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Abstract: Concrete is a highly regarded construction material due to many advantages such as
versatility, durability, fire resistance, and strength. Hence, having a prediction of the compressive
strength of concrete (CSC) can be highly beneficial. The new generation of machine learning models
has provided capable solutions to concrete-related simulations. This paper deals with predicting the
CSC using a novel metaheuristic search scheme, namely the slime mold algorithm (SMA). The SMA
retrofits an artificial neural network (ANN) to predict the CSC by incorporating the effect of mixture
ingredients and curing age. The optimal configuration of the algorithm trained the ANN by taking the
information of 824 specimens. The measured root mean square error (RMSE = 7.3831) and the Pearson
correlation coefficient (R = 0.8937) indicated the excellent capability of the SMA in the assigned task.
The same accuracy indicators (i.e., the RMSE of 8.1321 and R = 0.8902) revealed the competency of
the developed SMA-ANN in predicting the CSC for 206 stranger specimens. In addition, the used
method outperformed two benchmark algorithms of Henry gas solubility optimization (HGSO) and
Harris hawks optimization (HHO) in both training and testing phases. The findings of this research
pointed out the applicability of the SMA-ANN as a new substitute to burdensome laboratory tests for
CSC estimation. Moreover, the provided solution is compared to some previous studies, and it is
shown that the SMA-ANN enjoys higher accuracy. Therefore, an explicit mathematical formula is
developed from this model to provide a convenient CSC predictive formula.

Keywords: building material; concrete; compressive strength; neural network; slime mold algorithm

1. Introduction

In recent years, the world of engineering has witnessed significant developments that
have enabled experts to solve problems with higher accuracy and convenience [1–3]. These
developments include a wide range of civil engineering domains such as geotechnical [4,5]
and water [6,7] analysis. Focusing on the structural aspects of this field, engineers have
benefitted from various technologies and simulation tools for analyzing the behavior of
structures (and their particular elements) [8–10] under different loading conditions [11–13].

Also, many laboratory tools and innovative approaches have been successfully em-
ployed for investigating the behavior of structural materials [14–16]. When it comes to
construction materials, concrete is known as one of the most effective ones. Mechanical
parameters, and particularly the compressive strength of concrete (CSC), play an appre-
ciable role in determining the quality of this popular material [17,18]. Since the non-linear
effect of different parameters should be incorporated for CSC analysis, machine learn-
ing models, and more particularly artificial neural networks (ANN), have been regarded
for this aim. Some of the primary efforts in utilizing the ANNs for the CSC problem
can be found in studies like [19,20]. Prasad et al. [21] used this model for predicting the
CSC of self-compacting and high-performance concretes containing high-volume fly ash.
Duan et al. [22] successfully modeled the CSC of recycled aggregate concrete using ANNs.
Regarding the 99.55% correlation, as well as the mean absolute percentage error (MAPE)
below 2%, they concluded the applicability of the ANN. Naderpour et al. [23] applied a
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similar methodology to environmentally friendly concrete. ANNs have also performed
profitably for other properties of concrete like slump [24], creep and shrinkage [25], and
strain [26].

In a more general sense, many scientific efforts have been dedicated to foreseeing a specific
behavior, particularly prediction tasks [27–29]. As for the application of machine learning
models for CSC modeling, many attempts can be found in the published literature [30–32].
Akande et al. [33] introduced support vector machine (SVM) as a stable approach for this
objective. Also, the proposed SVM outperformed the ANN with respect to root mean square
error (RMSE) values (23.14 vs. 27.15). Feng et al. [34] used an adaptive boosting algorithm
(a combination of several learners) to predict the CSC. While the mean absolute percentage
error (MAPE) for this model was around 6.8%, conventional benchmarks including ANN and
SVM achieved MAPE of around 10 and 15%, respectively. Accordingly, the suggested model
presented a promising approximation of the CSC. The authors also showed that specifying
80% of the data for pattern recognition leads to an acceptable accuracy. Moreover, scholars like
Başyigit et al. [35] and Vakhshouri and Nejadi [36] proved the feasibility of fuzzy-based tools
for handling the CSC estimation.

Moreover, optimization algorithms have served as prominent techniques for analyzing
mechanical parameters of concrete such as CSC. Kandiri et al. [37] optimized an ANN
by a multi-objective slap swarm algorithm for the prediction of CSC when the mixture
contains ground granulated blast furnace slag. The authors compared the accuracy of
the developed models with a well-known machine learning tool called the M5P model
tree. The larger MAPE of the MP5 (12.05 vs. 7.25%) demonstrated the superiority of the
optimal ANN. Naseri et al. [38] attained an optimal design of sustainable concrete by
predicting the CSC using a potent metaheuristic algorithm called water cycle algorithm
(WCA). In addition to the WCA, popular algorithms like ANN and SVM were also consid-
ered. The most sustainable mixtures were eventually detected among the 16 tested ones.
Moreover, the cuckoo search algorithm (CSA) was used for a similar purpose by Boin-
dala and Arunachalam [39]. As another usage of the WCA, Ashrafian et al. [40] coupled
multivariate adaptive regression splines (MARS) with this technique to create a capable
hybrid model. Similar to earlier efforts, the authors also proved the superiority of the
developed model over a number of conventional tools like standard MARS and ANN. Grey
wolf optimizer (GWO) is another well-known metaheuristic approach that was used by
Golafshani et al. [41] for hybridizing the ANN and ANFIS toward simulating the CSC.
In research by Zhang et al. [42], beetle antennae search (BAS) was employed to tune the
parameters of a random forest model. The resultant hybrid method was applied to estimate
the uniaxial CSC of concrete containing oil palm shell. Regarding the 96% correlation
observed for the prediction phase, the developed BAS-based ensemble was introduced
as an efficient approximator. Likewise, Akbarzadeh et al. [43] professed the outstanding
accuracy of ANN tuned by electromagnetic field optimization (EFO) for predicting the
CSC. The EFO algorithm outperformed several compatible techniques including sine cosine
algorithm (SCA) and cuttlefish optimization algorithm (CFOA). This study presented the
final solution in the form of a complex mathematical formula for convenient estimations
of CSC. Further attempts concerning the use of metaheuristic algorithms for modeling
different concrete characteristics can be found in studies [44–47].

As reported by the literature review, metaheuristic integrated approaches show high
promise for studying CSC prediction. On the other hand, many old and reputable opti-
mizers such as ICA [48], PSO [49], whale optimization algorithm [50], etc., have gained
sufficient attention for this purpose. Therefore, due to the continuous development of
metaheuristic algorithms, recent studies have mainly focused on evaluating newly de-
vised techniques to keep the existing solutions updated. Some examples of these new
metaheuristic algorithms that are coupled with ANN for CSC prediction are multi-tracker
optimization algorithm (MTOA) [51], satin bowerbird optimizer (SBO) [52], equilibrium
optimizer (EO) [53], beetle antennae search (BAS) [54], etc. Each of these algorithms fol-
lows a specific search scheme in order to find the optimum contribution between the CSC
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and concrete mixture components. Slime mold algorithm (SMA) [55] is another capable
metaheuristic algorithm that has not been investigated in previous studies. This work
presents various configurations of this algorithm that rules an ANN to attain an optimum
non-linear prediction of the CSC. Moreover, two other metaheuristic algorithms of Harris
hawks optimization (HHO) [56] and Henry gas solubility optimization (HGSO) [57] are
employed as benchmark techniques to comparatively validate the performance of the SMA.
The HHO and HGSO are also among newly developed techniques, and using them would
add new insights to the body of knowledge regarding predicting mechanical properties
of concrete, particularly the CSC. The final solution of this research is translated into a
monolithic mathematical formula in order to provide a convenient predictive approach for
the users.

2. Materials and Methods
2.1. Data and Statistics

It Yeh [19] collected the information (i.e., the conditions and results) of 1030 typical
compressive strength tests (on the cylinder specimens with height 15 cm) to create the
dataset used for capturing and reproducing the CSC behavior in this work. This dataset can
be accessed at http://archive.ics.uci.edu/ml/datasets/Concrete+Compressive+Strength
(accessed on 12 June 2021).

The amount of each ingredient of the specimen mixtures is considered as a separate
independent factor for the corresponding CSC. Figure 1 shows the values of (a) cement,
(b) blast furnace slag (BFS), (c) fly ash (FA1), (d) water, (e) superplasticizer (SP), (f) coarse
aggregate (CA), (g) fine aggregate (FA2), and (h) age. The values of the mentioned factors
are in the ranges of [102.00, 540.00], [0.00, 359.40], [0.00, 200.10], [121.75, 247.00], [0.00, 32.20],
[801.00, 1145.00], [594.00, 992.60], and [1.00, 365.00], respectively. Meanwhile, the obtained
CSCs are shown in Figure 1i with the minimum and maximum values of 2.33 to 82.60.

Table 1 provides some examples of the used data. As is seen, each row is labeled as
either “Training” or “Testing”. It determines the group that this data lies in. Based on
random selection, as well as the division ratio of 80:20, a total of 824 and 206 samples form
the training and testing datasets, respectively.

2.2. Methodology

Figure 2 shows the graphical methodology of the present study. The first section
describes data provision, followed by the model development and prediction stage, and
accuracy assessment. In the end, a comparison is carried out among the models to extract
the formula from the outstanding one.
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Table 1. Information on some training and testing specimens.

Inputs Target
GroupCement

(kg/m3)
BFS

(kg/m3)
FA1

(kg/m3)
Water

(kg/m3)
SP

(kg/m3)
CA

(kg/m3)
FA2

(kg/m3) Age (day) CSC
(MPa)

149.00 236.00 0.00 176.00 13.00 847.00 893.00 28.00 32.96 Training

375.00 0.00 0.00 186.00 0.00 1038.00 758.00 7.00 26.06 Testing

213.76 98.06 24.52 181.74 6.65 1066.00 785.52 56.00 47.13 Testing

310.00 0.00 0.00 192.00 0.00 971.00 850.60 3.00 9.87 Training

290.35 0.00 96.18 168.08 9.41 961.18 865.00 100.00 48.97 Testing

277.00 117.00 91.00 191.00 7.00 946.00 666.00 28.00 43.57 Training

190.00 190.00 0.00 228.00 0.00 932.00 670.00 365.00 53.69 Training

446.00 24.00 79.00 162.00 11.64 967.00 712.00 3.00 25.02 Testing

236.00 157.00 0.00 192.00 0.00 972.60 749.10 28.00 32.88 Testing

214.90 53.80 121.89 155.63 9.61 1014.30 780.58 3.00 18.02 Training

330.50 169.60 0.00 194.90 8.10 811.00 802.30 28.00 56.62 Testing

181.38 0.00 167.01 169.59 7.56 1055.60 777.80 56.00 35.57 Training

475.00 118.80 0.00 181.10 8.90 852.10 781.50 91.00 74.19 Training

213.72 98.05 24.51 181.71 6.86 1065.80 785.38 100.00 53.90 Testing

218.23 54.64 123.78 140.75 11.91 1075.70 792.67 3.00 27.42 Training

300.00 0.00 0.00 184.00 0.00 1075.00 795.00 7.00 15.58 Testing

480.00 0.00 0.00 192.00 0.00 936.20 712.20 28.00 43.94 Testing

134.70 0.00 165.70 180.20 10.00 961.00 804.90 28.00 13.29 Training

397.00 0.00 0.00 185.00 0.00 1040.00 734.00 28.00 39.09 Training

218.23 54.64 123.78 140.75 11.91 1075.70 792.67 14.00 35.96 Testing
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2.2.1. The SMA Algorithm

The name slime mold (SM) refers to Physarum polycephalum [58] that inhibits cool
and humid areas. The main inspiration of the SMA algorithm is the dynamic nutritional
behavior of the SM called Plasmodium. This stage includes three steps that an organic
matter performs for seeking food, surrounding the discovered food, and secreting enzymes
to digest it. Figure 3 shows the foraging morphology that forms an interconnected venous
network using multiple food blocks at the same time.
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Inspired by the explained foraging behavior, Li, Chen, Wang, Heidari and Mirjalili [55]
developed the SMA as a novel optimization approach. The objective of the SM is to find the
optimal path to the largest concentration of nutrients [59]. Although the most promising
food source is regarded by the SM, it needs to consider two important factors in foraging,
namely speed and risk. Selecting the appropriate time for leaving the searched area (toward
a new one) is another challenge for the SM. To figure it out, the algorithm uses heuristic or
empirical rules. However, as explained, the algorithm can simultaneously exploit more
than one source [60]. Overall, when several food sources with different qualities are at their
disposal, an adaptive search strategy is executed to attain the best one.

Mathematically, the SMA comprises four major stages that are described below.

(a) Approaching food: Regarding the odor in the air, the SM approaches food based on
the below equation:

→
X(t + 1) =


→

Xb(t) +
→
vb·
(→

W·
→

XA(t)−
→

XB(t)
)

, r < p

→
vc·

→
X(t), r ≥ p

, (1)

where t signifies the current iteration,
→
vc follows a linear decrease from 1 to 0,

→
vb is a

parameter ranging in [−a, a] where a = arctanh
(
−
(

t
max_t

)
+ 1
)

, and
→
W stands for the

weight of the SM. Also, locations belonging to the SM, the individual with the largest odor

concentration so far, and two randomly selected individuals are represented by
→
X,
→
Xb,

→
XA

and
→
XB, respectively. Moreover, given S(i) as the fitness of

→
X and DF as the best fitness

obtained ever, the term p can be formulated as follows:

p = tanh|S(i)− DF| i ∈ 1, 2, . . . , n. (2)
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Equation (3) provides
→
W.

→
W(Smell Index(i)) =

1 + r· log
(

bF−S(i)
bF−wF + 1

)
, condition

1− r· log
(

bF−S(i)
bF−wF + 1

)
, others

, (3)

Smell Index = sort(S), (4)

where condition refers to ranking the first half of the population with respect to S(i).
The term r is a random number in [0, 1], bF and wF stand for the optimal and worst
finesses grasped in the current repetitions, respectively, Smell Index provides the ascending
sequence of sorted S(i)s.

(b) Wrapping the food: This stage models how the venous tissue structure of the SM is
contracted during the search. In this regard, three parameters including the power of
the waves released by the bio-oscillator, the thickness of the vein, and the speed of
the cytoplasm flows are directly proportional to the concentration level of the food
contacted by the vein. As explained, the SMA prioritizes different food blocks based
on their concentrations. The regions with larger concentrations receive larger weights
and vice versa. Thus, the position of the SM is updated toward better regions. This
process is formulated in Equation (5),

→
X∗ =


rand·(UB− LB) + LB, rand < z
→

Xb(t) +
→
vb·
(

W·
→

XA(t)−
→

XB(t)
)

, r < p

→
vc·

→
X(t), r ≥ p

, (5)

in which LB and UB are the lower and upper bounds, and rand and r stand for the random
value between 0 and 1.

(c) Grabbling the food: The cytoplasmic flow in the veins is affected by the waves released
by the biological oscillator. To simulate the variations of the SM’s venous width, three

vectors of
→
vc,

→
vb, and

→
W are considered.

→
W provides a mathematical presentation

of the SM’s oscillation frequency at different food concentrations. This parameter
helps the SM to achieve a better food source by accelerating its movement toward

high-quality ones and vice versa. The
→
vb value randomly ranges in [−a, a] and it

heads to 0 as the number of iterations increases. The
→
vc value ranges in [−1, 1] and

finally reaches 0. During this stage, some organic members are assigned to explore the
remaining areas even if the SM reaches a more potential source compared to earlier
attempts. It enables the algorithm to seek a better food block all over the area. Notably,
the SM decides whether to select the proposed food source or look for another one

with respect to the oscillation of
→
vb.

The Pseudo-code of the SMA is presented as Algorithm 1.

(d) Computational complexity analysis: Considering different steps of the SMA (i.e.,
initialization, assessing the fitness, sorting, updating the weights, and updating the
locations), the complexity of the algorithm is explained in this section. Let N and T be
the number of the SM’s cells and the maximum number of iterations, respectively, in
a D-dimensional space. Then, O(N), O(N + N log N), O(N × D), and O(N × D) are
the computational complexity of initialization, fitness evaluation and sorting, weight
update, and location update, respectively. Hence, the overall complexity of the SMA
can be expressed as O(N ∗ (1 + T ∗ N ∗ (1 + log N + 2 ∗ D))) [55].
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Algorithm 1. Pseudo-code of SMA [55].

Initialize the parameters popsize Max_iteraition;
Initialize the positions of slime mould Xi(i = 1, 2, . . . , n);
While (t ≤ Max_iteraition)

Calculate the fitness of all slime mould;
Update bestFitness, Xb

Calculate the W by Equation (3);
For each search portion
Update p, vb, vc;
Update positions by Equation (5);
End For
t = t + 1;

End While
Return bestFitness, Xb;

2.2.2. Benchmark Trainers

Inspired by Henry’s law, the HGSO is one of the most recent metaheuristic algo-
rithms. It was developed by Hashim, Houssein, Mabrouk, Al-Atabany and Mirjalili [57]. A
modified version was also designed by Hashim et al. [61]. Also, the HGSO was used by
Cao et al. [62] for optimizing the parameters of a regression SVM model. In this algorithm,
the position and a so-called characteristic “partial pressure” are initially assigned to each
gas. The gases are then clusterized into a number of groups. The identification of the best
gases is then carried out. Based on the specific rules of the algorithm, the position and
solubility of each gas are updated toward raising the quality of the solution. It is worth
noting that updating the worst particles is also considered as a measure for escaping from
the local optimum. The algorithm is mathematically detailed in relevant studies like [63,64].

The second benchmark algorithm is the HHO that was designed by Heidari, Mirjalili,
Faris, Aljarah, Mafarja and Chen [56]. The HHO has shown high applicability for various
complex problems like analyzing landslide susceptibility [65] and slope stability [66].
The basis of this algorithm is the cooperative interaction between Harris’ hawks for a
shocking hunt that comprises tracing, encircling, approaching, and attacking. These steps
are devised in three major stages. The first one is named exploration dedicated to seeking
and discovering the prey. The two next stages are based on the energy of the prey. After
transforming from exploration to exploitation, the attacking measures are taken in the
exploitation stage. For more explanations about the HHO, please refer to [67,68].

2.3. Accuracy Indicators

To assess the performance of the developed models, two error indicators of RMSE and
mean absolute error (MAE) are used. In addition, the Pearson correlation coefficient (R) is
defined to reflect the agreement between the products of the networks with target values.
This index can be in a range of [−1, +1]. Taking K as the number of data and CSCiobserved and
CSCipredicted as the expected and modeled CSC, respectively, Equations (6)–(8) formulate the
RMSE, MAE, and R.

RMSE =

√√√√ 1
K

K

∑
i=1

[(CSCiobserved − CSCipredicted)]

2

, (6)

MAE =
1
K

K

∑
I=1

∣∣∣CSCiobserved − CSCipredicted

∣∣∣, (7)

R =

K
∑

i=1
(CSCipredicted − CSCpredicted)(CSCiobserved − CSCobserved)√

K
∑

i=1
(CSCipredicted − CSCpredicted)

2
√

K
∑

i=1
(CSCiobserved − CSCobserved)

2
. (8)
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3. Results and Discussion
3.1. Model Configuration and Training

In this work, the efficiency of the SMA scheme for the CSC modeling is examined.
As explained, this algorithm plays the role of a trainer for an ANN processor. Composed
of eight, seven, and one neuron(s) in the input, hidden, and output layers, respectively, a
three-layer multi-layer perceptron (MLP) [69] serves as the ANN used for being hybridized
by the SMA. The topology of the used ANN is obtained after trying various cases and
it is presented in Figure 4. In order to form the problem function, the proposed ANN is
represented by its mathematical form where it is fed by training samples. In the neurons of
the hidden layer, the inputs are received from the former layer, and weight is determined for
each one. The neuron then adds a bias to the value resulting from this multiplication [70].
The activation function is a significant element of the ANNs that is eventually applied to the
calculations of each neuron to release the main response. In this work, Tansig and Purelin
are considered the activation functions of the hidden and output layers, respectively.
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Figure 4. The used ANN topology.

Like other metaheuristic algorithms, the SMA tries to augment a random candidate
solution during the implementation. It is fulfilled by an iterative procedure until either
the desired goodness or the maximum number of iterations is satisfied. Figure 5 shows
that each population size of the SMA has minimized the objective function (training RMSE
in this case) in predicting the CSC. For this research, the values of the objective function
(on the y-axis) reflect the RMSE of training in each iteration. Noticing the initial and final
objective function values, this figure shows that the SMA algorithm has great potential in
reducing the error of ANN training.

Table 2 provides the latest RMSEs of the tested configurations of the SMA. The same trial
and error were performed for the HGSO and HHO as well. According to this table, although
the final RMSEs of all population sizes are close, the differences can still reflect the eminent
effect of population size. The best response of SMA, HGSO, and HHO algorithms is obtained
for the population size of 400, 200, and 400, respectively. These configurations are selected to
represent the SMA-ANN, HGSO-ANN, and HHO-ANN in the subsequent sections.
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Table 2. Optimal RMSEs obtained for the tested configurations.

Algorithm
Population Size

10 25 50 75 100 200 300 400 500

SMA 8.7830 8.1813 8.4056 7.9688 8.2738 8.0212 8.1812 7.3831 7.4055

HGSO 12.8753 11.0752 11.7703 11.4388 11.4658 9.0477 10.4068 11.0786 10.1627

HHO 11.6988 11.1059 11.4161 11.1815 10.7291 10.4342 10.7521 10.2017 10.4970

3.2. Accuracy Assessment

It was mentioned that the learning process was based on the training data. It means
that the RMSEs reported in the previous section correspond to the training results. Thus,
the proposed SMA-ANN achieved an RMSE of 7.3831 in grasping the CSC behavior. Also,
the MAE was 5.7885. Figure 6 shows the histogram chart of the errors in this phase. The
word error refers to the simple difference between the CSCiobserved and CSCipredicted for each
of the 824 data. In Figure 6, it can be seen that the error values follow a normal distribution,
meaning that the higher the error magnitude, the lower the frequency. In general, this
indicates desirable prediction results for all used models.

The RMSE and MAE for the benchmark models indicate a lower quality of training for
the ANNs trained by the HGSO (9.0477 and 7.1566, respectively) and HHO (10.2017 and
8.2355). Since the training error represents tuning the weights and biases of the ANN, it
can be deduced that the SMA algorithm found a more suitable matrix of these parameters.
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Figure 7 shows the correlation charts of the training results. Visually, it is seen that all
three charts show an acceptable correlation for the used models. However, the products
of the SMA-ANN are in better agreement with the ideal situation (line Y = T). Also, the
calculated R indices indicate an 89.37%, an 84.42%, and a 78.46% agreement between the
expected CSCs and those estimated by the SMA-ANN, HGSO-ANN, and HHO-ANN.

The CSC pattern derived in the training phase was used to predict the CSC for 206
samples considered for evaluating the generalizability of the mapped relationship. A
comparison of the modeled CSC with the estimated values is shown in Figure 8. This figure
illustrates that all three models have shown good sensitivity to the changes and fluctuations
in the CSC pattern.

With an RMSE of 8.1321, as well as an MAE of 6.1361, the SMA-ANN could re-
produce the CSC with a good level of accuracy. Similar to the training phase, the pro-
posed model achieved a larger accuracy in comparison with the benchmarks of the
HGSO-ANN (RMSE = 9.9893 and MAE = 7.6427) and the HHO-ANN (RMSE = 11.5099 and
MAE = 9.1671). Moreover, an agreement was observed between the training and testing
results, meaning the better the model is trained, the more accurate outputs it produces.

Testing outputs are also depicted versus the expected CSCs in the form of correlation
charts in Figure 9. Referring to the chart of the SMA-ANN, it can be said that this model
can present a reliable prediction of the CSC for stranger conditions. In other words, the
captured pattern is properly generalized to testing data. The calculated Rs for the models
were 0.8902, 0.8278, and 0.7583, which demonstrates the superiority of the SMA over both
HGSO and HHO.
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Assessing the training and testing results together, it can be concluded that the used
metaheuristic algorithms (i.e., SMA, HGSO, and HHO) performed suitable optimizations for
adjusting the weights and biases of the ANN during the training process. These optimized
parameters were used to create potential ANNs that could reliably predict the CSC.

3.3. A CSC Formula

As discussed, the better performance of the SMA points out the higher capability of
this search scheme in tuning the ANN parameters including connecting weights and the
bias of each neuron (Figure 4). The process by which the SMA-ANN estimates the CSC is
summarized in Equation (9). It indicates applying the weights (i.e., [LW]) and bias (i.e., [b2])
of the output neuron to the response coming from hidden neurons. Likewise, this response
is produced via multiplying the inputs (i.e., [I]) by the corresponding weights (i.e., [IW])
added to the bias vector (i.e., [b2]) and eventually applying Tansig (x) = 2

1+e−2x − 1 as the
activation function.

CSC = [LW] * (Tansig (([IW] * [I]) + [b1])) + [b2]. (9)

The terms used in the above equation are acquired based on Table 3:
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Table 3. The parameters of the predictive formula in Equation (9).

Parameter Value

IW



0.1381 −0.5092 0.7425 0.9454 0.9959 0.0459 −0.2287 0.6467
−0.1934 −1.1992 −0.8799 −0.1856 −0.0123 0.3267 0.1319 −0.8830
−0.1269 0.1029 −1.0653 0.0773 −0.5025 −0.8111 −1.0077 0.3078
−0.7477 −0.5067 0.4525 −0.3054 −0.8152 0.8423 −0.6242 0.5573
0.1034 0.8107 0.4600 −0.0100 −0.8089 1.1472 0.4757 −0.3344
0.7039 0.9927 0.1850 0.0316 −0.0522 0.8930 −0.8899 −0.2825
−0.1854 0.9990 0.6670 −0.2774 −0.2457 −0.5999 0.6380 −0.8981



I



Cement
BFS
FA1

water
SP
CA
FA2
Age



b1



−1.7855
1.1903
0.5952
0.0000
0.5952
1.1903
−1.7855


LW

[
0.4433 0.7756 0.4244 0.8918 −0.9618 0.0239 −0.4702

]
b2

[
0.7595

]
3.4. Importance Analysis

Owing to the fact that there are various influential parameters for determining the
CSC [71–73], analyzing the importance of the input parameters is a significant step, espe-
cially when it comes to machine learning applications. To attain it, the principal component
analysis (PCA) technique [74] is used within the IBM SPSS Statistics 22 environment. This
technique creates some components, each representing an independent combination of the
existing inputs. An eigenvalue is calculated for each component, and if the eigenvalue
exceeds the threshold = 1, it means that the corresponding component is significant [75].
Figure 10 shows the calculated eigenvalues.
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According to this figure, four components acquired eigenvalues > 1. Based on further
statistics, these four components account for an around 75.6% variation in the dataset.
Table 4 presents the rotated component matrix, giving details of these components obtained
from the varimax rotation method. Based on the earlier literature, two thresholds of +0.75
and −0.75 can be considered for identifying the most significant inputs [76,77]. Therefore,
the inputs with loading factors lower than −0.75 and greater than +0.75 are shown with
red and blue colors, respectively. Eventually, it is found that the PCA analysis suggests
Cement, BFS, Water, SP, and CA as the most important inputs.

Table 4. Rotated component matrix obtained from varimax rotation method (loading factors lower
than −0.75 and greater than +0.75 are shown with red and blue colors, respectively).

Inputs
Component

1 2 3 4

Cement 0.084 0.940 0.196 0.047

BFS 0.033 −0.076 −0.922 0.234

FA1 0.269 −0.662 0.384 0.032

Water −0.878 −0.016 −0.247 0.056

SP 0.781 −0.003 0.094 0.391

CA 0.028 −0.041 0.152 −0.939

FA2 0.334 −0.265 0.470 0.342

Age −0.613 0.168 0.257 0.205

3.5. Further Discussion and Future Studies

The models that were suggested in this work could achieve a reliable early analysis of
the CSC based on the effects of mixture characteristics including cement, BFS, FA1, water,
SP, CA, FA2, and age. However, it is worth discussing that the suggested model, i.e., the
SMA-ANN, has achieved significant improvements with respect to some of the previous
studies [43,52–54]. Table 5 compares the accuracy indices of this study to those that were
commonly used in the cited studies. The respective RMSE and MAE of the SAM-ANN
were 8.1321 and 6.1361, which are comparably smaller than those in the mentioned studies.
Likewise, the R index was 0.89028, which is higher than the corresponding correlation
indices in previous studies. This comparison indicates that the SMA-ANN outperformed
several single and optimized versions of the ANN model. In other words, the results of
this study add a capable methodology to the field of CSC prediction.

Table 5. Comparing accuracy indices with some previous studies.

Study CSC Range
(Mpa) Model RMSE MAE Correlation

(R & R2)

This study [2.33, 82.60] SMA-ANN 8.1321 6.1361 0.89028

[52] [4.23, 96.30]
ANN-HGSO 9.5248 7.8632 0.87394

ANN-SFO 8.5728 7.0550 0.87936

[43] [2.33, 82.60]
ANN-SCA 10.0340 7.8248 0.80249

ANN-CFOA 9.8392 7.6538 0.79832

[53] [2.33, 82.60] BP–MLP
(Single ANN) 8.2675 6.2103 0.788

[54] [2.33, 82.60]

BP–MLP
(Single ANN) 8.9753 6.8112 0.7442

SCE–MLP 8.3540 6.4657 0.7876
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Nowadays, concrete is being used in many parts of the construction industry [78–80].
Hereupon, it is important to exploit efficient ways towards practical usage of the suggested
models. In this sense, it can be explained that these models provide reliable, non-destructive,
and cost-efficient approaches for predicting the CSC which is a non-linear and complex
mechanical parameter of concrete. Engineers may use intelligent models in order to achieve a
reliable design of the concrete mixture with respect to the desired CSC. Another application
can be evaluating the sensitivity of the CSC to a specific mixture ingredient. For instance,
engineers may be interested in assessing the variation of CSC with the changes in cement
characteristics. Also, the results of the PCA analysis can be considered for this purpose,
because this analysis revealed that Cement, BFS, Water, SP, and CA have the greatest influence
on the CSC. To sum up, since the behavior of the CSC has been nicely understood by the
models, they are applicable to predict this parameter for various mixtures without the need
for conducting destructive and time-consuming laboratory tests.

Notwithstanding the advancement achieved in this study, there are some limitations that
can be considered for conducting future studies. For instance, the proposed methodologies
(i.e., SMA, HHO, and HGSO) can be compared to newer metaheuristic algorithms for further
improving the solution. Another idea can be applying the results of the PCA analysis to
reduce the dimension of the problem. More clearly, since the used dataset consists of a large
number of inputs, reducing them can result in a less complicated ANN network, and enhance
the prediction efficiency. Based on the PCA results, future studies are recommended to predict
the CSC by considering the effect of Cement, BFS, Water, SP, and CA and disregarding FA1,
FA2, and Age of the mixture. The results then can be compared to those of the present study
to determine whether this idea can improve the accuracy of prediction.

4. Conclusions

In this work, a novel search method based on the foraging actions of slime mold
was tested for training a popular neural system applied to the prediction of concrete
compressive strength. The SMA trained an 8 × 7 × 1 MLP neural network by relating the
CSC to eight influential factors. The results were evaluated for the training and testing
phases using three accuracy indicators. The obtained RMSEs (7.3831 and 8.1321, 9.0477
and 9.9893, and 10.2017 and 11.5099 for the training and testing phases of the SMA-ANN,
HGSO-ANN, and HHO-ANN, respectively) demonstrated the superiority of the proposed
technique over two recently developed colleagues in both grasping and reproducing the
CSC behavior. The above 89% correlation between the expected and estimated CSCs
showed that the SMA-ANN can be a promising predictive model for practical applications.
Comparison with the literature disclosed the higher accuracy of the suggested SMA-ANN
against some previously used models. The final solution was translated into a mathematical
format to provide a reliable and convenient formula for predicting the CSC. Moreover, the
PCA importance assessment revealed that Cement, BFS, Water, SP, and CA are the most
important ingredients of the concrete for predicting the CSC. In the end, some ideas were
suggested to cope with the limitations of the study in future projects.
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