrix at any time step i will change by ∆ki; so, it follows that:

ki = ko − ∆ki (2)

where ∆ki is the damage stiffness matrix.
Moreover, the instantaneous mode shapes at each inelastic i-step of the analysis can

be defined if a modal linear analysis is performed using the instantaneous stiffness matrix
ki, which includes the damage effects on stiffness. Therefore, the equation of motion is
rewritten as:

m
..
u(t) + (ko − ∆ki)u(t) = 0 (3)

That is, a modal analysis is performed using the inelastic response of the frame
structure at the i-step as the initial condition. Hence, considering that the mass matrix m
does not vary, the eigenvalue problem at the inelastic i-step is written as:[

(ko − ∆ki)− ω2
i m
]
ϕi = 0 (4)
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where ωi (rad/s) is the instantaneous eigenvalues and ϕi is the instantaneous mode shape
vectors of the frame structure at the inelastic i-step of the analysis. The solution of the
eigenvalue problem is given by setting the following determinant to zero and finding the
roots ω2

i of the resulting algebraic equation:

det
[
(ko − ∆ki)− ω2

i m
]
= 0 (5)

Then, the instantaneous mode shape vector ϕi,g can be calculated by Equation (4) for
each value of ω2

i,g, where g = 1, 2, 3, . . . N in an N-degrees-of-freedom system. Moreover,

with a known eigenvalue ω2
i,g, Equation (4) is pre-multiplied by ϕT

i,g:

ϕT
i,g

[
(ko − ∆ki)− ω2

i,gm
]
ϕi,g = 0 (6)

Rearranging the terms in Equation (6), it can be rewritten as follows:

ϕT
i,g∆k

i
ϕi,g = ϕT

i,g ko ϕi,g − ω2
i,gϕ

T
i,gmϕi,g (7)

It is noted that it is impossible to identify the instantaneous frequency ωi,g and the in-
stantaneous mode shape vector ϕi.g of the structure at the inelastic i-step by analysis of the
records (time-history analysis with accelerograms) using the random data processing since
these procedures require the existence of a sufficient time window, where the eigenfrequen-
cies remain constant. Instead, the obtained records by an installed monitoring multichannel
network system of accelerometers must come from the ambient vibration of an existing
(with damage) calm structure, without motion. Therefore, if ωi,g , ϕi,g, ko , ∆ki, m are
known by the recently proposed methodology [33], then Equation (7) can be used at the
end for verification reasons.

In summary, the recently proposed methodology [33] on multistory planar RC frames,
using a hybrid technique (that we call the “M and P” technique, where M means “Moni-
toring” and P means “Pushover”) that combines an identification system and a numerical
model, consists of the following phases:

(a) The fundamental eigenfrequency f1 of the existing damaged structure is identified by
monitoring with a local network of uniaxial accelerometers located at the characteristic
positions along the degrees of freedom of the system. Note that up to the first three
eigenfrequencies can be found using the monitoring method.

(b) A suitable numerical nonlinear model of the structure is obtained, and a sequence of
separate pushover analyses are performed, targeting each time at a gradual increasing
roof displacement utop,i. For each target displacement, two pushover analyses are
performed, with positive and negative floor forces, leading to the drawing of the
capacity curves of the structure in terms of base shear and roof displacement. Figure 1
presents the general form of the capacity curve of a structure in terms of base shear Vo
and roof displacement utop, together with the idealized elasto-perfectly plastic force–
displacement relationship which defines the idealized yield point ( uy, Voy

)
of the

structure and the effective (secant) stiffness at yield. In addition, various performance
levels of the structure are presented in the figure which correspond to different roof
displacements u,i. The near-collapse state of the structure appears at the ultimate
target (roof) displacement, u,ult. Regarding the floor lateral force pattern used in
pushover analysis, the triangular or the first mode pattern of forces is suitable for
building structures up to four floors. For higher buildings, an additional second-floor
force pattern is proposed with a unit base shear (Vo), in which an additional force
equal to 0.20·Vo is applied at the top floor [34], and the rest of the base shear (namely
the 0.80·Vo) is distributed (in floor forces) according to the triangular or to the first
mode pattern. The goal here is to consider the higher mode effects of tall buildings in
the linear and nonlinear area, which can be significant, especially for more flexible
structures, such as moment frames. Another important point in the application of
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pushover analysis is that P-D effects should always be considered in the nonlinear
area, especially for frame structures which are more flexible.
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Figure 1. General form of the pushover capacity curve of a multistory planar RC frame structure,
with target displacement that corresponds to the NC state.

(c) By performing modal analysis at the last step of each pushover analysis with in-
creasing roof (target) displacement utop,i, i.e., by using in modal analysis the stiffness
matrix of the damaged structure obtained at the last step of each pushover analysis,
the diagram of the instantaneous (step) cyclic eigenfrequencies fN,i (in Hz) of the
damaged structure is drawn as a function of the roof displacement utop,i of the struc-
ture. The general form of such a diagram is depicted in Figure 2. In this diagram,
which is the novel key point of the proposed methodology, the value of the inelastic
roof displacement utop,i is the abscissa and the value of the eigenfrequencies fN,i of
the damaged structure is the ordinate. With this diagram, the seismic inelastic roof
displacement ui of an existing damaged RC frame can be found by inserting the
fundamental eigenfrequency f1 which was identified by the monitoring in phase (a).
This is described in the subsequent phase.
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It is emphasized that the sequence of pushover and instantaneous modal analyses of
the structure, targeting each time at a gradual increasing roof displacement utop,i, should be



Buildings 2023, 13, 2316 6 of 24

performed in a nonlinear model of the structure with discrete values Ec Ie f f ,i (Ec is the elastic
modulus of concrete) of the effective bending stiffness of the RC structural elements. This
should be performed because of the different level of stiffness degradation at each target
displacement utop,i due to the different damage states (cracking along the entire length of
the elements). The damage states correspond to various performance levels: undamaged
(health) state, first yield (first plastic hinge formation), damage limitation (DL), significant
damage (SD), near collapse (NC), and all the intermediate ones. Hence, an effective stiffness
scenario in terms of the effective moment of inertia ratio Ie f f ,i/Ig (where Ig is the moment
of inertia of the geometric section) must be prepared before performing pushover and
modal analyses, as a function of the mean (chord) rotation of the frame structure, θpr,i (in
rad), where the subscript pr,i refers to the chord rotation profile of the moment frame at the
examined roof (target) displacement ut,top,i. This is equal to θpr,i = ut,top,i/Htot, where Htot
is the total building height (Figure 3).
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As shown in Figure 4, the effective moment of inertia Ie f f ,i of the RC structural elements
(as the mean value for their two end-sections) that corresponds to the NC performance
level is too low, and it can be calculated from an equation given in EN 1998-3 [35]:

Ec Ieff =
Mp·Lv

3·θy
(8)

where Mp is the plastic moment of the section determined through an elastoplastic ideal-
ization of the moment–curvature diagram M-ϕ of the section; Lv is the shear span of the
RC element taken to be equal to the half-clear length of the element [22,23]; and θy is the
available chord rotation of the shear length of the element at the yield state that is given ap-
proximately by Equation (A.10) of Eurocode EN 1998-3. The rationale behind Equation (8),
which is clearly based on the elasticity theory, is presented in Figure 5 [36]. The effective
bending stiffness of the shear span Lv = M/V (where M is the bending moment and V is
the shear force) in a bilinear force–deformation model of an RC element under monotonic
loading is the secant stiffness of the shear span to the element yield point. Therefore,
considering the clear length of each RC element as a structural cluster of two cantilevers
(with opposite bending), with lengths equal to the shear span Lv that corresponds to each
extreme critical end section, the effective moment of inertia of the structural element is
obtained as the average of the corresponding values of the two shear spans in the positive
and negative bending. If it is assumed that both the end sections of all the RC elements
develop plastic hinges at the NC state, then the secant (effective) stiffness to the yield point
according to Equation (8) is determined [35,36]. It is noted that the consideration of a
full plastic mechanism in an RC building at the NC performance level is a fictitious state
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since usually there are several sections of various structural elements that have not yielded.
Despite this fact, EN 1998-3 imposes these low values of the secant (effective) bending
stiffness at the yield on all the RC structural elements in order to perform nonlinear analysis
that targets not just the NC performance level but also all the other higher performance
levels, from DL to NC. This is performed in order to be on the safe side with regard to the
calculation of the displacements since the building is more flexible. Hence, this concept is
adopted in our present methodology, and this is the main assumption of the present article.

Buildings 2023, 13, x FOR PEER REVIEW 7 of 25 
 

yield point according to Equation (8) is determined [35,36]. It is noted that the considera-
tion of a full plastic mechanism in an RC building at the NC performance level is a ficti-
tious state since usually there are several sections of various structural elements that have 
not yielded. Despite this fact, EN 1998-3 imposes these low values of the secant (effective) 
bending stiffness at the yield on all the RC structural elements in order to perform non-
linear analysis that targets not just the NC performance level but also all the other higher 
performance levels, from DL to NC. This is performed in order to be on the safe side with 
regard to the calculation of the displacements since the building is more flexible. Hence, 
this concept is adopted in our present methodology, and this is the main assumption of 
the present article. 

 
Figure 4. Effective moment of inertia ratio 𝐼௘௙௙ 𝐼௚⁄  with reference to the geometric moment of inertia 𝐼௚ of RC structural elements at discrete damage states as a function of the mean (chord) rotation of 
the frame structure 𝜃௣௥ (rad). 

Figure 4. Effective moment of inertia ratio Ie f f /Ig with reference to the geometric moment of inertia
Ig of RC structural elements at discrete damage states as a function of the mean (chord) rotation of
the frame structure θpr (rad).

Buildings 2023, 13, x FOR PEER REVIEW 8 of 25 
 

 
Figure 5. Definition of the curvature 𝜑௬, chord rotation 𝜃௬, and secant (effective) stiffness 𝛦𝐼௦௘௖ at 
yield (EN1998-3), at the base cross-section of a cantilever column with shear span length 𝐿௏. 

As this is too conservative (even at the NC state as mentioned before), a scaling is 
proposed in Figure 4 when the pushover analysis targets other higher seismic perfor-
mance levels, such as DL or SD or all the other intermediate ones. According to [34], at the 
DL state the value of 𝐸௖𝐼௘௙௙ is suggested to be equal to 2 · 𝐸௖𝐼௘௙௙,ே஼ and between 0.25 ·𝐸௖𝐼௚ and 0.5 · 𝐸௖𝐼௚ and at the SD state to be equal to the average of the corresponding 
ones at the NC and DL states. Another point in Equation (8) is that it provides different 
values of effective stiffness at various structural elements. To simplify this, the mean ef-
fective stiffness at the NC state is assigned to each structural RC element of the nonlinear 
model according to the proposed methodology. From the parametric investigation of var-
ious ductile, multistory RC frames, it was found that the mean values of 𝜃௣௥ at the 1st 
yield, DL, SD, and NC states were about equal to 0.004, 0.007, 0.024, and 0.032 rad, respec-
tively. The value for the NC state was determined considering the plastic hinge length 
according to EN 1998-3. This equation is presented below in the numerical example. It was 
also found that, at the NC state, the mean value of 𝐼௘௙௙,௜ 𝐼௚⁄  (according to Equation (8)) 
between all the structural RC elements was about equal to 0.15. For the DL state, the value 
of 𝐼௘௙௙,௜ 𝐼௚⁄ = 0.35 is considered, which is more than double the NC value, and for the SD 
state, the value of 𝐼௘௙௙,௜ 𝐼௚⁄ = 0.25. Moreover, the effective stiffness scenario of Figure 4 
proposes discrete 𝐼௘௙௙,௜ 𝐼௚⁄  values from the uncracked (health) state towards the 1st yield 
(when the 1st plastic hinge is shown) and from there to the DL. At 1st yield, the value of 𝐼௘௙௙,௜ 𝐼௚⁄ = 0.50 for elastic analysis is considered according to EN 1998-1 [37]. Addition-
ally, two proposed lines (with the corresponding equations, where 𝜃௣௥ is in rad units) for 
the effective stiffness ratio into the linear and nonlinear area are also presented in Figure 
4 and fit the abovementioned proposed 𝜃௣௥ and 𝐼௘௙௙,௜ 𝐼௚⁄  values for the 1st yield, DL, SD, 
and NC states: 

For the linear area, 0 ≤ 𝜃௣௥ ≤ 0.004: 𝐼௘௙௙ 𝐼௚⁄  =  1 − 125 · 𝜃௣௥ (9)

Figure 5. Definition of the curvature ϕy, chord rotation θy, and secant (effective) stiffness EIsec at
yield (EN1998-3), at the base cross-section of a cantilever column with shear span length LV .



Buildings 2023, 13, 2316 8 of 24

As this is too conservative (even at the NC state as mentioned before), a scaling is
proposed in Figure 4 when the pushover analysis targets other higher seismic performance
levels, such as DL or SD or all the other intermediate ones. According to [34], at the DL
state the value of Ec Ie f f is suggested to be equal to 2·Ec Ie f f ,NC and between 0.25·Ec Ig and
0.5·Ec Ig and at the SD state to be equal to the average of the corresponding ones at the NC
and DL states. Another point in Equation (8) is that it provides different values of effective
stiffness at various structural elements. To simplify this, the mean effective stiffness at the
NC state is assigned to each structural RC element of the nonlinear model according to the
proposed methodology. From the parametric investigation of various ductile, multistory
RC frames, it was found that the mean values of θpr at the 1st yield, DL, SD, and NC states
were about equal to 0.004, 0.007, 0.024, and 0.032 rad, respectively. The value for the NC
state was determined considering the plastic hinge length according to EN 1998-3. This
equation is presented below in the numerical example. It was also found that, at the NC
state, the mean value of Ie f f ,i/Ig (according to Equation (8)) between all the structural
RC elements was about equal to 0.15. For the DL state, the value of Ie f f ,i/Ig = 0.35 is
considered, which is more than double the NC value, and for the SD state, the value of
Ie f f ,i/Ig = 0.25. Moreover, the effective stiffness scenario of Figure 4 proposes discrete
Ie f f ,i/Ig values from the uncracked (health) state towards the 1st yield (when the 1st plastic
hinge is shown) and from there to the DL. At 1st yield, the value of Ie f f ,i/Ig = 0.50 for
elastic analysis is considered according to EN 1998-1 [37]. Additionally, two proposed lines
(with the corresponding equations, where θpr is in rad units) for the effective stiffness ratio
into the linear and nonlinear area are also presented in Figure 4 and fit the abovementioned
proposed θpr and Ie f f ,i/Ig values for the 1st yield, DL, SD, and NC states:

For the linear area, 0 ≤ θpr ≤ 0.004:

Ie f f /Ig = 1 − 125·θpr (9)

For the nonlinear area, 0.004 < θpr ≤ 0.032:

Ie f f /Ig = 3·106·θpr
4–253312·θpr

3 + 7383.2·θpr
2 − 93.773·θpr + 0.747 (10)

For the nonlinear area in the vicinity of (near) collapse, 0.032 < θpr :

Ie f f /Ig = Mp·Lv/
(
3·θy·Ec·Ig

)
(11)

(d) The known fundamental eigenfrequency of the damaged structure of phase (a), f1,
is inserted in the instantaneous eigenfrequencies diagram (Figure 2) and, hence,
the respective inelastic seismic (target) roof displacement ui is determined. All the
rest of the instantaneous higher eigenfrequencies

(
f2,i, f3,i, . . . fN,i

)
of the existing

damaged planar RC frame lie on the same vertical line passing through the target
displacement ui.

(e) The damage state of the structure can be identified by the results of two pushover
analyses (with floor forces along the positive and negative directions) targeting the
already known seismic roof displacement ui found in the previous phase. Two sets of
pushover analysis are performed, where the floor forces are applied according to the
two patterns discussed in phase (b). The location and the state of the plastic hinges at
the last step of each pushover analysis indicate an estimation of the damaged state
of the existing RC frame structure, while the final requested damaged state of the
structure will result from the envelope of the damage states of the two pushover sets.

(f) Moreover, a linear modal analysis is performed at the last step of each pushover anal-
ysis of phase (e), using as initial conditions the instantaneous stiffness matrix of the
planar RC frame structure at this last pushover analysis step. From this instantaneous
modal analysis, all the circular eigenfrequencies ωi,g and all the mode shapes ϕi,g of
the damaged structure are calculated.
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(g) At the end, the instantaneous stiffness matrix ki of the planar RC frame structure is
calculated at the examined inelastic i-step where the roof displacement ui occurs. This
can be achieved easily after the calculation of the flexibility matrix of the damaged
frame structure at the same i-step. For this purpose, separate linear analyses with
lateral forces applied sequentially on each floor, i.e., along the dynamic degrees of
freedom of the frame, are performed at the last step of the pushover analyses of phase
(e). Next, the stiffness matrix ki of the damaged frame is calculated by inversing the
flexibility matrix. Hence, the damage stiffness matrix ∆ki at the same inelastic i-step is
calculated from the general relationship ∆ki = ko − ki, where ko is the known initial
stiffness matrix of the undamaged frame structure, which is calculated at the health
state as mentioned above.

The present methodology on multistory, planar, ductile RC frames that uses the hybrid
M and P technique is deployed in the flowchart of Figure 6.
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3. Numerical Example

We consider the existing five-story planar RC frame of Figure 7, with three unequal
spans, with the dimensions L1 = 3.5 m, L2 = 5.5 m, and L3 = 4.5 m. The story height is
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equal to 3.5 m on all floors, and the total height of the frame is 17.5 m. The total vertical
uniformly distributed loads of the seismic combination p = g + ψEq (where g is the dead
load, ψEq is the quasi-live load, and ψE = 0.3 [24]) applied on the spans of each floor are,
respectively, equal to p1 = 28, p2 = 35, and p3 = 32 kN/m. These loads contribute to a floor
mass of approximately 45 tn and to a total frame mass of 225 tns. The floor mass and the
degrees of freedom of the five-story planar frame for the modal analysis are illustrated in
Figures 7b and 8b. Additionally, Figures 7a and 8a present the two patterns (P-1 and P-2) of
lateral floor forces that are used in the pushover analysis. The frame was constructed with
concrete grade C25/30 and steel grade B500s, with mean compressive and tensile strengths
equal, respectively, to fcm = 33 MPa and fym = 550 MPa. The elasticity modulus of the
concrete is equal to Ec = 31 GPa, while that of the steel is Es = 200 GPa. There are two
different column sections, with dimensions bc × hc equal to 0.45 × 0.45 and 0.50 × 0.50 m,
respectively. All the column sections are symmetrically reinforced with 12 steel bars of
a 20 mm diameter (or 12Ø20) at all floors, except the top floor where the total steel bars
are 4Ø20 + 8Ø14 (Figure 9). The confinement reinforcement in all the columns, on every
floor, consists of closed hoops with four ties of an 8 mm diameter, evenly spaced per 8 cm
axially at the critical end sections. The beams of the frame have a rectangular section of
dimensions bb × hb = 0.30 × 0.60 m and are symmetrically reinforced at the upper and the
lower fibers but have different steel bars on the various floors (Figure 9). The beams on all
floors have a perimetric closed hoop of an 8 mm diameter, evenly spaced per 8 cm axially at
the critical end sections, which acts as shear reinforcement and provides a low confinement
state. The steel reinforcement details of the typical column and beam sections are shown
in Figure 10. It is worth noting that the planar RC frame has been designed according to
EN 1998-1 [37] for the high ductility class (DCH); hence, it is expected to demonstrate a
beam-sway plastic mechanism in the nonlinear area.
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In order to apply the present methodology for the identification of the structural
damage, a sequence of pushover and instantaneous modal analyses should be performed.
The nonlinear model of the planar RC frame was created in the FEM analysis software
SAP2000 [38] using fiber hinges to simulate the locations of the possible developing plastic
hinges at the end sections of the elements, with the plastic hinge length calculated by
Equation (A.9) of EN 1998-3 [35]:

Lpl =
Lv

30
+ 0.2·h + 0.11·

dbL· fym√
fcm

(12)

where fcm is the mean concrete compressive strength, fym is the mean yield stress of steel,
dbl is the mean diameter of the tension reinforcement, h is the depth of the cross-section,
and Lv is the shear span.

The material constitutive relationships used in the nonlinear analyses are consistent
with: (a) the uniaxial unconfined and confined model for the concrete proposed by Mander,
Priestley, and Park (1988) [39] (Figure 11) and (b) the steel reinforcement model (parabolic
at strain hardening region) proposed by Park and Paulay (1975) [40] (Figure 12).
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A section analysis [38] should be performed first in order to calculate the effective bend-
ing stiffness Ec Iefff of the structural elements at the NC state, using Equation (8). Then, the
stiffness scenario that will be used in the sequence of pushover analyses of the frame—with
a gradually increasing (target) roof displacement—is established (phase c); this is presented
in Table 1 as a function of the profile angle θpr (Figure 3). The discrete values of the effective
moment of inertia Ieff assigned to all the RC structural elements of the nonlinear model of
the frame depend on the seismic (target) roof displacement of the pushover analysis, i.e., on
the target performance level (Figure 4). For example, if the target roof displacement ut,top
corresponds to a value of θpr equal to 0.028, i.e., ut,top = θpr·Htot = 0.028·17.5 = 0.49 m,
then the Ieff value that should be assigned to all the RC structural elements of the nonlinear
model is equal to 0.19Ig, as shown in Table 1.

Table 1. Effective moment of inertia ratio (Ie f f /Ig) of RC structural elements as a function of the
mean (chord) rotation of the frame structure θpr (rad).

θpr Ieff/Ig θpr Ieff/Ig θpr Ieff/Ig θpr Ieff/Ig

0.000 1.00 0.010 0.32 0.020 0.28 0.030 0.17
0.001 0.87 0.011 0.32 0.021 0.27 0.031 0.16
0.002 0.74 0.012 0.31 0.022 0.26 0.032 0.15
0.003 0.61 0.013 0.30 0.023 0.25 0.032+ Equation (8)
0.004 0.50 0.014 0.30 0.024 0.24
0.005 0.43 0.015 0.30 0.025 0.23
0.006 0.40 0.016 0.30 0.026 0.22
0.007 0.37 0.017 0.29 0.027 0.21
0.008 0.35 0.018 0.29 0.028 0.19
0.009 0.34 0.019 0.28 0.029 0.18

To obtain the capacity curve of the planar frame, two pushover analyses are performed
targeting the NC state, with the positive and negative signs of the floor lateral forces. In
these analyses, the effective moment of inertia Ie f f of Table 1 that corresponds to the NC
state is used (Equation (8)), i.e., the value 0.15Ig. As the planar frame has more than four
floors, two floor force patterns are used in the pushover analysis according to phase (b):
(i) the triangular pattern (Figure 7a) and (ii) the triangular pattern but with an additional
top force equal to 0.20·Vo for a unit base shear Vo = 1.00 kN (Figure 8a). These two force
patterns are referred to, from now on, as P-1 and P-2. The four capacity curves of the
planar frame for the two pushover sets are illustrated in Figure 13, together with the bi-
linearization lines for the first set P-1, which mark the DL state at a value of θpr, which is
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about equal to 0.01 rad. As shown in this figure, the NC state of the frame is conservatively
shown at a value of θpr equal to 0.567/17.5 = 0.032 rad, i.e., that which is given in the
last line of Table 1. The capacity curves for the second pushover set P-2 present higher
ultimate displacements and lower elastic stiffness (effective stiffness Ke f f , secant to the
yield point), as is obvious in the figure. It is noted that the capacity curves that resulted
from the pushover analyses that targeted other higher performance levels (for example SD
or DL) do not present the same characteristics as those for the NC state. This is because
of the different Ie f f values which should be assigned to the structural elements in the
nonlinear model to perform these pushovers.
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Next, a sequence of pushover analyses of the existing planar frame is performed,
where each one targets a seismic roof displacement which corresponds to the discrete
values of the profile angle θpr of Table 1, from 0 to 0.032 rad. The first pushover analysis
in the sequence is indeed for the zero lateral roof (target) displacement and includes only
the action of the vertical loads of the seismic combination g + ψEq in the health state. For
this analysis, the value Ie f f = Ig is assigned to all the structural elements in the nonlinear
model of the multistory RC frame. In all the other pushover analyses in the sequence, the
effective moment of inertia Ie f f assigned to the structural elements of the nonlinear model
of the frame is that shown in Table 1, which corresponds to the same discrete values of the
target profile angle θpr.

At the last step of the separate pushover analyses, an instantaneous modal analysis is
run with the initial condition of the damage state of this last step, i.e., using the stiffness
matrix of the damaged frame at the last step of each pushover analysis. From the sequence
of modal analyses of the planar frame, the instantaneous cyclic eigenfrequencies of the
system are recorded (F1 to F5), and the diagram of the instantaneous cyclic eigenfrequencies
(in Hz) of the planar frame in the nonlinear area is obtained as a function of the roof
displacement u5 (Figure 14). This is conducted for both pushover sets, P-1 and P-2, where
two pushover analyses are performed in each set with lateral floor forces along the positive
and negative direction. Then, in order to obtain an assessment of the seismic damage of the
existing multistory RC frame, the mean values of the instantaneous cyclic eigenfrequencies
(in Hz) of the planar frame are calculated for each of the pushover sets P-1 and P-2. The
cyclic eigenfrequencies (F1 to F5) that resulted from modal analysis at the last step of the
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positive and negatives pushovers of each of the pushover sets P-1 and P-2 are presented
in Tables 2 and 3 for indicative values of θpr. The final values of the instantaneous cyclic
eigenfrequencies (F1 to F5) are calculated as the mean of the results of the four pushovers
of the two sets P-1 and P-2 and are presented in Table 4. As is obvious in this table, the
instantaneous periods T1 to T5 (in sec) of the damaged frame (which are the inverse of the
cyclic eigenfrequencies F1 to F5 in Hz) are elongated with increasing roof displacement.
That is, the multistory RC frame becomes gradually more flexible due to the progress
of the damage. This elongation of periods between the health state and the NC state is
presented in Table 5. In Figure 14, the diagram of the instantaneous cyclic eigenfrequencies
(in Hz) is combined with the capacity curve of the planar RC frame. The two diagrams are
interconnected. This is the key figure of the proposed methodology in which:
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Table 2. Instantaneous cyclic eigenfrequencies (Hz) of the multistory frame for the P-1 pushover.

Pushover P-1 with Positive Forces Pushover P-1 with Negative Forces

θpr utop (m) Ieff/Ig F1 F2 F3 F4 F5 F1 F2 F3 F4 F5

0.000 0.000 1.00 1.4042 4.2341 7.8406 12.1142 16.4007 1.4042 4.2341 7.8406 12.1142 16.4007
0.002 0.035 0.74 1.1752 3.5394 6.2924 9.2359 11.8190 1.1723 3.5451 6.3541 9.3505 11.8044
0.004 0.065 0.50 1.0423 3.2031 5.6383 8.2312 10.5222 1.0548 3.2278 5.6447 8.2191 10.5150
0.008 0.140 0.35 0.5305 2.1266 4.2647 6.9212 9.4692 0.5344 2.1940 4.2883 6.8960 9.4775
0.014 0.245 0.30 0.3300 1.4782 3.3848 5.9591 8.8240 0.3239 1.5040 3.4604 6.0385 8.8550
0.017 0.298 0.29 0.2959 1.4173 3.2962 5.8707 8.6991 0.2914 1.4140 3.2628 5.8233 8.6753
0.020 0.350 0.28 0.2299 1.2436 2.9720 5.4186 8.3651 0.2424 1.2747 2.9953 5.4207 8.3765
0.023 0.403 0.25 0.1610 1.1251 2.8189 5.2590 8.2050 0.1608 1.1230 2.8218 5.2585 8.2290
0.026 0.455 0.22 0.1340 1.0598 2.6771 5.0406 7.9014 0.1385 1.0663 2.6904 5.0423 7.9288
0.029 0.508 0.18 0.1136 1.0047 2.5454 4.7929 7.5615 0.1119 1.0062 2.5461 4.7872 7.5779
0.032 0.555 0.15 0.0891 0.9228 2.3469 4.4202 7.0015 0.1099 0.9642 2.4206 4.4998 7.0550

Table 3. Instantaneous cyclic eigenfrequencies (Hz) of the multistory frame for the P-2 pushover.

Pushover P-2 with Positive Forces Pushover P-2 with Negative Forces

θpr utop (m) Ieff/Ig F1 F2 F3 F4 F5 F1 F2 F3 F4 F5

0.000 0.000 1.00 1.4042 4.2341 7.8406 12.1142 16.4007 1.4042 4.2341 7.8406 12.1142 16.4007
0.002 0.035 0.74 1.1806 3.5258 6.2758 9.1911 11.9099 1.1711 3.5147 6.2315 9.1269 11.6977
0.004 0.065 0.50 1.0545 3.1931 5.6845 8.3025 10.5969 1.0795 3.2542 5.7236 8.3419 10.6015
0.008 0.140 0.35 0.5578 2.1011 4.2880 6.9787 9.5029 0.5614 2.0878 4.2732 6.9612 9.5166
0.014 0.245 0.30 0.3582 1.5056 3.4200 6.0173 8.8449 0.3424 1.4288 3.2724 5.8288 8.7340
0.017 0.298 0.29 0.3271 1.3752 3.1978 5.7574 8.6387 0.3138 1.3364 3.1279 5.6588 8.5614
0.020 0.350 0.28 0.2402 1.1512 2.7924 5.2340 8.2582 0.2463 1.1532 2.8211 5.3157 8.3186
0.023 0.403 0.25 0.2134 1.0719 2.7094 5.1463 8.1527 0.2007 1.0744 2.6599 5.0168 8.0662
0.026 0.455 0.22 0.1524 0.9515 2.5397 4.9263 7.9696 0.1724 0.9968 2.5904 4.9431 7.9644
0.029 0.508 0.18 0.1556 0.9038 2.3453 4.5013 7.2607 0.1552 0.9118 2.3503 4.4819 7.2402
0.032 0.555 0.15 0.1379 0.8824 2.2328 4.2797 6.9233 0.1346 0.8697 2.2205 4.2454 6.8899

Table 4. Mean values of the instantaneous cyclic eigenfrequencies (Hz) of the multistory frame for
the two pushover sets, P-1 and P-2.

θpr utop (m) Ieff/Ig F1 F2 F3 F4 F5

0.000 0.000 1.00 1.4042 4.2341 7.8406 12.1142 16.4007
0.002 0.035 0.74 1.1748 3.5313 6.2884 9.2261 11.8078
0.004 0.065 0.50 1.0578 3.2195 5.6728 8.2737 10.5589
0.008 0.140 0.35 0.5460 2.1274 4.2785 6.9393 9.4916
0.014 0.245 0.30 0.3386 1.4792 3.3844 5.9609 8.8145
0.017 0.298 0.29 0.3071 1.3857 3.2212 5.7775 8.6436
0.020 0.350 0.28 0.2397 1.2057 2.8952 5.3473 8.3296
0.023 0.403 0.25 0.1840 1.0986 2.7525 5.1701 8.1632
0.026 0.455 0.22 0.1493 1.0186 2.6244 4.9881 7.9411
0.029 0.508 0.18 0.1341 0.9566 2.4468 4.6408 7.4101
0.032 0.555 0.15 0.1179 0.9098 2.3052 4.3613 6.9675

Table 5. Period (sec) elongation between the health state and the NC state.

T1 T2 T3 T4 T5

health state 0.71 0.24 0.13 0.08 0.06
NC 8.48 1.10 0.43 0.23 0.14

(a) From the diagram of eigenfrequencies, the roof seismic displacement ui (or the corre-
sponding θpr value) of the existing damaged RC frame is identified, after the insertion
into the diagram of the monitoring fundamental frequency.
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(b) At this roof seismic (target) displacement ui, we are moving upwards to the capacity
curve of the planar RC frame where we read the damage state visually.

The mean values of the cyclic eigenfrequencies that resulted from the two (±) pushovers
of each pushover set are presented in this figure. For the figure’s clarity, only one capacity
curve is presented, that for the pushover with positive floor forces following a triangular
pattern (P-1). This curve was determined using a nonlinear model of the frame in which
the Ie f f value of Table 1 that corresponds to θpr = 0.02 rad has been assigned to all the RC
structural elements, i.e., the value 0.28. As is shown in Figure 14, the two pushover sets P-1
and P-2 provide similar results for the instantaneous cyclic eigenfrequencies in this planar
frame. At θpr = 0.02 rad, the second pushover set (P-2) provides a (mean) value for f 1 (Hz)
which is 3% higher, while for the other frequencies lower (mean) values of up to 8% are
shown. Generally speaking, the difference for f 1 (Hz) increases linearly with the damage
state for the second pushover set, up to 30% at the NC state. Finally, the mean values of the
instantaneous cyclic eigenfrequencies (Hz) of the multistory frame that resulted from the
four pushovers along the positive and negative directions (P-2 and P-3) should be used in
the diagram (Table 4).

According to phase (a) of the methodology for the existing structures, an identification
multichannel system of uniaxial accelerometers is installed in the five-story planar RC
frame, and the response accelerations when the frame is quasi-calm are recorded. From the
analysis of the records, the fundamental eigenfrequency f1,i = 0.23610 Hz for the i-step of
the pushover analysis is determined.

Then, according to phase (d) of the methodology, the fundamental eigenfrequency
f1,i is inserted in the eigenfrequencies diagram of Figure 14 (see also the key in Figure 2),
and the respective displacement u5,i = 0.35 m of the frame roof is determined, which
corresponds to θpr = 0.02 rad. All the other higher frequencies ( f2,i to f5,i) can also be
found from Figure 14 at the same i-step. The first three instantaneous mode shapes (ϕ1,i
to ϕ3,i) of the multistory frame at the corresponding i-step where θpr is equal to 0.02 rad
are illustrated in Figure 15. Moreover, at the last step of the pushover analyses where
the roof displacement u5,i appears, two damage images are obtained, one for the positive
and one for the negative application of the floor forces, for each one of the two pushovers
sets P-1 and P-2. From these two damage images for each of the pushover sets and by
taking the envelope damage image from the two sets, the final requested estimation of the
damage is obtained. In Figure 16, the damage images for the first pushover set P-1 are
shown separately for the positive and negative directions of the lateral floor forces. In this
figure, the developed plastic hinges are illustrated with a black semicircle at the upper or
lower fibers of the beams. As shown in this figure, the multistory planar frame develops a
beam-sway-type plastic mechanism, with plastic hinges at the end sections of the beams on
all the floors (except the top floor) and at the base of the columns of the ground floor. This
is fully in line with the seismic design objective for high ductility [37]. For the second set,
P-2, of the pushover analysis, the damage is distributed throughout the frame, at the end
sections of the beams on all the floors, but the magnitude of the damage is a little higher in
the upper half of the frame and a little lower in the lower half (Figure 17). Also, no plastic
hinges appear at the base of the columns of the ground floor.



Buildings 2023, 13, 2316 18 of 24Buildings 2023, 13, x FOR PEER REVIEW 19 of 25 
 

 
Figure 15. The first three instantaneous modes φ1,i to φ3,i at 𝜃௣௥ = 0.02 rad. 

 
Figure 16. Plastic mechanism of the planar RC moment frame from the 1st set P-1 of pushover anal-
ysis, with (a) positive and (b) negative signs of floor forces, at seismic (target) displacement 0.35 m 
(𝜃௣௥ = 0.02 rad) corresponding to the fundamental eigenfrequency of the damaged frame. Evalua-
tion of damage locations. 

 
Figure 17. Plastic mechanism of the planar RC moment frame from the 2nd set P-2 of pushover 
analysis, with (a) positive and (b) negative signs of floor forces, at seismic (target) displacement 0.35 
m (𝜃௣௥ = 0.02 rad) corresponding to the fundamental eigenfrequency of the damaged frame. Eval-
uation of damage locations. 

Figure 15. The first three instantaneous modes ϕ1,i to ϕ3,i at θpr = 0.02 rad.

Buildings 2023, 13, x FOR PEER REVIEW 19 of 25 
 

 
Figure 15. The first three instantaneous modes φ1,i to φ3,i at 𝜃௣௥ = 0.02 rad. 

 
Figure 16. Plastic mechanism of the planar RC moment frame from the 1st set P-1 of pushover anal-
ysis, with (a) positive and (b) negative signs of floor forces, at seismic (target) displacement 0.35 m 
(𝜃௣௥ = 0.02 rad) corresponding to the fundamental eigenfrequency of the damaged frame. Evalua-
tion of damage locations. 

 
Figure 17. Plastic mechanism of the planar RC moment frame from the 2nd set P-2 of pushover 
analysis, with (a) positive and (b) negative signs of floor forces, at seismic (target) displacement 0.35 
m (𝜃௣௥ = 0.02 rad) corresponding to the fundamental eigenfrequency of the damaged frame. Eval-
uation of damage locations. 

Figure 16. Plastic mechanism of the planar RC moment frame from the 1st set P-1 of pushover
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Figure 17. Plastic mechanism of the planar RC moment frame from the 2nd set P-2 of pushover
analysis, with (a) positive and (b) negative signs of floor forces, at seismic (target) displacement
0.35 m (θpr = 0.02 rad) corresponding to the fundamental eigenfrequency of the damaged frame.
Evaluation of damage locations.
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It is worth noting that in an earthquake event, the actual seismic load on the structure
is different and that this loading varies in each time step. Hence, the damage distribution on
the frame can be different from that obtained by the pushover analysis. However, the critical
parameter in the recently proposed methodology is the fundamental eigenfrequency, which
is identified through monitoring with a local network of uniaxial accelerometers. Knowing
the fundamental eigenfrequency of the structure, the equivalent lateral displacement of
the monitoring point on the roof of the building can be estimated, as shown in Figure 14;
then, the capacity curve is considered to identify the damage state. On the other hand,
the second set of pushover analyses, with the load pattern with an additional top force,
should always be considered in tall moment frames with more than four floors, to take
account of the higher mode effects on the damage potential. In this frame, both pushover
sets provide similar values for the fundamental instantaneous cyclic eigenfrequency f1,i
and for the damage image but, if the frame had been taller, then these results might have
been different.

Finally, according to phase (g) of the methodology, the instantaneous stiffness matrix
ki of the frame structure at the examined inelastic i-step (θpr = 0.02 rad) is calculated for
the case of pushover analysis with positive floor forces following the triangular pattern
(P-1):

ki =


36370.51 −33082.10 14643.09 −3673.87 679.84
−33082.10 50479.70 −38748.17 15118.43 −2690.79
14643.09 −38748.17 52466.20 −36198.25 10206.16
−3673.87 15118.43 −36198.25 43966.32 −19808.32

679.84 −2690.79 10206.16 −19808.32 11722.76

 (13)

The above calculation is achieved easily at the last step of pushover analysis where
the roof displacement u5,i = 0.35 m appears, by calculating the flexibility matrix of the
frame. For this purpose, five linear analyses with lateral unit forces applied each time on
different floors (from the 1st to the 5th floor) are performed. Next, the stiffness matrix of
the damaged frame is calculated by inversing the flexibility matrix.

Therefore, the damage stiffness matrix ∆ki at the same i-step is calculated from the
general relationship ∆ki = ko − ki, where ko is the known initial stiffness matrix of the
planar frame in the health state without damage. The latter can be calculated from the
nonlinear model of the frame in which the geometric moment of inertia Ig has been assigned
to all the RC structural elements, and the gravity loads are applied gradually:

ko =


257837.85 −150932.01 37561.89 −5540.92 712.70
−150932.01 225406.70 −140857.01 33129.35 −3282.19

37561.89 −140857.01 207019.25 −118543.59 20706.76
−5540.92 33129.35 −118543.59 152434.25 −62373.91

712.70 −3282.19 20706.76 −62373.91 44252.75

 (14)

Hence, the damage stiffness matrix ∆ki of the planar frame, at the same i-step, is
calculated as follows:

∆ki = ko − ki

=


221467.34 −117849.92 22918.80 −1867.05 32.86
−117849.92 174926.99 −102108.84 18010.92 −591.40

22918.80 −102108.84 154553.05 −82345.34 10500.60
−1867.05 18010.92 −82345.34 108467.94 −42565.59

32.86 −591.40 10500.60 −42565.59 32529.99

 (15)

For the pushover analysis with positive floor forces following the triangular pattern
but with an additional top force (P-2), the corresponding damage stiffness matrix ∆ki of
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the planar frame, at the same i-step (θpr = 0.02 rad), is calculated as mentioned above and
is equal to:

∆ki =


219118.62 −117522.85 22932.98 −1948.18 110.79
−117522.85 175015.31 −102488.80 18377.29 −872.53

22932.98 −102488.80 155574.83 −84085.17 11567.50
−1948.18 18377.29 −84085.17 114674.18 −47323.23

110.79 −872.53 11567.50 −47323.23 36434.37

 (16)

4. Discussion

Considering Tables 2–4 for the eigenfrequencies, Figure 14 for the roof (target) dis-
placement, Figures 16 and 17 for the plastic mechanism, as well as for the damage state,
and the stiffness matrices (14–16) of the existing RC frame, the location and severity of
the damage of the RC frame can now be confirmed in relation to the health state. This
can be conducted since all the previous parameters are interrelated. This is the goal of the
present work.

Indeed, knowing the damage stiffness matrix ∆ki of the planar frame, the final per-
centage deviation terms of ∆ki can be calculated with respect to the initial stiffness matrix
ko, and they are presented in matrix form in Tables 6 and 7, respectively, for the P-1 and
P-2 pushovers with positive floor forces. The visual representation of these tables is shown
in Figures 18 and 19, respectively. These deviations on the diagonal terms of the damage
stiffness matrix indicate the degree of damage of the planar five-story RC frame at the
last step of pushover analysis where θpr = 0.02 rad (u5 = 0.35m) occurs, which is fully
compatible with the damage images of Figures 16 and 17. The paper deals with damage in
planar RC frames with a beam-sway plastic mechanism. In these frames, damage always
occurs at the end sections of the beams of the various floors and not in the columns except
at the base of the structure. It is noted that the diagonal terms of the stiffness matrix corre-
spond to the lateral dynamic degrees of freedom of the floors of the planar frame (Figure 7).
Therefore, the deviation of these terms in ∆ki corresponds to the overall damage of the
beams of the various floors in planar RC frames that develop a plastic beam mechanism.
For the ground floor, the corresponding first term of ∆ki also includes the damage at the
base of the columns. We also notice that in Table 7 (P-2 pattern) the values of the terms in
the damage stiffness matrix ∆ki that correspond to the upper half of the frame (degrees
of freedom u4, u5) are higher, while those corresponding to the lower half of the frame
(degrees of freedom u1, u2) are lower relative to the respective ones in Table 6 (P-1 pattern).
The values of ∆ki that correspond to u3 (intermediate floor) are about the same in both
tables. Hence, the form as well as the values of the damage stiffness matrix ∆ki is fully
compatible with the damage image in Figures 16 and 17. The final damage stiffness matrix
∆ki, which marks the damage state of this planar RC frame, is determined as the average of
the corresponding values resulting from the two patterns P-1 and P-2 (Figures 18 and 19).

Table 6. Percentage deviation of the damage stiffness matrix ∆ki at the i-step (θpr = 0.02 rad) for the
triangular force pattern (P-1).

Degrees of
Freedom u1 u2 u3 u4 u5

u1 85.89% 78.08% 61.02% 33.70% 4.61%
u2 78.08% 77.61% 72.49% 54.37% 18.02%
u3 61.02% 72.49% 74.66% 69.46% 50.71%
u4 33.70% 54.37% 69.46% 71.16% 68.24%
u5 4.61% 18.02% 50.71% 68.24% 73.51%
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Table 7. Percentage deviation of the damage stiffness matrix ∆ki, at the i-step (θpr = 0.02 rad) for the
triangular force pattern with an additional top force (P-2).

Degrees of
Freedom u1 u2 u3 u4 u5

u1 84.98% 77.86% 61.05% 35.16% 15.54%
u2 77.86% 77.64% 72.76% 55.47% 26.58%
u3 61.05% 72.76% 75.15% 70.93% 55.86%
u4 35.16% 55.47% 70.93% 75.23% 75.87%
u5 15.54% 26.58% 55.86% 75.87% 82.33%
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Therefore, it is shown that for a given damage image in an existing, ductile, RC frame
structure, the stiffness matrix of the healthy state of the structure changes, resulting in
a change in the eigenfrequencies of the structure which are identified experimentally by
the monitoring procedure. Then, using the key diagram of the method, the seismic roof
displacement of the building is determined, which, on the one hand, corresponds to the
damage image and, on the other hand, ensures the same values of the eigenfrequencies
as those measured in the field. All the parameters used in the hybrid M and P technique
are interrelated; hence, it is a self-evident and accurate process. This is clearly stated in the
Methodology section.

5. Conclusions

A recently proposed methodology [33] for the identification of damage in RC frame
structures is validated in the present paper by examining a group of planar, ductile, multi-
story RC moment frames, from which a numerical example was presented here. This is a
five-story planar moment frame with three unequal spans which develops a beam-sway
plastic mechanism. The methodology uses a hybrid technique, which is called the “M
and P technique” (where M means “Monitoring” and P means “Pushover”), where the
pushover capacity curve of the multistory frame is combined with the diagram of the
instantaneous eigenfrequencies of the structure as a function of the inelastic seismic (target)
roof displacement. This diagram was the result of performance of a sequence of pushover
and instantaneous modal analyses with a gradually increasing target displacement utop,i,
which corresponded to a specific value of the mean (chord) rotation θpr,i of the moment
frame. In each analysis, the RC structural elements of the nonlinear model are supplied
with the appropriate values of the effective bending stiffness Ec Ie f f ,i as a function of the
target displacement, based on the concept of EN1998-3. By inserting in this diagram the
fundamental eigenfrequency of the damaged frame identified by a monitoring network of
accelerograms, the roof target displacement ui of the frame arises and, hence, the damage
image of the frame at the last step of the pushover analysis that targets this roof displace-
ment ui. Moreover, the instantaneous stiffness matrix and the damage stiffness matrix
of the frame at the same last step of the pushover analysis is calculated. The latter is
fully compatible with the degree of damage in the multistory frame at this last step of the
pushover analysis, where the target displacement ui is shown.

In this article, the pushover analysis was performed using two patterns of lateral floor
forces (the second one with an additional top force) to account for the equivalent results
due to the higher mode effects in the tall moment frames. Finally, all the results appear as
the average of the four pushovers along the positive and negative direction while the final
damage image is enveloped.

As all the parameters used in the hybrid M and P technique are interrelated (roof dis-
placement, stiffness matrix, and eigenvalues) and based on the eigenfrequencies measured
in the field by monitoring, the estimated damage image of the frame (location and severity)
is always accurate. Therefore, using the present methodology for damage identification, a
very good estimation of the distribution and of the magnitude of the damage in beam-sway,
ductile, multistory, planar RC frames was achieved.

The M and P technique is suitable for damage identification in regular in-plan RC
buildings consisting of RC frames that develop a beam-sway plastic mechanism and in
regular in-plan dual buildings equivalent to wall buildings according to EN 1998-1. It
is also suitable for such buildings that present moderate irregularities in elevation, but
further investigation needs to be conducted for tall buildings with high irregular elevation.
Moreover, the M and P technique can be used for damage detection in RC bridges, as it is
an investigation currently being run by the authors. Also, the suitability of the technique
in irregular in-plan RC buildings is investigated. Where the M and P technique cannot be
applied is in RC buildings that develop a soft-story plastic mechanism, such as RC frame
buildings designed without a capacity approach. A future investigation will also target
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the integration of the hybrid M and P technique in the health monitoring procedure of RC
structures and in neural networks.
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