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Abstract: Recently, a new field that combines metaheuristic algorithms and quantum computing
has been created and is being applied to optimization problems in various fields. However, the
application of quantum computing-based metaheuristic algorithms to the optimization of structural
engineering is insufficient. Therefore, in this paper, we tried to optimize the weight of the truss
structure using the QbHS (quantum-based harmony search) algorithm, which combines quantum
computing and conventional HS (harmony search) algorithms. First, the convergence performance
according to the parameter change of the QbHS algorithm was compared. The parameters selected
for the comparison of convergence performance are QHMS, QHMCR, QPAR, ε, and θr. The selected
parameters were compared using six benchmark functions, and the range for deriving the optimal
convergence performance was found. In addition, weight optimization was performed by applying
it to a truss structure with a discrete cross-sectional area. The QbHS algorithm derived a lower
weight than the QEA (quantum-inspired evolutionary algorithm) and confirmed that the convergence
performance was better. A new algorithm that combines quantum computing and metaheuristic
algorithms is required for application to various engineering problems, and this effort is essential for
the expansion of future algorithm development.

Keywords: weight optimization; truss structure; discrete area; quantum computing; harmony
search algorithm

1. Introduction

Quantum computers are rapidly emerging as a next-generation future technology
and as one of the key technologies that will lead the fourth industrial revolution. Classical
computers use the bit, expressed as 0 or 1, as the minimum information processing unit
for computation. Quantum computers, on the other hand, use the qubit, or |1>, as the
minimum information processing unit for computation. Due to these characteristics,
the operation processing speed increases exponentially, attracting the interest of many
researchers [1,2].

The possibility of a computational system based on quantum mechanics was first pro-
posed by Feynman in 1982, and Deutsch proved in the same year that data processing was
possible by applying quantum states [3]. In 1994, Shor’s algorithm and quantum searching
algorithm were developed by Shor and Grover, and the full-scale development of quantum
computing began [4–6]. Quantum computing is being developed based on the expectation
that rapid computational processing is possible when quantum computer hardware is
developed, and research is being steadily conducted in areas such as optimization, sensing,
computing, and security [7,8].

In particular, quantum computing in the field of optimization is being combined with
metaheuristic algorithms, and a new optimization algorithm based on quantum computing
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has been proposed [9,10]. Metaheuristics algorithms are applied and used in various engi-
neering fields, such as weight optimization of structures, damage identification, optimal
sensor placement, seismic collapse probability, life cycle cost, and smart dampers [11–15].
The quantum computing-based metaheuristic algorithm was first proposed by Narayanan
and Moore in 1996. Narayanan and Moore applied quantum computing to genetic algo-
rithms and tried to solve the traveling salesperson problem [16]. In 2000, Han and Kim
expressed qubit probabilities and proposed the GQA (genetic quantum algorithm), which
expresses the overlap of qubit states. GQA is expressed as a binary string by the probability
of qubit, and the qubit rotates using the lookup table. In addition, a new termination
condition was proposed using the convergence probability of qubit, and the possibility of
GQA was confirmed by applying it to the knapsack problem [17]. In 2002, Han and Kim
proposed the QEA (quantum-inspired evolutionary algorithm), which incorporated the
evolutionary algorithm using the expression method of qubits used in GQA [18]. In 2004,
Sun et al. proposed QDPSO (quantum delta-potential-well-based particle swarm optimiza-
tion) using quantum wave functions and confirmed that it has a convergence performance
similar to the results of conventional PSO (particle swarm optimization) algorithms using
the benchmark function [19]. Since then, quantum computing has been applied to engineer-
ing problems and numerical problems in combination with algorithms such as the CSA
(Cuckoo Search Algorithm), FA (Firefly Algorithm), GSA (Gravitational Search Algorithm),
and TLBO (Teaching–Learning-Based Optimization) [20–23].

As explained earlier, new fields began to be created in the 1990s by combining quantum
computing with various metaheuristic algorithms. The conventional HS algorithm was first
proposed by Geem et al. [24] and is used to optimize many engineering problems because it
is easy to apply to optimization problems [25]. The conventional HS algorithms, like other
metaheuristic algorithms, underwent early attempts to combine them with quantum com-
puting. In 2005, Geem proposed a BHS (binary HS) algorithm that expressed HM (harmony
memory) in decimals in conventional HS algorithms [26], and in 2011, Wang et al. proposed
a hybrid BHS algorithm using an ant system [27]. In 2013, Layeb proposed the QIHS
(quantum-inspired HS) algorithm by combining quantum computing and conventional
HS algorithms [28], and in 2016, Alfailakawi et al. tried to express the quantum gate as a
two-dimensional circuit [29]. However, these attempts have the disadvantage of not being
applicable to real-time problems because only binary problems determined by 0 or 1 can
be solved, such as switch problems or knapsack problems. To solve this problem, in 2023,
Lee et al. proposed a QbHS (quantum-based HS) algorithm that performs operations using
probabilistic representations and overlapping qubit states and applied it to the weight
optimization of truss structures with continuous cross-sectional areas [30]. However, it
is not easy to determine the optimal parameter because the convergence performance
according to changes in various parameters used in the QbHS algorithm is not comparable.

Attempts have been made to find the minimum weight by applying the conventional
HS algorithm to the truss structure. In 2004, Lee et al. performed the weight optimization
of 10-bar, 17-bar, 18-bar, 22-bar, 25-bar, 72-bar, and 200-bar truss structures, as well as
120-bar dome structures [31]. Lee et al. used a continuous cross-sectional area for weight
optimization and performed size optimization. As constraints, the allowable stress of the
elements, the maximum displacement of the nodes, and the buckling stress of the elements
were considered. In 2005, Lee et al. performed the weight optimization of 25-bar, 52-bar,
72-bar, and 47-bar truss structures and used discrete cross-sectional areas [32]. As con-
straints, the allowable stress of the elements, the maximum displacement of the nodes,
and the buckling stress of the elements were considered. In 2010, Srikanth et al. performed
the weight optimization of a 22-bar truss structure and used the allowable stress of the
elements, the maximum displacement of the nodes, and the buckling stress of the elements
as constraints [33]. In 2012, Degetekin performed the weight optimization of 10-bar, 25-bar,
72-bar, and 200-bar truss structures using the IHS (improved HS) algorithm and used al-
lowable stress, maximum displacement of the node, and buckling stress as constraints [34].
Since then, weight optimization of truss structures has been steadily performed using the
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HS algorithm [35–37]. Natural frequencies are widely used as constraints to avoid the
resonance of structures in the weight optimization research of truss structures. However,
there are few cases in which natural frequencies are included as constraints in studies that
solve the weight optimization problem of truss structures using HS algorithms.

In order to apply the QbHS algorithm to various engineering problems, it is necessary
to define the parameters with the best convergence performance, and it is necessary to
apply them to various structure engineering problems using a quantum computing-based
metaheuristic algorithm. Therefore, in this paper, we compare the convergence perfor-
mance according to the parameter changes of the QbHS algorithm and perform weight
optimization of the truss structure with discrete cross-sectional areas containing the natural
frequency as a constraint. Examples adopted for the weight optimization problem are
20-bar, 24-bar, and 72-bar truss structures, each of which has a discrete cross-sectional
area. Section 2 describes the QbHS algorithm, and Section 3 compares the convergence
performance according to changes in parameters used in the QbHS algorithm. Section 4
performs weight optimization using example truss structures, and Section 5 concludes
this paper.

2. Quantum-Based HS Algorithm

The QbHS algorithm first proposed by Lee et al. has a similar computational structure
to the conventional HS algorithm and is classified into a total of five steps [30]. Although the
conventional HS algorithm uses decimals, the QbHS algorithm is calculated using a binary,
represented by the measurement of qubits. To express qubits, bracket notation is used
and can be expressed as Equation (1). Here, α and β mean the probability amplitudes of |0>
and |1>. α and β must satisfy Equation (2), and the single qubit state can be represented as
a vector matrix, as shown in Equation (3).

|ψ >= α|0 > +β|1 > (1)

|α|2 + |β|2 = 1 (2)

q =

[
α
β

]
(3)

In Step 1, an optimization problem is defined and parameters used in the QbHS
algorithm are initialized. The parameters used in the QbHS algorithm are divided into
parameters used in contentional HS algorithms such as QHMS (quantum harmony memory
size), QHMCR (quantum harmony memory considering rate), and QPAR (quantum pitch
adjusting rate), and parameters are added by combining them with quantum computing.
Parameters added by combination with quantum computing include the number of qubits,
ε, θr, the number of measurements, tolBW, BWQ, qbwmax, and qbwmin.

In Step 2, QHM (quantum harmony memory) is initialized, and QHM is configured
as shown in Figure 1. Here, N refers to the dimensions of the problem. For example,
assuming that there are three qubits, each design variable is expressed as the probability
information of qubits. The design variables of the qubit can be expressed as a binary through
measurement. Since the information in the qubit consists of probability information, each
measurement may have a different value.

Since the QbHS algorithm uses qubits, the process exists only when the initial qubit
state is determined. Lee et al. used the QbHSHG algorithm when the qubit had the same
probability of 0 or 1 being selected of 50%, and the QbHSRV algorithm when the probability
of 0 or 1 being selected was random [30]. If the QbHSRV algorithm is used, it is evaluated
once again with the Hε gate. The Hε gate serves to prevent the qubit from fully converging
to 0 or 1 in the local minima state, and the convergence of the qubit is prevented by the size
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of ε. Equations (4)–(6) are used for the Hε gate. Equations (4) and (6) return the convergence
probability to ε if |α|2 or |β|2 of the qubit converges above ε.

[αi βi]
T = [

√
ε
√

1− ε]T (4)

[αi βi]
T = [

√
1− ε

√
ε]T (5)

[αi βi]
T = [αi βi]

T (6)

Figure 1. Concept of QHM.

In Step 3, pitch adjusting is performed in the conventional HS algorithm; this is
the most important step that determines the convergence performance of the algorithm.
The QbHS algorithm is also performed by pitch adjusting the probabilities of QHMCR
and QPAR. Lee et al. proposed performing sound control using the basic qubit state and
expressed it as Equation (7) [30]. Here, r is a random number between 0 and 1, and pitch
adjusting is performed around the current probability information. Qbw is calculated by
Equation (8). {

αt+1
i =

∣∣αt
i

∣∣2 + r×Qbw r < 0.5
αt+1

i =
∣∣αt

i

∣∣2 − r×Qbw else
(7)

Qbw = 0.7×

0.9× qbwmax × exp

 log
(

qbwmin
qbwmax

)
0.7

× t
tmax

 (8)

In addition, the QbHS algorithm was proposed to change the number of qubits that
perform pitch adjusting according to the number of generations. Within a certain number
of generations, all qubits perform pitch adjusting, but when the probability mean of qubits
exceeds tolBW, qubits, in addition to BWQ probabilities, are adopted to perform pitch
adjusting. These characteristics improve the exploitation performance toward the end
of the generation. The qubit performs rotation using the current generation and uses a
rotation gate. A rotation gate is defined in Equation (9), and θ is defined in Equation (10).
Here, ∆θ is determined using a lookup table, and θr is used as a variable. Table 1 shows the
lookup table. {

αt+1
i

βt+1
i

}
=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]{
αt

i
βt

i

}
(9)

θ = ∆θ × sign(αiβi) (10)
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Table 1. Lookup table for rotation gate.

xi bi f (x) < f (b) ∆θ
sign(αiβi)

αiβi > 0 αiβi < 0 αi = 0 βi = 0

0 0 True 0 0 0 0 0
0 0 False 0 0 0 0 0
0 1 True θP 1 −1 0 ±1
0 1 False 0 0 0 0 0
1 0 True θN

1 1 −1 ±1 0
1 0 False 0 0 0 0 0
1 1 True 0 0 0 0 0
1 1 False 0 0 0 0 0

1 θN = −θP

In Step 4, as in the conventional HS algorithm, whether or not to update is determined
by comparing the qubit information of the previous generation with the qubit information
in which pitch adjusting has been performed in Step 3. Since the QbHS algorithm constructs
QHM using the qubit containing probability information, it compares fitness through the
measurement of qubits. After comparison, the probability information of the qubit derived
from better fitness is updated to the QHM. Through this process, the qubit converges to 0
or 1, and information accumulates.

In Step 5, the algorithm is terminated by the termination condition, and the optimiza-
tion result is shown. As in the conventional HS algorithm, the QbHS algorithm mainly uses
termination conditions using the number of generations. However, the QbHS algorithm
can use the new termination condition proposed by Han et al. that uses the convergence of
qubits [38], and the new termination condition can be expressed as Equations (11) and (12).
Unlike the conventional HS algorithms, the new termination condition uses the conver-
gence of qubits, so the algorithm can be terminated faster, and new results can be derived
through measurement.

Cb(q) =
1
m

m

∑
i=1
|1− 2|αi|2|

(
or Cb(q) =

1
m

m

∑
i=1
|1− 2|βi|2|

)
(11)

Cav =

(
1
N

N

∑
j=1

Cb(qj)

)
> (1− 2ε)γ (12)

3. Characteristics of the QbHS Algorithm

Table 2 shows the benchmark function used to compare the convergence performance
according to parameter changes and the number of qubits used in each benchmark func-
tion [39,40]. Here, Min is the minimum value of the function, and tmax is the maximum
number of generations. The parameters selected for the comparison of convergence perfor-
mance with changes in values are QHMS, QHMCR, QPAR, ε, and θr. In addition, among the
methods of initializing QHM for convergence performance comparison, the QbHSRV algo-
rithm, which constructs the initial qubit state as a random number, was used.

Table 2. Benchmark function for comparison.

Function Name Boundary Min tmax Qubit

f01 Sphere function [−100 100] 0 500 18
f02 Ackley’s function [−32 32] 0 800 18
f03 Griewank’s function [−600 600] 0 1000 21
f04 Rastrigin’s function [−5.12 5.12] 0 2000 17
f05 Schwefel’s function 2.26 [−500 500] 0 4000 22
f06 Rosenbrock’s function [−30 30] 0 8000 18
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3.1. QHMS

HMS (harmony memory size), one of the parameters for constructing HM (harmony
memory) in conventional HS algorithms, is one of the parameters sensitive to convergence
performance. Therefore, QHMS, with the same role as the HM of conventional HS al-
gorithms, was adopted in QbHS algorithms, and the effect of the QHMS size change on
convergence performance was compared. Table 3 presents the parameters for the inter-
pretation of QHMS changes. QHMS was interpreted by changing it to 1, 5, 10, 20, 40, 60,
and 100, and other parameters had fixed values. The interpretation was repeated 50 times.

Table 3. Parameters for QHMS analysis.

d QHMS QHMCR QPAR ε θr Mea.
qbw

tolBW qbwmax qbwmin

20 1–100 0.9 0.1 0.01 0.06 1 0.95 1.0 0.01

Figure 2 is the convergence graph of best fitness according to the change in QHMS,
and the interpretation results are summarized in Table A1. The smaller the size of the
QHMS, the closer it was to green, and the larger the size of the QHMS, the closer it was
to red. In all six functions, the larger the size of QHMS, the closer the result was to Min,
and on the contrary, the smaller the size of QHMS, the farther the result was from Min.
In terms of the average value using BF (best fitness) and MF (mean fitness), as presented in
Table A1, QHMS was the worst at 6.92 when it had a value of 1 and the best at 1.17 when it
had a value of 100.

(a) (b)

(c) (d)

Figure 2. Cont.
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(e) (f)

Figure 2. Comparison of convergence performance according to changes in QHMS: (a) f01; (b) f02;
(c) f03; (d) f04; (e) f05; (f) f06.

Therefore, it was confirmed that the larger the QHMS, the better the convergence
performance of the QbHS algorithm. This characteristic is because the larger the QHMS,
the larger the QHM, so the probability of selecting a better value increases. It is also a
characteristic similar to that of the conventional HS algorithms.

3.2. QHMCR and QPAR

The parameters that respond most sensitively to convergence performance in the
conventional HS algorithms are known as HMCR and PAR [41]. The convergence perfor-
mance of the conventional HS algorithms is the best when HMCR has values of 0.7–0.95
and PAR has values of 0.1–0.5. Therefore, the convergence performance of QHMCR and
QPAR, which play the same role as HMCR and PAR in the conventional HS algorithms,
was compared. Table 4 is a parameter for the interpretation of QHMCR and QPAR changes.
QHMCR and QPAR were changed to 0.1, 0.3, 0.5, 0.7, and 0.9, respectively, and other
parameters were fixed. The interpretation was repeated 50 times.

Table 4. Parameters for QHMCR and QPAR analysis.

d QHMS QHMCR QPAR ε θr Mea.
qbw

tolBW qbwmax qbwmin

20 10 0.1–0.9 0.1–0.9 0.01 0.06 8 0.95 1.0 0.01

Figure 3 is a 3D bar graph expressing the analysis results of each benchmark function,
and the analysis results are summarized in Table A2. In Figure 3, the closer to Min, the more
blue, and the further away from Min, the more red. First, checking the change in QHMCR,
the closer the value of QHMCR is to 0.9, the more blue it becomes. This characteristic means
that it has a value close to Min, especially when it has a range of 0.7 to 0.9, where it has the
closest value to Min. Second, the closer QPAR is to 0.1, the closer it is to Min. However,
when QHMCR has a value close to 0.1, the effect on the change in QPAR does not occur
clearly. That is, changes in QHMCR more dominantly affect convergence performance than
do changes in QPAR.
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(a) (b)

(c) (d)

(e) (f)

Figure 3. 3D bar graph according to changes in QHMCR and QPAR: (a) f01; (b) f02; (c) f03; (d) f04;
(e) f05; (f) f06.

Therefore, the closer QHMCR is to 1, the closer QPAR is to 0, and the better the
convergence performance. These characteristics of the QbHS algorithm are similar to the
range of HMCR and PAR, which are commonly used in the conventional HS algorithm.
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3.3. ε

ε is a parameter used for the Hε gate, which prevents the qubit from fully converging
to 0 or 1. That is, the smaller the value of ε, the closer the convergence of the qubit to 0 or
1, and the larger the value, the less the qubit converges. The values of ε changed to 0.00,
0.005, 0.01, 0.015, 0.02, and 0.03, and other parameters were used, as presented in Table 5.
The interpretation was repeated 50 times.

Table 5. Parameters for ε analysis.

d QHMS QHMCR QPAR ε θr Mea.
qbw

tolBW qbwmax qbwmin

20 10 0.9 0.1 0.00–0.03 0.06 1 0.95 1.0 0.01

Figure 4 shows the best or mean fitness according to the change in ε, and the analysis
results are summarized in Table A3. The gray circles in Figure 4 are the results of a single
analysis, and there are 50 gray circles depending on the size of ε. The red line means the
best fitness, and the blue line means the mean fitness among 50 analyses. Checking the
red lines, f01 and f03 were closest to Min when ε was 0.000, and f02 and f04 were closest
to Min when ε was 0.005. However, if ε is 0.000, it is difficult to proactively escape from
many problems with local minima. Therefore, 0.000 was excluded from the best ε range.
In the average ranking using BF and MF, as shown in Table A3, it can be seen that the
convergence performance is the best when ε is 0.005–0.015.

(a) (b)

(c) (d)

Figure 4. Cont.
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(e) (f)

Figure 4. Scatter plot according to changes in ε: (a) f01; (b) f02; (c) f03; (d) f04; (e) f05; (f) f06.

Figure 5 is the qubit probability according to the number of generations. Regardless
of the size of ε, as the number of generations progresses, the qubit converges to one
value. However, as ε increases, it converges at a value far from 1.0. Therefore, it was
confirmed that an appropriate ε exists to increase convergence performance, and in this
paper, the convergence performance was the best when the range was 0.005–0.015.

(a) (b)

(c) (d)

Figure 5. Cont.
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(e) (f)

Figure 5. Probability according to changes in ε: (a) f01; (b) f02; (c) f03; (d) f04; (e) f05; (f) f06.

3.4. θr

θr is a parameter used in the rotation gate, and the rotation angle of the qubit is
determined by the size of θr. It can be predicted that if θr has a large value, the qubit
will converge quickly, and if θr has a small value, the qubit will converge slowly. θr was
changed to 0.00, 0.05, 0.01, 0.02, 0.04, 0.06, 0.1, and 0.2, and other parameters were used as
well, as shown in Table 6. The interpretation was repeated 50 times.

Table 6. Parameters for θr analysis.

d QHMS QHMCR QPAR ε θr Mea.
qbw

tolBW qbwmax qbwmin

20 10 0.9 0.1 0.01 0.00–0.2 1 0.95 1.0 0.01

Figure 6 presents the change in the best or mean fitness according to the change in θr,
and the analysis results are summarized in Table A4. Checking for the best fitness, f01, f02,
f03, and f04 were closest to Min when θr was 0.060, and f05 and f06 were closest when θr
was 0.040. In addition, when θr was 0.000, the convergence performance was the worst for
all functions because there was no rotation angle of the qubit. Checking the average values
using BF and MF in Table A4, it can be seen that the convergence performance is the best
when θr has a range of 0.040–0.100.

(a) (b)

Figure 6. Cont.
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(c) (d)

(e) (f)

Figure 6. Scatter plot according to changes in θr: (a) f01; (b) f02; (c) f03; (d) f04; (e) f05; (f) f06.

Figure 7 is the qubit probability according to the number of generations. All functions
converge to one value as the number of generations progresses, except when θr is 0.000.
In particular, the larger θr is, the faster it converges to one value. However, when θr is 0.2,
the angle of rotation is so large that it converges near 0.9 and not any further.

(a) (b)

Figure 7. Cont.
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(c) (d)

(e) (f)

Figure 7. Probability according to changes in θr: (a) f01; (b) f02; (c) f03; (d) f04; (e) f05; (f) f06.

Therefore, it is confirmed that θr of an appropriate size exists to improve the conver-
gence performance of the QbHS algorithm. In this paper, the convergence performance
was the best when θr was in the range 0.040–0.100.

4. Truss Structure Example

The weight optimization of truss structures is aimed at the minimum weight of the
problem structure and can be defined as Equation (13). Equation (14) is a constraint for
performing weight optimization [42].

Minimize F(x) =

(
ρ

n

∑
i=1

Bi AiLi +
m

∑
j=1

bj

)
∗ penalty (13)
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Subject to gk(x) ≤ 0, k = 1, 2, 3, 4, 5, 6, 7

g1(x) = |Biσi| − σmax
i ≤ 0

g2(x) = |δj| − δmax
j ≤ 0

g3(x) = |Biσ
comp
i | − σcr

i ≤ 0, σcr
i =

ki AiEi

L2
i

g4(x) = fr − rmax
r ≤ 0

g5(x) = Amin ≤ Ai ≤ Amax

g6 = Check validity o f structure

g7 = Check kinematic stability

(14)

The cross-section that each truss structure element may have is discrete. Table A5 is
the size of the cross-sectional area that each member can have and may have a total of 64
cross-sectional areas [43]. A total of 7 constraints were used for weight optimization of the
truss structure. g1, g2, g3, and g4 utilize the maximum stress of the member, the maximum
displacement of the node, the buckling stress, and the natural frequency of the structure
through FEA (finite element analysis) of the structure. A penalty of 104 is given if the
constraint is not satisfied. g5 is the range of cross-sectional areas that the element can have.
g6 evaluates the validity of the structure. That is, it determines whether there is a node
serving as a support and a node acting as a load. A penalty of 109 is given if the constraint is
not satisfied. g7 evaluates the kinetic stability of the structure. To evaluate kinetic stability,
check the degree of freedom and stiffness matrix of the structure. If the degree of freedom
of the structure is greater than 0, a penalty of 108 is given. In addition, if eig(K) is less than
10−5, a penalty of 107 is given.

The QEA algorithm was used to compare the weight optimization results of the QbHS
algorithm. Table 7 presents parameters used in the QbHS and QEA algorithms to perform
weight optimization, which was repeatedly interpreted 100 times.

Table 7. Parameter for weight optimization of truss structures.

Algorithm Parameters

QbHSA QHMS = 10, QHMCR = 0.9, QPAR = 0.1, qubit = 18, ε = 0.01, θr = 0.06, Mea. = 2, tolBW = 0.95,
BWQ = 0.3, qbwmax = 1.0, qbwmin = 0.01

QEA Local group size = 10, Global migration period = 100, qubit = 18, ε = 0.01, θr = 0.06, Mea. = 2

4.1. 20-Bar Truss Structure

Figure 8 is the initial shape of a 20-bar truss structure, consisting of 9 nodes and
20 elements. E and ρ are 200,000 MPa and 7860 kg/m3, respectively, and the loading
conditions are classified into two cases. The first case is F1 = 500 kN and F2 = 0 kN, and the
second case is F1 = 0 kN and F2 = 500 kN. The allowable stress of each element is 180 MPa,
and the maximum displacement that can occur on the Y-axis of the 4-node is 10 mm. Finally,
the first natural frequency should be more than 60 Hz, and the second natural frequency
should be more than 100 Hz.

Figure 9 is a convergence result graph for a 20-bar truss structure. For all three sets of
algorithm results, the best and mean weights converge to one value. The best weights were
derived as 332.503 kg for the QbHSHG algorithm, 331.211 kg for the QbHSRV algorithm,
and 344.095 kg for the QEA algorithm. The mean weights were derived as 485.021 kg for
the QbHSHG algorithm, 422.130 kg for the QbHSRV algorithm, and 478.228 kg for the QEA
algorithm. The qubit probability shows that all algorithms converge to values close to 1.
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Figure 8. Shape of a 20-bar truss structure.

(a) (b)

(c)

Figure 9. Convergence graph of 20-bar truss structures: (a) QbHSHG; (b) QbHSRV ; (c) QE.

Table 8 presents the weight optimization results of the 20-bar truss structure. Three
algorithms contain elements 1, 5, 8, 11, 13, 15, 18, and 20, and the QbHSRV algorithm adds
element 4. Therefore, the QbHSHG and QbHSRV algorithms adopted a total of eight elements,
and the QEA algorithm adopted a total of nine elements. Among the results of the three
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algorithms, the QbHSRV algorithm had the best convergence performance by deriving the best,
mean, and standard deviation (Std) of 331.211 kg, 422.130 kg, and 61.786, respectively.

Table 8. Results of the 20-bar truss structure.

Variable QbHSHG QbHSRV QE

A1 26 23 20
A2 - - -
A3 - - -
A4 - - 21
A5 24 25 32
A6 - - -
A7 - - -
A8 24 33 21
A9 - - -
A10 - - -
A11 24 25 22
A12 - - -
A13 27 27 32
A14 - - -
A15 27 27 25
A16 - - -
A17 - - -
A18 32 27 25
A19 - - -
A20 32 27 33

Best (kg) 332.503 331.211 344.095
Mean (kg) 485.021 422.130 478.228

Std 92.247 61.786 103.993
σmax (MPa) 177.35 177.35 179.61
σcr

max (MPa) 339.35 495.48 468.39
δmax

4y (mm) 9.438 9.684 9.829
f1 (Hz) 80.202 79.226 78.543
f2 (Hz) 100.004 100.141 134.305

4.2. 24-Bar Truss Structure

Figure 10 is the initial shape of the 24-bar truss structure, consisting of 8 nodes and
24 elements. E and ρ are 200,000 MPa and 7860 kg/m3, respectively, and the loading
conditions are classified into two cases. The first case is F1 = 100 kN and F2 = 0 kN, and the
second case is F1 = 0 kN and F2 = 100 kN. The allowable stress of each element is 180 MPa,
and the maximum displacement that can occur on the Y-axis of the 5, 6-node is 10 mm.
Finally, the first natural frequency should be more than 30 Hz.

Figure 10. Shape of the 24-bar truss structure.
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Figure 11 is a convergence result graph of a 24-bar truss structure. In all three algorithm
results, the best and mean weights converge to one value. The best weights were 243.762 kg
for the QbHSHG algorithm, 250.718 kg for the QbHSRV algorithm, and 264.944 kg for the
QEA algorithm. The mean weights were derived as 364.978 kg for the QbHSHG algorithm,
342.582 kg for the QbHSRV algorithm, and 364.060 kg for the QEA algorithm. The qubit
probability shows that all algorithms converge to values close to 1.

(a) (b)

(c)

Figure 11. Convergence graph of the 24-bar truss structure: (a) QbHSHG; (b) QbHSRV ; (c) QE.

Table 9 presents the weight optimization results of the 24-bar truss structure. As a
result of weight optimization, all three algorithms contain elements 7, 8, 9, 12, and 15,
and the QbHSHG algorithm adds elements 17, 20, 21, and 22. The QbHSRV algorithm adds
elements 14, 16, 22, and 23, and the QEA algorithm adds elements 14, 16, and 24. Thus,
the QbHSHG algorithm adopted a total of 10 elements, the QbHSRV algorithm a total of
9 elements, and the QEA algorithms a total of 8 elements. The QbHSRV algorithm derived
243.762 kg from the best weight, which was the best convergence performance, but the
results of the QbHSRV algorithm, 342.582 kg and 72.289 for the mean and std, were the best.
In addition, the results of the three algorithms satisfied all constraints.
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Table 9. Results of the 24-bar truss structure.

Variable QbHSHG QbHSRV QE

A1 - - -
A2 - - -
A3 - - -
A4 - - -
A5 - - -
A6 - - -
A7 25 32 32
A8 12 12 12
A9 12 1 16
A10 - - -
A11 - - -
A12 8 4 9
A13 - - -
A14 - 9 1
A15 9 12 12
A16 - 27 28
A17 17 - -
A18 - - -
A19 - - -
A20 17 - -
A21 17 - -
A22 1 9 -
A23 - 8 -
A24 17 - 8

Best (kg) 243.762 250.718 264.944
Mean (kg) 364.978 342.582 364.060

Std 91.223 72.289 73.645
σmax (MPa) 155.94 162.50 175.43
σcr

max (MPa) 129.07 111.44 111.44
δmax

5y (mm) 3.267 1.657 3.048
δmax

6y (mm) 3.03 9.684 9.829
f1 (Hz) 32.024 30.549 33.925

4.3. 72-Bar Truss Structure

Figure 12 is the initial shape of a 72-bar truss structure, consisting of 20 nodes and
72 elements. The 72 elements were grouped into a total of 16 (G1–G16) and are shown in
Table A5. E and ρ are 68,950 MPa and 2767.99 kg/m3, respectively. The loading conditions
are also classified into two cases. The first case has a load of 22.25 kN applied in the X, Y,
and −Z directions at node 1. In the second case, 22.25 kN is applied in the −Z direction of
nodes 1, 2, 3, and 4. The allowable stress of each element is 172.375 MPa, and the maximum
displacement that can occur on the X or Y axis of nodes 1, 2, 3, and 4 is 6.35 mm. Finally,
the first natural frequency should be more than 4 Hz, and the third natural frequency
should be more than 6 Hz.

Figure 12. Shape of the 72-bar truss structure.
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Figure 13 is a convergence result graph of a 72-bar truss structure. The results of the
three algorithms show that the best and mean weight converge to one value. The weight
optimization of the 72-bar truss structure resulted in the best weights of 445.833 kg for the
QbHSHG algorithm, 449.190 kg for the QbHSRV algorithm, and 446.018 kg for the QEA
algorithm. Mean weights were derived as 484.945 kg for the QbHSHG algorithm, 498.136 kg
for the QbHSRV algorithm, and 522.369 kg for the QEA algorithm. The qubit probability
shows that all algorithms converge to values close to 1.

(a) (b)

(c)

Figure 13. Convergence graph of the 72-bar truss structure: (a) QbHSHG; (b) QbHSRV ; (c) QE.

Table 10 presents the weight optimization results of the 72-bar truss structure. The re-
sults of all three algorithms include groups 1, 2, 5, 6, 9, 10, 13, and 14, and the QbHSHG
algorithm adds groups 8 and 11. The QbHSRV algorithm adds groups 4 and 15, and the
QEA algorithm adds groups 8 and 15. Therefore, all three algorithms adopted a total of
10 groups. The best, mean, and std of the QbHSRV algorithm were 445.833 kg, 484.945 kg,
and 21.306, respectively, showing the best convergence performance. In addition, the results
of the three algorithms satisfied all constraints.
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Table 10. Results of the 72-bar truss structure.

Variable QbHSHG QbHSRV QE

G1 6 8 6
G2 8 8 8
G3 9 8 8
G4 10 10 10
G5 9 8 8
G6 8 8 9
G7 - - -
G8 - - -
G9 9 9 9
G10 8 8 8
G11 - - -
G12 - - -
G13 9 9 9
G14 8 8 8
G15 - - -
G16 - - -

Best (kg) 549.954 551.654 551.729
Mean (kg) 806.250 816.971 900.185

Std 177.718 238.728 260.150
σmax (MPa) 86.59 81.91 86.78
σcr

max (MPa) 133.78 133.78 133.78
δmax (mm) 2.942 2.968 2.932

f1 (Hz) 4.008 4.013 4.008
f3 (Hz) 6.883 6.883 6.940

5. Conclusions

In this paper, the convergence performance of the QbHS algorithm, which combines
quantum computing and conventional HS algorithms, was compared according to pa-
rameter changes. In addition, the weight optimization of 20-bar, 24-bar, and 72-bar truss
structures with discrete cross-sectional areas was performed.

• First, the convergence performance according to the size change of each parameter
was compared. The convergence performance of the QbHS algorithm was better
because the QHM increased as the QHMS increased. The larger the value of QHMCR,
and the smaller the value of QPAR, the better the convergence performance of the
QbHS algorithm. This aspect is judged to be similar to the conventional HS algorithm.
The convergence performance of the QbHS algorithm was the best when ε had a range
of 0.005–0.015 and θr had a range of 0.040–0.100.

• The weight optimization of 20-bar, 24-bar, and 72-bar truss structures with discrete
cross-sectional areas was performed using the QbHS algorithm. For the 20-bar truss
structure, the QbHSRV algorithm derived it as 331.211 kg, and for the 24-bar truss
structure, the QbHSHG algorithm derived it as 243.762 kg. The 72-bar truss structure
was derived as 549.954 kg by the QbHSHG algorithm.

Therefore, the convergence performance according to the changes in the parameters of
the QbHS algorithm was compared using the six benchmark functions, and a parameter
that could derive the best convergence performance was proposed. In addition, by applying
it to the weight optimization of truss structures with discrete cross-sectional areas, a lower
weight was derived than the QE algorithm, confirming that the convergence performance
was better.

Research that combines quantum computing with existing metaheuristic algorithms,
such as the QbHS algorithm, is creating new fields. However, it is extremely rare to apply
quantum computing-based metaheuristics algorithms to engineering problems. Thus, quan-
tum computing-based metaheuristic algorithms require a considerable amount of effort to
solve optimization problems in engineering fields such as structures, machinery, and mecha-
tronics. In addition, the truss structure applied in this paper is a basic structure, but it needs
to be applied to optimize various structures such as large trusses and dome structures or
complex buildings. Finally, since quantum computing-based metaheuristic algorithms are



Buildings 2023, 13, 2132 21 of 26

still in an early stage, it is necessary to combine them with various metaheuristic algorithms
and develop various quantum operators. The application of various engineering problems
of quantum computing-based metaheuristic algorithms and the development of quantum
operators are expected to expand the field of computer information.
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Appendix A. Benchmark Function Results with Parameter Size Changes

Appendix A contains the benchmark function results according to the parameter size
change of the QbHS algorithm. The parameters selected for convergence performance
comparison are QHMS, QHMCR, QPAR, ε, and θr, and six benchmark functions were used.
The BF (best fitness), MF (mean fitness), and Std (standard deviation) of the interpretation
results are indicated, in addition to the average ranking of BF and MF and the total average
ranking of BF and MF.

Table A1. Benchmark function results according to QHMS.

Funct. Index
QHMS

1 5 10 20 40 60 100

f01

BF 3.162 × 10+2 1.387 × 100 1.200 × 10−1 4.785 × 10−3 6.863 × 10−4 1.403 × 10−4 3.085 × 10−5

MF 1.048 × 10+3 8.719 × 100 8.578 × 10−1 6.648 × 10−2 4.966 × 10−3 1.149 × 10−3 1.558 × 10−4

Std 4.461 × 10+2 7.235 × 100 8.215 × 10−1 4.487 × 10−2 3.712 × 10−2 7.524 × 10−4 1.158 × 10−4

f02

BF 3.091 × 100 2.955 × 10−1 2.507 × 10−2 4.300 × 10−3 9.549 × 10−4 4.891 × 10−4 6.105 × 10−5

MF 5.528 × 100 2.104 × 100 1.706 × 100 1.603 × 100 8.970 × 10−1 5.772 × 10−1 1.394 × 10−1

Std 1.344 × 100 4.933 × 10−1 9.041 × 10−1 8.460 × 10−1 9.534 × 10−1 8.727 × 10−1 4.135 × 10−1

f03

BF 1.076 × 100 2.910 × 10−2 1.429 × 10−3 3.956 × 10−5 2.842 × 10−6 3.060 × 10−7 1.477 × 10−7

MF 1.849 × 100 2.260 × 10−1 1.637 × 10−1 1.112 × 10−1 7.753 × 10−2 6.532 × 10−2 5.948 × 10−2

Std 9.218 × 10−1 1.322 × 10−1 1.352 × 10−1 9.429 × 10−2 9.152 × 10−2 5.555 × 10−2 5.274 × 10−2

f04

BF 2.238 × 10+1 1.460 × 10+1 8.689 × 100 4.945 × 100 3.709 × 100 3.236 × 100 1.236 × 100

MF 4.297 × 10+1 3.006 × 10+1 2.310 × 10+1 1.808 × 10+1 1.499 × 10+1 1.164 × 10+1 9.036 × 100

Std 9.897 × 100 9.566 × 100 6.573 × 100 6.608 × 100 6.888 × 100 5.747 × 100 4.374 × 100

f05

BF 4.890 × 10+2 4.588 × 10+2 1.719 × 10+2 3.477 × 10+1 7.286 × 10−1 6.248 × 10−1 4.186 × 10−1

MF 1.426 × 10+3 9.323 × 10+2 5.291 × 10+2 2.149 × 10+2 4.734 × 10+1 8.553 × 100 1.102 × 100

Std 3.708 × 10+2 2.738 × 10+2 2.615 × 10+2 1.399 × 10+2 7.457 × 10+1 2.469 × 10+1 2.629 × 10−1

f06

BF 1.772 × 10+1 1.713 × 10+1 1.718 × 10+1 1.638 × 10+1 1.805 × 10+1 1.441 × 10+1 1.617 × 10+1

MF 1.944 × 10+3 3.597 × 10+2 2.778 × 10+2 2.087 × 10+2 1.746 × 10+2 1.079 × 10+2 1.080 × 10+2

Std 1.051 × 10+4 5.556 × 10+2 4.280 × 10+2 4.588 × 10+2 3.433 × 10+2 1.376 × 10+2 2.186 × 10+2

Ranking
BF 6.83 5.67 5.00 3.83 3.67 1.83 1.17
MF 7.00 6.00 5.00 4.00 3.00 1.83 1.17

AVG(BF, MF) 6.92 5.83 5.00 3.92 3.33 1.83 1.17
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Table A2. Benchmark function results according to QHMCR and QPAR.

Funct. QPAR Index
QHMCR

0.1 0.3 0.5 0.7 0.9

f01

0.1
BF 1.279 × 10+4 7.571 × 10+3 4.188 × 10+3 1.260 × 10+3 5.714 × 100

MF 1.864 × 10+4 1.354 × 10+4 8.048 × 10+3 2.544 × 10+3 2.023 × 10+1

Std 2.287 × 10+3 2.652 × 10+3 1.555 × 10+3 6.756 × 10+2 1.119 × 10+1

0.3
BF 1.245 × 10+4 8.951 × 10+3 3.540 × 10+3 1.561 × 10+3 1.495 × 10+1

MF 1.853 × 10+4 1.376 × 10+4 8.812 × 10+3 2.765 × 10+3 4.104 × 10+1

Std 2.044 × 10+3 1.959 × 10+3 1.616 × 10+3 6.516 × 10+2 1.846 × 10+1

0.5
BF 9.470 × 10+3 9.985 × 10+3 6.326 × 10+3 2.109 × 10+3 3.052 × 10+1

MF 1.871 × 10+4 1.425 × 10+4 8.938 × 10+3 3.252 × 10+3 8.475 × 10+1

Std 2.794 × 10+3 1.942 × 10+3 1.304 × 10+3 7.582 × 10+2 3.833 × 10+1

0.7
BF 1.295 × 10+4 9.541 × 10+3 3.935 × 10+3 1.832 × 10+3 8.140 × 10+1

MF 1.905 × 10+4 1.423 × 10+4 8.885 × 10+3 3.340 × 10+3 1.614 × 10+2

Std 2.719 × 10+3 1.990 × 10+3 1.583 × 10+3 8.188 × 10+2 4.966 × 10+1

0.9
BF 1.360 × 10+4 9.186 × 10+3 5.664 × 10+3 1.823 × 10+3 1.035 × 10+2

MF 1.878 × 10+4 1.409 × 10+4 8.785 × 10+3 3.822 × 10+3 2.707 × 10+2

Std 2.301 × 10+3 1.856 × 10+3 1.438 × 10+3 9.882 × 10+2 8.303 × 10+1

f02

0.1
BF 1.739 × 10+1 1.628 × 10+1 1.464 × 10+1 9.621 × 100 1.030 × 100

MF 1.875 × 10+1 1.782 × 10+1 1.604 × 10+1 1.163 × 10+1 2.542 × 100

Std 3.967 × 10+1 4.695 × 10−1 6.112 × 10−1 8.795 × 10−1 4.854 × 10−1

0.3
BF 1.706 × 10+1 1.644 × 10+1 1.465 × 10+1 9.175 × 100 2.442 × 100

MF 1.872 × 10+1 1.796 × 10+1 1.609 × 10+1 1.200 × 10+1 3.238 × 100

Std 4.467 × 10−1 4.182 × 10−1 6.520 × 10−1 1.126 × 100 4.882 × 10−1

0.5
BF 1.802 × 10+1 1.477 × 10+1 1.448 × 10+1 1.107 × 10+1 2.950 × 100

MF 1.874 × 10+1 1.781 × 10+1 1.611 × 10+1 1.245 × 10+1 3.908 × 100

Std 3.539 × 10−1 6.198 × 10−1 7.660 × 10−1 8.004 × 10−1 5.072 × 10−1

0.7
BF 1.755 × 10+1 1.679 × 10+1 1.274 × 10+1 1.075 × 10+1 3.618 × 100

MF 1.873 × 10+1 1.788 × 10+1 1.615 × 10+1 1.286 × 10+1 4.864 × 100

Std 3.785 × 10−1 4.855 × 10−1 9.103 × 10−1 8.175 × 10−1 5.925 × 10−1

0.9
BF 1.760 × 10+1 1.698 × 10+1 1.510 × 10+1 1.035 × 10+1 4.313 × 100

MF 1.867 × 10+1 1.794 × 10+1 1.650 × 10+1 1.314 × 10+1 5.716 × 100

Std 3.507 × 10−1 4.265 × 10−1 6.957 × 10−1 9.032 × 10−1 7.792 × 10−1

f03

0.1
BF 1.218 × 10+2 6.916 × 10+1 4.396 × 10+1 6.147 × 100 7.966 × 10−1

MF 1.592 × 10+2 1.148 × 10+2 6.585 × 10+1 1.835 × 10+1 1.038 × 100

Std 1.866 × 10+1 1.932 × 10+1 9.703 × 100 5.688 × 100 5.307 × 10−2

0.3
BF 6.040 × 10+1 7.250 × 10+1 3.162 × 10+1 9.727 × 100 1.021 × 100

MF 1.586 × 10+2 1.168 × 10+2 6.771 × 10+1 1.983 × 10+1 1.082 × 100

Std 2.277 × 10+1 1.526 × 10+1 1.238 × 10+1 5.482 × 100 3.705 × 10−2

0.5
BF 1.227 × 10+2 6.784 × 10+1 3.018 × 10+1 1.224 × 10+1 1.048 × 100

MF 1.649 × 10+2 1.159 × 10+2 7.145 × 10+1 2.244 × 10+1 1.209 × 100

Std 1.672 × 10+1 1.769 × 10+1 1.523 × 10+1 5.062 × 100 1.118 × 10−1

0.7
BF 1.129 × 10+2 6.054 × 10+1 4.580 × 10+1 1.551 × 10+1 1.138 × 100

MF 1.601 × 10+2 1.146 × 10+2 7.000 × 10+1 2.532 × 10+1 1.499 × 100

Std 1.996 × 10+1 1.869 × 10+1 1.237 × 10+1 5.446 × 100 2.556 × 10−1

0.9
BF 1.042 × 10+2 6.623 × 10+1 4.747 × 10+1 1.716 × 10+1 1.266 × 100

MF 1.626 × 10+2 1.216 × 10+2 7.440 × 10+1 2.787 × 10+1 1.831 × 100

Std 2.052 × 10+1 1.931 × 10+1 1.325 × 10+1 6.395 × 100 3.024 × 10−1

f04

0.1
BF 1.416 × 10+2 1.098 × 10+2 7.243 × 10+1 3.336 × 10+1 6.330 × 10−3

MF 1.708 × 10+2 1.421 × 10+2 9.851 × 10+1 4.619 × 10+1 9.242 × 10−1

Std 1.129 × 10+1 9.687 × 100 9.558 × 100 7.032 × 100 9.045 × 10−1

0.3
BF 1.440 × 10+2 1.190 × 10+2 7.421 × 10+1 3.444 × 10+1 1.637 × 100

MF 1.753 × 10+2 1.436 × 10+2 1.034 × 10+2 5.306 × 10+1 5.301 × 100

Std 9.039 × 100 1.069 × 10+1 9.931 × 100 7.812 × 100 1.853 × 100

0.5
BF 1.510 × 10+2 1.257 × 10+2 8.469 × 10+1 4.214 × 10+1 8.086 × 100

MF 1.731 × 10+2 1.460 × 10+2 1.051 × 10+2 5.907 × 10+1 1.176 × 10+1

Std 9.748 × 100 9.287 × 100 9.593 × 100 8.551 × 100 2.495 × 100

0.7
BF 1.451 × 10+2 1.256 × 10+2 8.393 × 10+1 5.166 × 10+1 9.087 × 100

MF 1.748 × 10+2 1.461 × 10+2 1.123 × 10+2 6.500 × 100 2.147 × 10+1

Std 1.244 × 10+1 1.017 × 10+1 1.153 × 10+1 9.367 × 100 4.274 × 100

0.9
BF 1.432 × 10+2 1.157 × 10+2 8.962 × 10+1 5.383 × 10+1 1.825 × 10+1

MF 1.769 × 10+2 1.491 × 10+2 1.131 × 10+2 7.220 × 10+1 3.194 × 10+1

Std 1.037 × 10+1 1.025 × 10+1 1.109 × 10+1 9.904 × 100 5.732 × 100
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Table A2. Cont.

Funct. QPAR Index
QHMCR

0.1 0.3 0.5 0.7 0.9

f05

0.1
BF 3.511 × 10+3 2.715 × 10+3 1.553 × 10+3 4.516 × 10+2 2.155 × 10−1

MF 4.245 × 10+3 3.400 × 10+3 2.196 × 10+3 7.358 × 10+2 6.138 × 10−1

Std 2.498 × 10+2 2.479 × 10+2 2.562 × 10+2 1.514 × 10+2 2.722 × 10−1

0.3
BF 3.402 × 10+3 2.852 × 10+3 1.445 × 10+3 3.188 × 10+2 3.710 × 10−1

MF 4.280 × 10+3 3.439 × 10+3 2.285 × 10+3 8.625 × 10+2 9.603 × 10−1

Std 2.432 × 10+2 2.064 × 10+2 2.861 × 10+2 1.973 × 10+2 2.974 × 10−1

0.5
BF 3.396 × 10+3 2.796 × 10+3 1.652 × 10+3 4.463 × 10+2 7.093 × 10−1

MF 4.312 × 10+3 3.439 × 10+3 2.376 × 10+3 9.559 × 10+2 1.708 × 100

Std 2.443 × 10+2 1.949 × 10+2 2.522 × 10+2 2.075 × 10+2 9.339 × 10−1

0.7
BF 3.094 × 10+3 2.923 × 10+3 1.855 × 10+3 7.097 × 10+2 2.129 × 100

MF 4.239 × 10+3 3.516 × 10+3 2.442 × 10+3 1.096 × 10+3 1.369 × 10+1

Std 2.796 × 10+2 2.477 × 10+2 2.275 × 10+2 1.950 × 10+2 1.450 × 10+1

0.9
BF 3.374 × 10+3 3.012 × 10+3 1.615 × 10+3 6.972 × 10+2 9.921 × 100

MF 4.277 × 10+3 3.539 × 10+3 2.490 × 10+3 1.248 × 10+3 6.615 × 10+1

Std 2.328 × 10+2 2.200 × 10+2 2.551 × 10+2 2.397 × 10+2 4.256 × 10+1

f06

0.1
BF 6.279 × 10+6 3.299 × 10+6 5.584 × 10+5 4.194 × 10+3 7.815 × 100

MF 1.556 × 10+7 6.417 × 10+6 1.232 × 10+6 1.160 × 10+4 7.341 × 10+1

Std 3.617 × 10+6 1.836 × 10+6 3.954 × 10+5 6.609 × 10+3 4.125 × 10+1

0.3
BF 7.724 × 10+6 3.085 × 10+6 4.562 × 10+5 2.498 × 10+3 1.222 × 10+1

MF 1.647 × 10+7 6.917 × 10+6 1.353 × 10+6 2.014 × 10+4 9.499 × 10+1

Std 4.446 × 10+6 1.905 × 10+6 3.870 × 10+5 1.307 × 10+4 8.885 × 10+1

0.5
BF 6.871 × 10+6 3.031 × 10+6 6.777 × 10+5 8.852 × 10+3 1.792 × 10+1

MF 1.573 × 10+7 7.109 × 10+6 1.479 × 10+6 2.865 × 10+4 1.455 × 10+2

Std 4.255 × 10+6 1.911 × 10+6 4.602 × 10+5 1.583 × 10+4 1.259 × 10+2

0.7
BF 6.470 × 10+6 2.280 × 10+6 8.091 × 10+5 1.692 × 10+4 2.201 × 10+1

MF 1.706 × 10+7 6.661 × 10+6 1.712 × 10+6 4.240 × 10+4 1.425 × 10+2

Std 4.091 × 10+6 1.997 × 10+6 6.701 × 10+5 2.043 × 10+4 1.204 × 10+2

0.9
BF 7.309 × 10+6 1.616 × 10+6 7.881 × 10+5 1.734 × 10+4 3.822 × 10+1

MF 1.508 × 10+7 7.260 × 10+6 1.856 × 10+6 6.825 × 10+4 2.557 × 10+2

Std 3.890 × 10+6 2.255 × 10+6 6.431 × 10+5 3.201 × 10+4 2.838 × 10+2

Table A3. Benchmark function results according to ε.

Funct. Index
ε

0.000 0.005 0.010 0.015 0.020 0.030

f01

BF 7.217 × 10−2 8.412 × 10−2 1.303 × 10−1 3.919 × 10−1 1.058 × 100 1.546 × 10+1

MF 1.536 × 10+1 5.910 × 10−1 8.094 × 10−1 1.843 × 100 7.131 × 100 4.015 × 10+1

Std 8.826 × 10+1 4.960 × 10−1 6.828 × 10−1 1.230 × 100 4.676 × 100 2.086 × 10+1

f02

BF 6.849 × 10−2 1.067 × 10−2 1.778 × 10−2 8.569 × 10−2 2.483 × 10−1 1.519 × 100

MF 2.260 × 100 2.034 × 100 1.636 × 100 1.606 × 100 1.837 × 100 2.422 × 100

Std 4.630 × 10−1 5.163 × 10−1 9.638 × 10−1 8.638 × 10−1 7.380 × 10−1 3.304 × 10−1

f03

BF 5.667 × 10−5 3.471 × 10−4 1.427 × 10−3 3.185 × 10−2 1.675 × 10−1 1.001 × 100

MF 2.037 × 10−1 1.398 × 10−1 1.408 × 10−1 1.760 × 10−1 5.378 × 10−1 1.051 × 100

Std 1.530 × 10−1 1.202 × 10−1 1.214 × 10−1 1.150 × 10−1 1.671 × 10−1 1.959 × 10−2

f04

BF 1.017 × 10+1 6.538 × 100 8.177 × 100 1.316 × 10+1 8.749 × 100 1.613 × 10+1

MF 3.558 × 10+1 2.621 × 10+1 2.274 × 10+1 2.235 × 10+1 2.176 × 10+1 2.835 × 10+1

Std 1.001 × 10+1 7.451 × 100 6.573 × 100 7.118 × 100 7.489 × 100 6.294 × 100

f05

BF 4.090 × 10+2 2.375 × 10+2 6.962 × 10+1 3.549 × 10+1 1.379 × 10+2 1.128 × 10+2

MF 1.056 × 10+3 6.778 × 10+2 5.269 × 10+2 3.984 × 10+2 4.456 × 10+2 4.938 × 10+2

Std 3.048 × 10+2 2.705 × 10+2 2.587 × 10+2 1.790 × 10+2 1.697 × 10+2 2.098 × 10+2

f06

BF 1.569 × 10+1 1.678 × 10+1 1.487 × 10+1 1.717 × 10+1 1.809 × 10+1 1.786 × 10+1

MF 3.305 × 10+2 1.301 × 10+2 2.149 × 10+2 2.403 × 10+2 2.450 × 10+2 1.560 × 10+2

Std 5.148 × 10+2 2.575 × 10+2 3.705 × 10+2 4.587 × 10+2 4.609 × 10+2 2.434 × 10+2

Ranking
BF 2.83 2.33 2.17 3.67 4.67 5.33
MF 5.33 2.67 2.67 2.33 3.33 4.67

AVG(BF, MF) 4.08 2.50 2.42 3.00 4.00 5.00
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Table A4. Benchmark function results according to θr.

Funct. Index
θr

0.000 0.005 0.010 0.020 0.040 0.060 0.100 0.200

f01

BF 1.167× 10+4 6.822× 10+2 1.341× 10+2 3.490 × 100 8.767× 10−1 1.613× 10−1 4.959× 10−1 7.588× 10+1

MF 2.188× 10+4 1.912× 10+3 3.654× 10+2 3.751× 10+1 2.909 × 100 1.088 × 100 2.196 × 100 2.977× 10+2

Std 2.723× 10+3 6.883× 10+2 1.985× 10+2 2.118× 10+1 1.545 × 100 9.910× 10−1 1.631 × 100 1.196× 10+2

f02

BF 1.738× 10+1 4.392 × 100 1.744 × 100 4.369× 10−1 7.336× 10−2 3.799× 10−2 8.735× 10−2 3.850 × 100

MF 1.890× 10+1 6.274 × 100 2.994 × 100 2.079 × 100 1.883 × 100 1.939 × 100 1.309 × 100 5.037 × 100

Std 3.998× 10−1 1.069 × 100 4.198× 10−1 5.096× 10−1 7.852× 10−1 6.986× 10−1 8.848× 10−1 6.141× 10−1

f03

BF 1.144× 10+2 1.387 × 100 8.973× 10−1 1.770× 10−1 3.009× 10−3 1.972× 10−3 9.346× 10−2 1.238 × 100

MF 1.738× 10+2 2.242 × 100 1.083 × 100 4.677× 10−1 1.530× 10−1 1.338× 10−1 3.247× 10−1 2.196 × 100

Std 2.184× 10+1 4.968× 10−1 5.778× 10−2 1.670× 10−1 1.127× 10−1 1.122× 10−1 1.638× 10−1 5.735× 10−1

f04

BF 1.536× 10+2 1.249× 10+1 1.146× 10+1 1.218× 10+1 1.167× 10+1 1.068× 10+1 1.319× 10+1 2.416× 10+1

MF 1.860× 10+2 2.738× 10+1 2.569× 10+1 2.239× 10+1 2.419× 10+1 2.279× 10+1 2.324× 10+1 4.346× 10+1

Std 1.141× 10+1 7.019 × 100 8.376 × 100 6.382 × 100 6.914 × 100 6.321 × 100 6.296 × 100 8.413 × 100

f05

BF 3.581× 10+3 1.999× 10+2 1.303× 10+2 1.378× 10+2 1.035× 10+2 1.577× 10+2 1.536× 10+2 3.001× 10+2

MF 4.287× 10+3 5.863× 10+2 5.391× 10+2 5.645× 10+2 4.983× 10+2 5.890× 10+2 4.393× 10+2 7.602× 10+2

Std 2.986× 10+2 2.028× 10+2 1.849× 10+2 2.168× 10+2 2.387× 10+2 2.041× 10+2 1.775× 10+2 2.223× 10+2

f06

BF 6.081× 10+6 1.714× 10+1 1.729× 10+1 1.767× 10+1 1.584× 10+1 1.809× 10+1 1.716× 10+1 4.437× 10+1

MF 1.844× 10+7 2.872× 10+2 2.439× 10+2 2.139× 10+2 2.914× 10+2 2.171× 10+2 2.286× 10+2 4.657× 10+2

Std 5.343× 10+6 5.463× 10+2 4.703× 10+2 3.005× 10+2 5.546× 10+2 4.317× 10+2 4.018× 10+2 6.146× 10+2

Ranking
BF 8.00 4.67 3.67 4.00 2.67 3.50 3.83 5.67
MF 8.00 6.17 4.67 3.00 3.17 2.50 2.17 6.33

AVG(BF, MF) 8.00 5.42 4.17 3.50 2.92 3.00 3.00 6.00

Appendix B. Discrete Area of Truss Structure Element

Each element of the truss structure may have a discrete cross-sectional area and is
adopted as one of a total of 64 cross-sectional areas.

Table A5. Discrete area of truss structure.

No. Area (cm2) Thickness (cm) No. Area (cm2) Thickness (cm)

1 0.7161 0.1510 33 24.7741 0.8880
2 0.9097 0.1702 34 24.9677 0.8915
3 1.2645 0.2006 35 25.0322 0.8926
4 1.6129 0.2266 36 26.9677 0.9265
5 1.9806 0.2511 37 27.2258 0.9309
6 2.5226 0.2834 38 28.9677 0.9602
7 2.8516 0.3013 39 29.6128 0.9709
8 3.6323 0.3400 40 30.9677 0.9928
9 3.8839 0.3516 41 32.0645 1.0103
10 4.9419 0.3966 42 33.0322 1.0254
11 5.0645 0.4015 43 37.0322 1.0857
12 6.4129 0.4518 44 46.5806 1.2177
13 6.4516 0.4532 45 51.4193 1.2793
14 7.9226 0.5022 46 51.4193 1.2793
15 8.1677 0.5099 47 59.9999 1.3820
16 9.4000 0.5470 48 69.9999 1.4927
17 10.0839 0.5666 49 74.1943 1.5368
18 10.4516 0.5768 50 87.0966 1.6650
19 11.6129 0.6080 51 89.6772 1.6895
20 12.8387 0.6393 52 91.6127 1.7077
21 13.7419 0.6614 53 99.9998 1.7841
22 15.3548 0.6991 54 103.2256 1.8127
23 16.9032 0.7335 55 109.0320 1.8630
24 16.9677 0.7349 56 121.2901 1.9649
25 18.5806 0.7691 57 128.3868 2.0216
26 18.9032 0.7757 58 141.9352 2.1255
27 19.9354 0.7966 59 147.7416 2.1686
28 20.1935 0.8017 60 158.0642 2.2431
29 21.8064 0.8331 61 170.9674 2.3328
30 22.3871 0.8442 62 180.6448 2.3979
31 22.9032 0.8538 63 193.5480 2.4821
32 23.4193 0.8634 64 216.1286 2.6229
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