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Abstract: Energy-efficient automated systems for thermal comfort control in buildings is an emerging
research area that has the potential to be considered through a combination of smart solutions. This
research aims to explore and optimize energy-efficient automated systems with regard to thermal
comfort parameters, energy use, workloads, and their operation for thermal comfort control in indoor
spaces. In this research, a systematic approach is deployed, and building information modeling (BIM)
software and energy optimization algorithms are applied at first to thermal comfort parameters, such
as natural ventilation, to derive the contextual information and compute the building performance of
an indoor environment with Internet of Things (IoT) technologies installed. The open-source dataset
from the experiment environment is also applied in training and testing unique black box models,
which are examined through the users’ voting data acquired via the personal comfort systems (PCS),
thus revealing the significance of Fanger’s approach and the relationship between people and their
surroundings in developing the learning models. The contextual information obtained via BIM
simulations, the IoT-based data, and the building performance evaluations indicated the critical levels
of energy use and the capacities of the thermal comfort control systems. Machine learning models
were found to be significant in optimizing the operation of the automated systems, and deep learning
models were momentous in understanding and predicting user activities and thermal comfort levels
for well-being; this can optimize energy use in smart buildings.

Keywords: indoor air; thermal comfort; user occupation; artificial intelligence; machine learning;
natural ventilation; building performance; building information modeling

1. Introduction

Designing buildings with automated systems is emerging research; yet, further sys-
tematic approaches to the optimization of energy use and the deployment of the smart
systems and learning models for thermal comfort control and well-being in indoor spaces
are needed [1,2]. Smart systems and Internet of Things (IoT) technologies, which are used
for energy-efficient buildings and environments, also have a rising impact on personal com-
fort systems (PCS) [3]. The seminal studies have investigated adjustable air-conditioning
systems to meet the desired levels of thermal comfort and well-being with regard to user
preferences [4–6]. Thermal comfort levels such as mean radiant temperature [4] have
become significant in the exploration of the design and deployment of automated smart
systems; this is especially the case with Fanger’s approach, which applies the predicted
mean votes of users [1]. Considering user preferences for thermal comfort and well-being
also motivates this research to explore the systematic approaches and methods used in
developing and improving the energy-efficient automated smart systems that are to be
applied in indoor environments. Related articles also analyze the correlational changes in
thermal comfort levels by controlling the automated heating, ventilation, and air condi-
tioning (HVAC) systems through the use and levels of thermostats and fans [5], which are
tested for different seasons [6].
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In the control and regulation of the thermal comfort and well-being of users, a sys-
tematic approach is followed in this research in defining and optimizing the energy usage,
power, workloads, and operation of the automated systems to be applied for ventilation,
cooling, and heating in indoor environments. An open-source IoT-based dataset, including
the voting of users acquired from the special care context in a residential building, is an-
alyzed and processed in the experiments concerning the user occupation and predicted
activities for thermal comfort and well-being. Therefore, this study aims to derive thermal
comfort parameters, generate algorithms, and develop learning models in the optimization
of smart systems and energy-efficient infrastructure that will be based on IoT data for
thermal comfort and well-being in the contexts of designed indoor environments.

In configuring smart spaces and systems, digital simulations are crucial in the search
for the technical possibilities and the limits of building performance evaluation and in the
generation of contextual data and parameters for state-of-the-art smart systems for well-
being and thermal comfort. In investigating the parameters for setting up energy-efficient
IoT-based automation systems in smart buildings and environments, it also crucial for the
streaming data to be integrated with the collaborative and common workspace platforms
such as that of building information modeling (BIM) software. In this research, the critical
parameters for thermal comfort and well-being are explored and investigated through BIM
simulations, algorithms, and learning models using real-time IoT data from the conditioned
experiment space.

Thus, the dataset from an experimental work was analyzed, where the IoT technolo-
gies were embedded within the specific physical configuration of the indoor space in an
apartment flat in Ankara, Turkey, to achieve greater infection control during the pandemic
for individuals who might suffer from COVID-19 or other ailments [3,7]. Additionally,
real-time learning models were applied in that experimental work to produce big data
about the categorized activities and the comfort levels of users after surveying the po-
tential applications of sensors, IoT technologies, and learning models for healthcare and
well-being [3]. The study was also significant in its integration of innovative research
on real-time learning systems with indoor environments for monitoring and predicting
thermal comfort levels and well-being. For instance, the concentration levels of CO2 and
the air quality are critical parameters, and their changes were observed through natural
ventilation experiments [3]. In this research, these correlated factors are also analyzed,
along with other thermal comfort parameters, user occupation patterns, and the voting
of users.

This research proposes to explore and optimize the energy use, workloads, and opera-
tion of automated systems for thermal comfort control in indoor spaces. In that regard, the
building performance of the indoor space is evaluated first, based on the existing dataset
derived from the thermal comfort levels and optimal energy use for ventilation and air
quality. BIM software is applied to simulate the experiment environment for heating and
cooling to analyze the workloads in achieving thermal comfort levels. Similarly, energy
optimization algorithms and models are explored, developed, and tested with regard to the
inputs from natural ventilation experiments in optimizing the energy use for zero-energy
building research to deploy minimum energy for air purification and ventilation as well as
for the desired thermal comfort levels and well-being of users. The survey on the related
literature and the outcomes of this research further showed that the learning models could
improve the efficiency of smart systems in energy optimization. Thus, automated systems
are proposed to achieve thermal comfort levels and to better meet the desired well-being of
users by deploying black box learning models in indoor environments with smart technolo-
gies. Accordingly, the voting of users is examined by both including and excluding them
from the dataset to observe the challenges in developing artificial intelligence (AI) models
such as convolutional neural networks (CNN)s for automation systems.

In brief, this research is unique in comparison to that of the related literature and
applies a systematic approach that deploys learning models to explore the optimal energy
use and building performance of automated smart systems that are to be developed for
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thermal comfort and well-being in the context of indoor spaces. The research examines an
open-source dataset that allows the evaluation of the facts about the building performance,
natural ventilation, air quality, and user activities and the user voting acquired via PCS. The
outcomes of this systematic approach also indicate that in deploying simulations and smart
systems with learning models, it is crucial to derive and process the context-based data
when optimizing the thermal comfort control for each specific condition. The simulation of
the experiment area by BIM software allows the generation and evaluation of context-based
information on building performance, power loads, and energy optimization parameters.
The data from the environment were applied to develop algorithms and unique deep
learning models for the operation of smart systems, and Fanger, as well as non-Fanger,
approaches were examined in the optimization of the novel, lightweight, and efficient deep
learning models for state-of-the-art automation systems. Briefly, the objectives and major
contributions of the research can be highlighted as follows:

• BIM simulations and energy optimization algorithms are explored to provide context-
based information about the energy use and capacities of the automated systems to be
installed into the experiment environment.

• Machine learning models are applied in discovering the optimization of the operation of
the automated systems for thermal comfort control in the context of indoor environments.

• Lightweight and efficient deep learning models are developed for understanding the
user activity and thermal comfort levels in the context of the experiment environment,
in which IoT-based smart systems for thermal comfort and well-being are installed.

This article proceeds as follows: in Section 2, the related works on thermal comfort
control and well-being are surveyed with regard to the research on the building perfor-
mance evaluation as well as natural and artificial ventilation, smart systems and buildings,
and learning models. In Section 3, the article introduces the materials and methods of the
systematic approach followed in this research. Section 4 presents the experiments and
results that are followed in the order introduced in Section 3. Section 5 discusses the results
and evaluates the facts with regard to the possible steps to be applied in developing and
operating automated smart systems in indoor environments. Section 6 briefly concludes
the research.

2. Related Works

The seminal articles have reviewed the literature and systems for thermal comfort
control in buildings; they have also considered the occupation and well-being of users [1,2].
One of these articles proposes a combination of models, systems, and procedures for smart
applications [1]. The research emphasizes that the predicted mean vote (PMV) is the main
thermal comfort modeling approach in finding the correlation between the environmental
parameters and the personal factors via the vote of occupants, in reference to Fanger’s
pioneer work in the 1970s [1].

Many articles also investigate zero-energy buildings, the building design, and its
components with regard to thermal comfort parameters such as heating, cooling, natural
and artificial ventilation, and air quality. For instance, Wei et al. used CiteSpace (5.8.R3
SE 64-bit) to discover the relevant literature, which was also categorized with respect
to the different approaches to zero-energy building research [8]. Gassar et al. explore
the performance optimization parameters and models during the design of buildings for
energy-efficient heating, cooling, and lighting by surveying related articles and works in
the literature [9]. In another seminal article, the façade performances of the buildings in
Singapore were studied with regard to climate change by reporting the major factors, such
as temperature, humidity, wind speed, corrosion, degradation, material use, and vegetation,
which also influencing the building performance [10].

The seminal works also consider passive building design [11–13]. For instance, Eki-
house is a solar house prototype for the Solar Decathlon Europe 2012 competition developed
by examining the building design strategies for different seasons and with regard to the
energy design optimization of a house in Madrid deploying photovoltaic systems [11].
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Similarly, Lopez-Escamilla et al. conducted a study on a social housing prototype, which
was first presented in the Solar Decathlon competition in 2015, by investigating the design
of bioclimatic double skin in a tropical climate [12]. Santy et al. explored the standards
for the design of a passive house, without using HVAC systems, by depending on the
bioclimatic analyses of some regions in Indonesia [13].

Furthermore, the researchers have examined natural and artificial ventilation as signif-
icant thermal comfort parameters. For instance, the authors investigated the parameters
that influence the optimization of energy use with regard to the specific atrium typology in
buildings and divided the energy simulation periods in which the HVAC systems were
applied [14]. The researchers have also explored using HVAC systems to meet thermal
comfort levels in different seasons [5,6]. On the other hand, Abdullah et al. studied the
performance of building components with regard to the design of windows for natural
ventilation; they considered the analyzed parameters and evaluated their performance in
relation to the environmental facts [15]. Similarly, window opening behavior (WOB) was
inspected by Kim et al. in relation to environmental parameters of indoor and outdoor
spaces; they also considered the occupant behavior and thermal comfort in “structural
equation modeling” [16]. The paper argues that new human–technology relations should
be followed in adopting advanced technologies and systems for successful energy-efficient
design strategies [16]. In the experiments of that research, the collected data from the
exterior and indoor spaces were processed with regard to temperature, CO2 concentration,
and solar radiation [16]. Monitoring the occupant behavior is also considered in the devel-
opment of structural equation modeling with regard to WOB [16]. Window opening events
were discretely evaluated, and the research concluded that occupant access to the systems
can increase tenant satisfaction and reduce operational costs [16].

The air quality and air index values of indoor environments were also seen as equally
significant in one of the recent articles, which considers the data on the air quality of indoor
environments to develop learning models for health and well-being purposes [3]. In another
research work, air conditioning design was studied by considering a building performance
simulation of the air quality and thermal comfort of an indoor stepped hall [17]. The impact
of the research on thermal comfort levels was explored by measuring the air velocity,
temperature, and air change rate with the help of building modeling that simulated the
airflow, temperature, and air velocity distribution in the different locations in that indoor
space [17]. The user occupation patterns with the air index and gas sensor value (GSV) also
provide substantial results for energy-dependent modeling in the performance evaluation
of buildings and the development of IoT-based state-of-the-art HVAC systems [18,19].

There are also reviews on the related literature that evaluate the capabilities of BIM for
managing the operation and maintenance of green buildings [20]. Many articles also review
the smart systems and buildings with regard to digital twins and BIM in Industry 4.0 [21]
and the use of neural networks to decrease errors in predicting the actual energy consump-
tion rates in the building energy performance evaluation [22].

In another seminal research work, Lee et al. reviewed the major concepts of responsive
architecture that can be evaluated within the scope of energy-efficient buildings and envi-
ronments with smart systems [23]. Comprehensive surveys on smart building technologies,
systems, and sensing technologies also aim to discover new approaches in human–building
interactions with regard to energy use and occupation, as well as the features of buildings
and components [2,14]. A deep survey was also made on the categorizing of the applied
smart technologies in [2]; the work was similar to that in [24]. Correspondingly, Al-Obaidi
et al. review the use of IoT technologies applied for energy-efficient buildings and cities
with a comprehensive survey on the concepts of infrastructural development, models,
technological potential, applications, and the challenges related to their use [25].

Sensor-based environments and IoT technologies in buildings have also increased
considerably [24,26]. These technologies meet the requirements for special use and self-
care [27,28], in addition to providing improvements in energy efficiency and crowdsourcing
environmental data [24], which have led to an increase in the quality of smart homes [29].
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They also have significant potential for smart decision making, which can be integrated
into BIM platforms [30] in the monitoring of workflow and construction processes [31–33],
as well as in building energy models, analyzing sensorial information [34], and energy
management in smart house systems [35,36]. IoT and sensor-based technologies have also
been employed for well-being and for the remote monitoring purposes of smart healthcare
in buildings [24,26–29,37].

Occupant behavior and health in buildings are vital aspects that should be considered
with the energy usage, well-being, and building performance evaluation [18,38–42]. There
is also research on identifying the evaluation criteria of the smartness of buildings, which
can be categorized into different groups with the use of scoring systems [43]. A seminal
article also applied the voting system and the learning models together with data from the
indoor working spaces of the Helios building with IoT-based sensors [44]. In assessing
the votes, the mean and standard deviation were applied, in a similar manner to Fanger’s
approach [44]. Thus, predicting the complex user behavior and updating the existing
dataset ubiquitously with regard to user activity remain developing research areas with
higher potential. Architects continue to survey the demand for further design requirements
and parameters that can be updated in real-time when considering user activities and
thermal comfort levels [45,46]. Accordingly, Almusaed et al. inspected the smart building
design concepts with regard to the rising impact of AI and digital twins [47]. In most
recent applications, IoT technologies and AI have been used for real-time learning and
monitoring [3].

The potential of smart systems was also discovered in related studies with overarching
experiments using machine learning (ML) and real-time deep learning models [3]. In a
comprehensive review article, the models were classified as white box, grey box, and black
box models, such as machine learning models, artificial neural networks, and recurrent
neural networks, which are deployed for predicting building energy usage [48]. In that
research, the building envelope parameters, HVAC systems, and weather factors were
surveyed accordingly [48]. Another survey was conducted on applying ML and AI models,
as well those that do not apply black box models, in the estimation and prediction of thermal
comfort in the classrooms of primary schools in Japan [49]. The research also conducted
comprehensive analyses of the factors that define thermal comfort by considering the
voting data from the occupants [49].

In another research work with a comprehensive review, the applications of machine
learning and statistical models were analyzed in the evaluation of building energy perfor-
mance and the prediction of energy-efficient retrofitting considerations [50]. In another
study, machine learning models were applied in the generation of a design method to
explore the optimal energy-saving residential form [51]. According to the research, ma-
chine learning models are used to compare and combine the results of energy optimization
methods with regard to various performance indicators. These methods also aid in de-
termining the best locations for energy-saving buildings [51]. In another related research
work, machine learning models, such as Gaussian process regression (GPR), were applied
in global sensitivity analyses for energy prediction and optimization by exploring the archi-
tectural typology of a courtyard house [52]. In another article, machine learning models
were applied to predict building energy usage under different environmental conditions,
with a greater concern for climate change and the difficulties in measuring its effects in
different geographic regions and contexts [53].

Different studies also applied genetic algorithms, incorporated with neural networks,
for green architecture by reviewing the studies in various research areas and different parts
of buildings regarding energy usage and optimization in several countries [54]. Similarly,
Fallah et al. applied artificial neural networks optimized with electrostatic discharge
algorithms to calculate the parameters for evaluating the energy efficiency and thermal
loads of residential buildings [55]. In another research work, artificial neural networks were
applied in the prediction and analyses of the mean radiant temperature for the location of
selected residential building in Sendai, Japan [56].
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Accordingly, the systematic approaches are explored and deployed in our research
through the surveyed thermal comfort parameters, BIM, algorithms, and learning models
used in the improvement of the building performance evaluation, thermal comfort control,
and well-being by the applied models and methods. The dataset from a unique experiment
environment, in which IoT and smart sensor systems are applied, is processed by deploying
the BIM software, energy-optimization algorithms, and step-by-step learning models that
are proposed for use with state-of-the-art automation systems.

3. Materials and Methods

This article aims to derive a systematic approach to developing energy-efficient so-
lutions for thermal comfort control and well-being in indoor spaces and to employ them
in operating state-of-the-art systems. Thus, the research explores the thermal comfort pa-
rameters for the energy-efficient execution of the automated solutions by first considering
the building performance and context-based data of indoor spaces. The thermal comfort
parameters surveyed from the related literature that are to be explored in this research are
briefly noted as follows:

• Temperature;
• Humidity;
• Air quality and CO2 concentration;
• Airflow and ventilation;
• User occupation;
• User voting;
• Performance of the buildings and building components;
• The facts from indoor and exterior environments.

The study analyzes a dataset related to these parameters from the selected indoor
experiment space and deploys the energy optimization algorithms as well as building
performance evaluation models. The research also explores the performance and efficiency
of “grey-box” and “black-box” learning models [48] and attempts to develop unique deep
CNNs to increase the efficiency of smart systems deployment to predict the thermal comfort
levels and well-being of users.

The open-source dataset used in acquiring the critical inputs about these parameters is
based on the IoT cloud of the experiment environment, which has smart systems installed to
acquire the user-rated well-being values with the help of personalized devices [3,7,57]. The
experimental data of the observations were also processed and tested during the pandemic
by the real-time learning models deployed to predict and monitor occupant behavior and
well-being in the experiment environment [3].

In the parametrization of the state-of-the-art smart and automated systems for thermal
comfort and well-being, the BIM simulations of this experiment environment were gener-
ated in this research using Autodesk Revit Architecture 2023 and Autodesk Insight (for Revit
2023) software to evaluate the building performance and to calculate the energy use and
workloads (Figures 1 and 2a). The components of the building were modeled, and their
construction details and heat transfer coefficients were reported with the help of the BIM
software Autodesk Revit Architecture, using Intel(R) Core(TM) i7-4700HQ CPU @ 2.40 GHz
as the hardware resource with four cores and eight logical processors for computations,
and NVIDIA GeForce 750 M as the Graphic Processing Unit (GPU) used in the simulations
and renderings (Figures 1 and 2a, Table 1).
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Table 1. Building components and their features in the experiment area.

Component ID Building
Components

Dimensions Heat Transfer
Coefficient (W/(m2·K))Area (sq·m) Thickness (cm)

1 Exterior wall 6.851 20 2.66
2 Interior wall 7.27 15 3.65
3 Interior wall 9.036 15 3.82
4 Floor 7.64 18 4.65
5 Ceiling 7.64 18 4.71
6 Interior wall 5 15 3.65
7 Exterior windows 1.45 1 3.69
8 Interior door 1.8 3.5 1.87
9 Radiator 0.366 10 -
10 Smart system 0.0875 15 -
11 Smart system 0.0875 15 -
12 IoT-based camera - - -

Air index parameters that were highly related to thermal comfort levels were stud-
ied with regard to energy use and optimization through the derived models and energy
optimization algorithms for smart systems that depended on the dataset from the experi-
ment environment. The test dataset from the natural ventilation experiments was further
processed to compare the results with the earlier observations and performances of the
learning models with regard to the chosen parameters for thermal comfort.

Additionally, various machine learning and deep learning models were trained and
tested, and their performances were compared to the training and test datasets to find
the optimal learning models for the operation of smart systems based on the ventilation
experiments. The dataset acquired from this experiment space also included the classified
labels for user activities and thermal comfort levels. In that regard, novel and efficient
deep CNNs were further developed, trained, and tested with these datasets in this research
for state-of-the-art technologies which correlated with the thermal comfort and air quality
levels, user activities, and user-defined voting values.

3.1. The Parameters for Models and Methods Applied in the Experiments

The challenges of the COVID-19 pandemic have inspired studies on the air quality and
activity patterns of users who may require intensive care in indoor spaces [3,18,38]. The
temperature, humidity, airflow, and air quality of indoor environments are absolutely vital
for analyzing user occupation patterns and well-being [18,37,38]. Their parameterization for
energy usage and behavior prediction through gaining knowledge about the user activity
is also extremely important [18,37,38] and useful in developing the building performance
evaluation models by applying BIM, energy optimization models, and algorithms and in
the evaluation of advanced learning models using machine learning algorithms and even
state-of-the-art deep learning models.

Since the 1970s, Fanger’s approach has encouraged the processing of data about the
well-being of users in spaces [1]. Thus, PMV has become the relevant method in modeling
and assessing thermal comfort levels [1]. Similarly, related projects regarding thermal
comfort and well-being have also considered the specific design of special care contexts
for healthcare and infection control in buildings using innovative IoT technologies [3,7].
The developed projects provided big data about the activities and preferences of users,
which can be processed for deciding on thermal comfort levels. Thus, the crowdsourced
IoT data from indoor spaces were considered in the scope of user occupation patterns and
thermal comfort parameters in this research, including the natural ventilation experiments
for energy optimization methods and greater well-being at the residential scale.

3.2. The Experiment Environment and Its Simulation

During the COVID-19 pandemic, a room in a residential building in Ankara, Turkey,
was designed as the experiment environment using IoT-based sensors and real-time learn-
ing models and aiming for the special care and well-being of the users [3,7]. The room
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that was used in the experiments has a 7.64 sq m floor area and a 2.7 m clear height
from the floor to ceiling; thus, it is around 20.63 m3. Accordingly, the BIM simulation
of the experiment environment was modeled via Autodesk Revit Architecture to assess the
building performance of the components and the thermal comfort conditions of this area
(Figures 1 and 2a, Table 1).

3.2.1. Smart Systems Applied in the Experiment Environment

An IoT-based camera and smart systems (Figure 2b, Table 1) were installed in the
experiment room and included ultrasonic sensors together with humidity and temperature
sensors [3,7]. The smart systems also included an MQ-2 gas sensor to provide critical data
regarding the air quality and the levels of particles, including carbon dioxide (CO2) as
well as butane (C4H10), liquefied petroleum gas (LPG), methane (CH4), and smoke [3,7].
Additionally, a rating system was designed to be handled by the remote controller, enabling
the users to vote on their well-being and comfort levels (Figure 3) [3,7]. Similarly, a web
server based on the local area network (LAN) of this space was developed to collect the
relative user data [3,7].
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Thus, the related parameters about the air quality and air index values, together with
the recognized activities of the users and the user-rated data, were acquired as six different
observations from different sensors simultaneously, generating the dataset, and fed to the
IoT Cloud channel on ThingSpeak, the MathWorks IoT platform [57], via the system [3,7].

3.2.2. The Real-Time Learning System

The generated dataset from the sensors was acquired as the IoT data and used to
develop a real-time learning system, including a CNN, which was trained, tested, and
optimized for the monitoring and well-being of the users [3,7]. The developed real-time
deep learning system predicted the labeled user occupation patterns and environmental
data, including thermal comfort levels and critical behavior. It provided feedback about
the user activity and critical circumstances for well-being in real-time [3]. The system also
served to generate big data about the labeled predictions of user activities, which were
applied as separate behavior labels; the system proved its efficiency with a 99.97% success
rate in test accuracy and in real-time prediction and recognition of activity during the
experiments [3]. Furthermore, faster R-CNN models were applied to recognize objects and
people in the room using IoT-based imaging devices (Figure 2b) [3].

3.3. Dataset

The dataset, “IoT Channel for Real-Time Learning & Monitoring” [57], used in this
research had 113.327 inputs, including sensor data and the predictions of the real-time
learning system based on each sensor data item [3]. The last 100 inputs also served as
open-source datasets on the public IoT channel [57]. The initially collected dataset from the
IoT cloud included 2170 channel feeds; 1567 of these included raw data from the indoor
environment. Six hundred and three inputs included six observation inputs about motion
tracking, air quality, temperature, humidity, the well-being of users, and the correlated
data about the user activities, as they were also used in training the real-time learning
system in the related research [3]. The training dataset with six observations included ten
categorized activities about the user occupation (1, 5, 6, 7, 9, 10) and thermal comfort levels
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in the indoor environment (2, 3, 4, 8), as illustrated in Table 2; these were recorded and
predicted for thermal comfort and well-being.

Table 2. Examples from the dataset with ten classes.

Categorized Activities Temperature
(Celsius)

Humidity
(Percent)

Gas Sensor
Value (GSV)

User-Rated
Well-Being

D1
(cm)

D2
(cm)

1. Visitor (or user) sits 24.6 58 502 888 41.1 57.2
25.9 50 566 888 54.6 72.3
25.9 50 566 888 66.27 84
26.1 49 539 888 87.3 95
26.1 49 536 888 87.3 98

2. Ventilation 25.4 36 481 888 76.59 78
25.4 35 472 888 77.5 79
25.4 36 468 888 77 80
25.3 33 467 888 76.26 81

3. Cold, dry indoor air 25.2 33 472 888 77.02 81
25.3 33 467 888 76.26 81
20.6 32 469 888 76.46 81
20.9 32 488 888 76.26 81

4. Hot, humid indoor air 26.1 49 533 888 78.31 88
26.1 49 536 888 78.63 87
29.8 51 502 888 69.6 86
29.8 52 502 888 71.5 101.1

5. Going Out 26 50 542 5 88.8 124
26 50 542 5 85.82 124
26 50 542 5 86.25 131
26 50 546 5 86.25 131

24.6 48 542 5 102 149.5
24.7 53 502 5 129 149

6. Entering In 26 48 541 888 98.43 134
26 48 540 888 107.19 123

27.1 50 502 888 127 143.3
27.1 50 502 888 114.4 129.1

7. User moves into the bed 25.7 49 501 5 75.71 67
25.8 49 424 4 78.26 69
24.8 48 517 5 48.5 59.2
25.3 49 502 4 23.1 33.2

8. Air quality and
well-being correlation 25.8 50 556 2 75.61 102

26 50 508 5 77.61 92
24.5 48 555 5 75.3 94.3
24.9 48 502 5 85.5 107.1

9. Two people move within
the room 25.9 49 585 888 66.4 101

25.9 49 578 888 66.4 103

10. User moves from the bed 25.9 49 425 4 77.83 68
25.9 49 541 5 77.11 53
24.5 48 552 5 34.1 42.2
24.6 48 549 5 27.5 34.9

The dataset also included specific experiments on natural ventilation and observations
on the changes in air index values and the air quality of the indoor environment. For
example, changes in the room temperature, humidity, and GSV were observed by providing
natural ventilation to the well-heated experiment room at noon on 18 November 2020 for
14 min 41 s, or 881 s, as shown in Figure 4, from moments A to B [3]. The average room
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temperature in the experiments was 25.9 ◦C, and the outside temperature in Ankara, Turkey,
was 13.9 ◦C (Figure 4) [3]. There was 25–30 s period between the sensor observations, which
were sent to the cloud and acquired in real-time, and 12–13 s for predicting each observation.
Accordingly, the outcomes of the experiment provided a substantial basis for the evaluation
of the energy-based modeling and building performance of the indoor environment. Thus,
the observations on temperature, humidity, and GSV were also used as the training dataset
in this research into developing machine learning and deep learning models based on these
ventilation experiments (Figure 4).
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3.4. Analyses of the Heat Losses and Power Loads to HVAC Systems

In the evaluation of the building performance and in finding the optimal energy use of
state-of-the-art HVAC technologies, such as heaters, radiators, coolers, air conditioners, and
air purifiers, building performance simulations were conducted first with the help of the
BIM data of the experiment room. In the calculation of the heat losses and workloads that
were observed in the simulations as well as in the real experiments, the heat coefficients
of the building components in Table 1 were used, depending on the information from the
BIM simulation. Thus, the power loads for the radiator or heater, to compensate for the
heat losses from the exterior wall and windows in the experiment room at a given time,
can be found by Equation (1).

Hload = h× A× (Tout − Tin) = h× A× ∆T(t), (1)

where h is the heat transfer coefficient, A is the area of the building component (Table 1),
and ∆T(t) is the temperature difference between the exterior (Tout) and indoor zones (Tin).

3.5. Algorithms for Optimizing the Energy Use of the Automated Thermal Comfort Systems
for Ventilation

Given that the research investigated the optimization of energy use in buildings with
automated systems, thermal comfort parameters such as natural ventilation were explored
together with the contextual information from the experiment environment in deciding
the sizing and capacities of the systems to be applied in the contexts of indoor spaces. This
section aims to derive algorithms for deciding on the balanced energy levels and energy
loss in the experiment environment during the natural ventilation experiments. Thus, the
heating loads for the automated systems were aimed to be computed by comparing the
used energy with regard to the heating and cooling in the experiment environment. The
outcomes of the algorithms were assumed to derive critical energy levels and sensor values
for automated systems. Thus, it was also significant to consider the values from the BIM
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simulations and the modeling in developing the algorithms and computing the building
performance by learning the context-based data from the indoor environment to decide on
the critical energy levels for the automated state-of-the-art smart systems.

The concern regarding the automated systems for thermal comfort control offers
further potential for energy-efficient smart infrastructural developments. To this end, this
study explored the design constraints and parameters for efficient automated systems
based on energy optimization algorithms and optimized learning models developed with
the datasets from the natural ventilation experiments together with the data provided by
the BIM software Autodesk Revit Architecture.

Even though the flow of air by natural ventilation removes the number of particles
with negative effects on the air quality and health, there is a compromise in the heat energy
through the decrease in the temperature and humidity of the experiment room. Thus, novel
algorithms were explored and applied to the training and test datasets to optimize the
changes in GSV with regard to the energy change without directly changing and computing
the room’s temperature or the building components’ heat constants. The energy loss or the
amount of work to change GSV was correlated in this research to derive the optimal energy
loss function that can be used for artificial systems to improve the air quality without
decreasing temperature and heat energy.

In the development of the algorithms, thermal loads and temperature values in the
experiment environment were considered balanced or in equilibrium at certain moments.
Thus, Equation (2) was deployed for this analysis in the optimization of energy usage and
energy loss for the conditioned areas in the buildings by natural ventilation and airflow,
with decreasing GSV in the time interval from moments A to B.

∂energy (per GSV)

∂t
=

Hloss |AB
∂GSV |AB

∂t

(2)

The outcomes of Equation (2) can be defined with the units of ‘Joule per GSV’. Thus, the
energy loss to decrease the gas level by artificial means can be optimized by Equation (2),
which defines a gradient function for the optimal energy loss that is based on the change in
GSV in the dataset. Using Equation (1), (A) denotes the infinitesimally thin and resisting
surface area for the heat transfer, like a window opening for ventilation, and (t) is the
duration of the natural ventilation experiment.

The heat loss from the wall is compensated for by heating the room with another
energy source, the radiator (Figures 1 and 2, Table 1), as discussed, to keep the room
temperature steady throughout the day. Thus, the heat loss during the ventilation of
the room can be calculated as the direct heat transfer between the room and the exterior
environment. Therefore, the heat loss during the ventilation experiments, from moments A
to B (Figure 4), can be expressed in Equation (3).

Hloss |AB = hAir × Aopening ×
∣∣∣∣AB ((ToutA − TinA)−

(ToutB − TinB))
(3)

Thus, the changes in GSV can be calculated by Equation (4).

∂GSV |AB
∂t

= ∇GSV =
|GSVA − GSVB|

∆t |AB
(4)

In this regard, it is significant to consider the outcomes of Equations (2)–(4) in defining
and deciding the critical energy levels and optimizing the size, capacities, and energy that
can be used by the smart systems in the regulation of the air quality and thermal comfort
levels of indoor spaces.
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3.6. Applying Machine Learning and Deep Learning Models on the Dataset

Machine learning and deep learning models have also been advanced for the recogni-
tion of human activity and thermal comfort levels; they are used in smart spaces, industrial
applications, and energy-efficient smart infrastructure [7,24]. In this regard, machine learn-
ing and deep learning models were explored further in the ventilation experiments datasets
to find the optimal learning models for the operation of energy-efficient and smart auto-
mated systems, such as air purifiers, by recognizing and predicting thermal comfort levels
and well-being.

In the experiments of the related studies, the well-being values and GSV were also
correlated with the air index values by exploring the real-time IoT data, which are con-
sidered critical for the user occupation [3]. This correlation is significant for building
performance evaluation models trained through machine learning algorithms and artificial
neural networks. Thus, the correlating changes in room temperature, humidity, and GSV
were separately studied through ML and AI to develop the efficient and optimized learning
models in this research.

The earlier related studies on the training dataset showed that the most efficient
methods were applied through GPR algorithms [3]. Thus, GPR algorithms were also
surveyed and applied in this research to the training as well as the new test datasets for
the ventilation experiments. Accordingly, the kernel function for the exponential GPR
model [58], which was applied in the experiments of this research, can be iterated in
Equation (5).

ke(xn, xm|θ) = σ2
f × exp

−
√
(xn − xm)

T × (xn − xm)

σl

 (5)

In Equation (5), theta (θ) is the parametrization vector; xn and xm represent two
different inputs in the training data as the observations of the measured sensor values to
predict the following one with regard to the given parametrization vector. σl stands for
the standard deviation between inputs, σf denotes the length scale, and T stands for the
transpose operator.

The squared exponential kernel function is similarly expressed in Equation (6) [58].

kse(xn, xm|θ) = σ2
f × exp

(
−1

2
(xn − xm)

T × (xn − xm)

σ2
l

)
(6)

Thus, the Matérn 5/2 GPR function can be defined as in Equation (7) [58].

kmtrn(xn, xm|θ) = σ2
f ×

1 +

√
3
√
(xn − xm)

T × (xn − xm)

σl

× exp

−
√

3
√
(xn − xm)

T × (xn − xm)

σl

, (7)

and the rational quadratic kernel function is expressed in Equation (8), where alpha
(α) is the non-negative parameter of the covariance [58].

krq(xn, xm|θ) = σ2
f ×

1 +

∣∣∣(xn − xm)
T × (xn − xm)

∣∣∣
2 α× σ2

l

, α ≥ 0 (8)

In the experiments, the kernel functions and the standard deviation signals were
calculated and assigned by MATLAB Regression Learner (in Statistics and Machine Learn-
ing Toolbox, Version 12.5, MATLAB R2023a) software. Thus, machine learning and deep
learning models were employed using MATLAB Regression Learner (Table 3) and using
the abovementioned equations on the training and test datasets.
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Table 3. Learning models applied to the natural ventilation datasets.

Model Type Number of
Connected Layers First Layer Size Second

Layer Size Third Layer Size

GPR Squared Exponential - - - -
GPR Matérn 5/2 - - - -
GPR Exponential - - - -

GPR Rational Quadratic - - - -

Neural Network—Narrow 1 10 - -
Neural Network—Medium 1 25 - -

Neural Network—Wide 1 100 - -
Neural Network—Bilayered 2 10 10 -
Neural Network—Trilayered 3 10 10 10

Neural Network—Optimizable 1 1 10 - -
Neural Network—Optimizable 2 3 10 10 10
Neural Network—Optimizable 3 3 10 10 10

In the experiments, GSV and the user activity were studied by further tracing the votes
for well-being to find the optimal energy levels for the automated systems to be used for
activating the ventilation and in deciding the grounding algorithms and learning models
with regard to the standard deviation and mean values, as in Fanger’s approach [48].

3.7. Development of Deeper and Efficient CNNs

Regarding the rising challenges in developing extremely small and efficient real-time
learning models [59], the research developed novel artificial neural networks with increased
depth and various kernel sizes of the CNN, which used the same dataset as that in related
articles [3,7,57] (Table 4). Given that the dataset included tiny and compelling inputs about
the user activities and thermal comfort levels, the kernel sizes of the neural networks
needed to be adjusted to a very constrained dimension, and the models were supposed
to be trained and to make fast predictions. Therefore, new deep learning models were
developed to decrease the size and parameters of the CNN compared to the CNN applied in
the real-time learning system in the related research [3] (Table 4). Increasing the depth and
efficiency of the learning models was the research aim and the challenge of this research;
the limits were overcome by adding convolution layers, increasing the channels, changing
the kernel sizes of the convolution layers, and adding further global pooling layers, as
illustrated in Table 4 and Figure 5. The developed neural networks were applied to the
dataset with ten classes while only including the four related categories for the thermal
comfort levels (2, 3, 4, and 8) in Table 1; this increased the difficulty of training the learning
models and testing their performance compared to the earlier research [3]. The models are
also compared to the non-Fanger and Fanger’s approaches by excluding and including the
user-rated well-being values in the dataset to understand the challenges and the potential
of the user-defined values in developing the learning models for smart automation systems.

Table 4. Convolutional neural networks (CNNs), developed and applied to the dataset with
ten classes.

Model
Number of

Convolution
Layers

Number
of Layers

Number of
Connections

Depth of
Architectures

Kernel
Sizes of

Convolutions
Parameters Model Size

(kB)

CNN [3] 1 6 5 1 3 × 3 13,900 34.9
CNN-D3 (ours) 8 20 19 3 6 × 6 and 1 × 1 2500 15.9

CNN-D3_v2 (ours) 11 24 23 3 1 × 1 and 3 × 3 12,800 54.9
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4. Experiments and Results

Based on the chosen parameters, the experiments were conducted through BIM simu-
lations, the developed algorithms, and learning models on the datasets in evaluating the
building performance and thermal comfort levels with regard to the introduced systematic
approach. The methods were applied in order to decide the optimization of the automated
smart systems for thermal comfort control and well-being in indoor spaces and special
care contexts.

4.1. Experiments and Results on the Heat Losses and Thermal Conductivity

In the experiments, BIM simulation and the insights for the heat losses and power
loads were deployed first in order to have proper modeling parameters for the sizing of the
HVAC systems. Depending on the digital model of the experiment room, developed via
Autodesk Revit Architecture, Autodesk Insight software was applied to simulate the hottest
and coolest days of one year and to calculate the peak loads for the cooling and heating of
the location of the experiment area (Table 5).

Table 5. The calculated power loads and building performance analyses for thermal conductivity.

Experiment
Conditions

Instant Sensible
Load (W)

Delayed Sensible
Load (W)

Power Load (W)
(Heat Loss)

21 January at 00:15, outside: −8.0 ◦C, inside: 21.1 ◦C (Heating—BIM simulation)

Glass—Conduction −89 - -
Wall - −102 -

21 July at 14:45, outside: 37.8 ◦C, inside: 23.9 ◦C (Cooling—BIM simulation)

Glass—Conduction 12 - -
Wall - 132 -

18 November at 12:30, outside: 13.9 ◦C, inside: 25.9 ◦C (Ventilation—Real experiment)

Glass—Conduction - - −64.06
Wall - - −218.68

14 March at 14:30, outside: 15.0 ◦C, inside: 26 ◦C (Ventilation—Real experiment)

Glass—Conduction - - −58.72
Wall - - −200.46

A similar methodology was followed in the ventilation experiments to evaluate the
building performance in real-world conditions (Table 5). Accordingly, the ventilation
experiment, which was similar to the one on 18 November (Figure 4), was repeated on
14 March 2021. The experiments were conducted in the same room with an average room
temperature of 26 ◦C and the outside temperature of 15 ◦C at noon, at 14:30 (Figure 6).
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thermal conductivity on 14 March.

In the calculations of the heat loads using Equation (1), it was decided that all the
interior zones and other neighboring rooms would have the same temperature as the
experiment room (Figure 6). Given that the heat coefficients for the building components
were in Kelvin (K), the temperature values were converted into K during the calculations.
As a result, the heating load for the radiator was found to be 259.18 Watts (W), at least,
to compensate for the heat loss from the exterior wall, 200.46 W, and from the windows,
58.72 W, for this real experiment on 14 March (Table 5). Similarly, 282.74 W was needed
for the radiator to compensate for the heat loss from the wall, 218.68 W, and the windows,
64.06 W, on 18 November.

The observations from the natural ventilation experiments on 14 March were also
arranged as the test dataset, as illustrated in Figure 7, to examine the performance of the
developed learning models. Thus, the observation values were also planned to derive the
values of the minimal energy loss for a certain amount of betterment in the air quality.
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4.2. Energy Optimization of the Automated HVAC Systems with Regard to the Energy Lost by the
Natural Ventilation

In the calculation of the minimal energy loss for a certain amount of betterment in the
air quality, the abovementioned Equations (2)–(4) were employed together on the given
temperature and GSV acquired on 18 November and 14 March (Table 6). Accordingly, the
temperature values given in Celsius were converted into K during the calculations (Table 6).

Table 6. Values from the natural ventilation experiments to calculate the energy loss.

Experiment Date
hair

(W/(m2·K))
[60]

Aopening
(sq·m)

ToutA
(K)

ToutB
(K)

TinA
(K)

TinB
(K) GSVA GSVB ∆t|A

B ·(s)

18 November [3] 25.5 0.48 287.05 287.05 299.05 298.45 557 463 881
14 March 25.5 0.48 288.15 288.15 299.15 298.55 536 446 828

Accordingly, the heating loads were both equal to −7.344 W (Joule/s) during the
natural ventilation experiments. The energy used to improve the air quality in the experi-
ments on 18 November was calculated as 6470.064 Joule and 68.831 Joule per GSV. Similarly,
6080.832 Joule of energy was used for the experiments on 14 March, resulting in 67.565 Joule
per GSV, indicating the energy needed to decrease the GSV per unit.

4.3. Experiments on Machine Learning and Deep Learning Models

Given that the exact conditions were not purely linear and solvable by simpler equa-
tions, machine learning and deep learning models were further explored on the training
and test datasets of the ventilation experiments (Figures 4 and 7). Thus, the aim was to
optimize the operation of the smart systems, such as the air purifiers and conditioners,
by deploying the learning models in controlling the thermal comfort and air quality and
taking action before the needed energy and desired thermal comfort levels were exceeded.
Accordingly, MATLAB Regression Learner software was run to deploy the learning models
on the training and test datasets of the natural ventilation experiments that were executed
when determining the best computation method for a precise calculation in simulating
the thermal conductivity and change in thermal comfort levels. In all the experiments
with the learning models, Intel(R) Core(TM) i7-4700HQ CPU @ 2.40 GHz was used as
the hardware resource with four cores and eight logical processors. The use of a parallel
pool was activated with four local parallel pool workers during the experiments. For the
regression experiments, GSV or temperature was selected as the response value, and the
remaining two observations, including humidity, were arranged as inputs. To prepare the
training data, MATLAB Regression Learner was set through ten cross-validation folds;
principal component analysis (PCA) was disabled, and the optimizer was not applicable.

Table 7 illustrates the results of the experiments on the selected machine learning
and deep learning models applied to the partial training dataset, which only included
the observation values from the sensors from moment A, when the natural ventilation
was allowed, to moment B, when the natural ventilation was ended (Figure 4). In these
experiments, the inputs were the temperature and humidity values to predict GSV as the
response. Accordingly, Figure 8 illustrates the prediction results of the wide neural network
on the partial training dataset.

The trained learning models were then tested through the test dataset (Figure 7,
Table 7). Figure 9 illustrates the prediction results of the medium neural network, which
was trained on the partial training dataset and tested on the partial test dataset and only
included the observations from moments A to B (Figure 7).
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Table 7. Training and test results of learning models on the partial training dataset for the ventilation
experiment. Inputs: temperature and humidity. Response: gas sensor value (GSV).

Model Type RMSE
(Validation) RMSE (Test) Number of

Iterations
Model Size

(kB)

Training
Time

(s)

Prediction
Speed (obs/s)

GPR Squared Exponential 0.477 1.648 - 9 19.113 410
GPR Matérn 5/2 0.446 1.802 - 9 18.398 660
GPR Exponential 0.445 2.004 - 9 17.857 850

GPR Rational Quadratic 0.459 1.846 - 9 17.237 720

Neural Network—Narrow 0.584 1.358 - 4 15.973 470
Neural Network—Medium 0.477 1.314 - 5 20.639 600

Neural Network—Wide 0.441 1.843 - 7 20.332 300
Neural Network—Bilayered 0.471 2.246 - 6 20.152 510
Neural Network—Trilayered 0.474 2.476 - 8 24.284 1200

Neural Network—Optimizable 1 2.503 1.793 30 4 33.325 880
Neural Network—Optimizable 2 0.602 1.288 30 76 250.21 640
Neural Network—Optimizable 3 0.612 1.405 100 4 406.3 720
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The developed learning models that were trained and tested on the selected datasets,
and they were also utilized using randomly selected inputs to compare the prediction
results with the ground truth (Table 8).

Table 8. Predicted GSV by the trained wide neural network.

Inputs Output Ground Truth

Temperature
(◦C)

Humidity
(Percent)

Predicted
(GSV) *

Real
(GSV)

26 47 53.3 51.8
25.9 44 51.5 50.7
25.8 41 50.9 50.3
25.5 35 48.5 47.3
25.5 35 48.5 47.2

* error < 0.05.

Based on the same partial training dataset, all the selected learning models were also
trained by setting the inputs as humidity and GSV in order to predict the temperature as
the response (Table 9). The trained models were then tested on the partial dataset using the
selected inputs. Figure 10 illustrates the prediction results of the trilayered neural network,
tested on the partial test dataset for the ventilation experiment.

Table 9. Training and test results of learning models on the partial training dataset for the ventilation
experiment. Inputs: humidity and GSV. Response: temperature.

Model Type RMSE
(Validation) RMSE (Test) Number of

Iterations
Model Size

(kB)
Training
Time (s)

Prediction
Speed
(obs/s)

GPR Squared Exponential 0.056 0.119 - 9 3.9408 680
GPR Matérn 5/2 0.051 0.121 - 9 6.4251 670
GPR Exponential 0.060 0.137 - 9 5.7391 560

GPR Rational Quadratic 0.052 0.123 - 9 4.5206 760

Neural Network—Narrow 0.067 0.225 - 4 8.6182 760
Neural Network—Medium 0.067 0.236 - 5 9.5076 820

Neural Network—Wide 0.055 0.170 - 7 11.817 810
Neural Network—Bilayered 0.063 0.159 - 6 11.588 920

Neural Network—Trilayered 0.078 0.112 - 8 14.179 960
Neural Network—Optimizable 1 0.110 0.247 30 4 341.47 740
Neural Network—Optimizable 2 0.070 0.181 30 4 47.279 1500
Neural Network—Optimizable 3 0.591 0.652 100 112 185.44 1600
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All the selected learning models were also trained and tested on the whole training
and test datasets (Figures 4 and 7) to observe the performances of the learning models in
predicting the values for the ventilation experiments. Table 10 illustrates the results of the
learning models on the training dataset by setting the inputs as temperature and humidity
values and the response as GSV. Accordingly, Figure 11 illustrates the prediction results of
the exponential GPR model on the selected training dataset.

Table 10. Training and test results of learning models on the training dataset for the ventilation
experiment. Inputs: temperature and humidity. Response: GSV.

Model Type RMSE
(Validation) RMSE (Test) Number of

Iterations
Model Size

(kB)
Training Time

(s)

Prediction
Speed
(obs/s)

GPR Squared Exponential 0.358 3.121 - 17 6.0042 4500
GPR Matérn 5/2 0.355 3.195 - 17 5.3396 5700

GPR Exponential 0.346 3.149 - 17 8.7419 6500
GPR Rational Quadratic 0.349 3.157 - 17 14.765 6400

Neural Network—Narrow 0.701 3.108 - 4 6.6549 7300
Neural Network—Medium 0.602 3.434 - 5 11.471 7500

Neural Network—Wide 0.390 3.401 - 7 17.75 9500
Neural Network—Bilayered 0.537 3.135 - 6 15.43 8200
Neural Network—Trilayered 0.431 3.312 - 8 19.729 13,000

Neural Network—Optimizable 1 0.973 2.508 30 4 45.322 14,000
Neural Network—Optimizable 2 0.734 2.863 30 4 236.92 14,000
Neural Network—Optimizable 3 0.703 2.858 100 11 599.37 17,000
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Figure 11. Prediction results of exponential GPR on the training dataset for the ventilation experiment.
Inputs: Temperature and humidity. Response: GSV.

The whole training dataset was also prepared by setting the inputs as humidity and
GSV in order to predict temperature as the response. The trained learning models were
also tested on the test dataset with selected inputs and responses. Accordingly, Table 11
illustrates the training and test results of the learning models. The prediction results of
the rational quadratic GPR on the training dataset are illustrated in Figure 12, and the
prediction results of optimizable neural network 3 on the test dataset are illustrated in
Figure 13.
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Table 11. Training and test results of learning models on the training dataset for the ventilation
experiment. Inputs: humidity and GSV. Response: temperature.

Model Type RMSE
(Validation) RMSE (Test) Number of

Iterations
Model Size

(kB)
Training Time

(s)

Prediction
Speed
(obs/s)

GPR Squared Exponential 0.039 0.293 - 17 6.5397 8600
GPR Matérn 5/2 0.039 0.308 - 17 8.877 7500
GPR Exponential 0.039 0.335 - 17 9.6738 7900

GPR Rational Quadratic 0.038 0.324 - 17 14.116 7300

Neural Network—Narrow 0.061 0.251 - 4 12.466 8900
Neural Network—Medium 0.051 0.344 - 5 19.061 6200

Neural Network—Wide 0.041 0.244 - 7 23.841 11,000
Neural Network—Bilayered 0.052 0.437 - 6 21.347 10,000
Neural Network—Trilayered 0.073 0.389 - 8 26.61 11,000

Neural Network—Optimizable 1 0.301 0.393 30 4 43.231 15,000
Neural Network—Optimizable 2 0.070 0.246 30 13 88.246 19,000
Neural Network—Optimizable 3 0.099 0.157 100 4 360.81 17,000
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4.4. Experiments and Results of Deeper and Efficient CNNs on the Selected Datasets

The results of the natural ventilation experiments revealed that training precise learn-
ing models was another challenging task. Thus, the deep learning models were further
developed by considering the complex datasets and inputs for smart systems and auto-
mated technologies using less energy to predict user activity and thermal comfort levels.

The developed deep learning models (Table 4), considering the challenges and needs
related to efficient smart systems and the users’ thermal comfort levels and well-being, were
tested through the selected datasets. Table 12 illustrates the results of the developed neural
networks applied to the dataset with four classes, excluding the user-rated well-being
values. Table 13 illustrates the results of the same CNN models, which were also trained
and tested to grasp the challenging role of Fanger’s approach by including the user-rated
well-being values in the training dataset with four classes, categorized by considering the
user occupation and thermal comfort levels through six sensor observations for each input.

Table 12. Results of CNNs on the dataset with four selected classes without user-rated well-being values.

Models * Training Time
(s)

Final Training
Accuracy
(Percent)

Validation
Accuracy
(Percent)

Test
Accuracy
(Percent)

Training
Loss

Validation
Loss

CNN [3] 38 100 100 100 0.001300 0.001300
CNN-D3 (ours) 71 100 100 100 0.001500 0.001500

CNN-D3_v2 (ours) 88 100 100 100 0.000485 0.000485

* All models were trained for 5000 iterations with a 0.001 initial learning rate.

Table 13. Results of CNNs on the dataset with four selected classes, including the user-rated well-
being values.

Models * Training Time
(s)

Final Training
Accuracy
(Percent)

Validation
Accuracy
(Percent)

Test
Accuracy
(Percent)

Training
Loss

Validation
Loss

CNN [3] 32 77.78 77.78 80 0.3967 0.3967
CNN-D3 (ours) 73 100 100 100 0.0019 0.0019

CNN-D3_v2 (ours) 88 100 100 100 0.0301 0.0301

* All models were trained for 5000 iterations with a 0.001 initial learning rate.

The results reveal that the accuracy of CNNs, used for the real-time learning system in
the related studies [3,7], sharply decreased when including the user-rated voting values
in the dataset (Tables 12 and 13). On the other hand, the CNNs that were developed
specifically with regard to the size of the datasets in this research performed much better
when compared to the earlier and shallower models, even if they were lightweight and
smaller than 16 and 55 kB (Tables 4, 12 and 13).

5. Discussion

Automated systems in buildings are expected to be designed to be energy-efficient.
The consideration of environmental facts in the development of energy optimization algo-
rithms and computing technologies offers greater potential for automated systems. The
energy-efficient automated systems with deep learning and real-time learning models, de-
veloped through the IoT data from the environments, are also gaining increasing attention.
Regarding the related seminal works in the literature, this study aimed to deploy a system-
atic approach to discover the parameters and constraints in optimizing the energy usage
of automated solutions for thermal comfort control. In this regard, building performance
simulations, energy optimization algorithms, and grey box and black box learning models,
such as ML and deep learning models, were explored for the control of thermal comfort
and well-being. The chosen methods were conducted through BIM simulations in the
evaluation of the building performance (Table 1, Figures 1 and 2), as well as for energy
optimization in the heat loss and ventilation experiments via the equations and learning
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models developed through the IoT-based datasets, including the user-rated voting in ac-
cordance with Fanger’s seminal approach (Figures 3, 4, 6 and 7, Table 2). Thus, the design
of automated systems can be considered in relation to the parameters and the challenges
of optimizing the cost of operations and energy usage, as well as the performance of the
learning models in thermal comfort control (Tables 3 and 4).

Smart automation systems should consider the parameters for thermal comfort levels,
such as temperature, humidity, and air quality. In this research, BIM software was used
to derive context-based information about the building components and to simulate the
thermal comfort levels with regard to the essential performance parameters. The building
performance simulations (Figures 1 and 2, Table 1) for the evaluation of the energy loss and
usage in the ventilation experiments (Figures 4 and 7) also made it possible to decide on the
functional parameters and electricity features of energy-efficient air purifier and conditioner
systems. Thus, based on the facts from the developed BIM simulations, using Autodesk
Revit Architecture and Autodesk Insight software, calculations for the thermal conductivity
of the building components and the peak loads of heating, cooling, and ventilation were
made (Figures 1 and 2, Tables 1, 5 and 6). Thus, to keep the room temperature steady, the
peak load to the HVAC system for cooling was calculated as 144 Won 21 July and 191 W for
heating on 21 January, based on the BIM simulations and modeling (Table 5).

It can also be concluded from the experiments that 58.72 W of heat was calculated
as being lost from the windows, and 200.46 W was calculated as the heat loss from the
wall that the heater should compensate for in order to keep the room temperature constant
during and after the ventilation experiments on 14 March (Table 5, Figure 6). Similarly, the
experiments on 18 November revealed that the peak load to the radiator was calculated as
282.74 W; to compensate for the heat losses from the wall, it was as 218.68 W; and for the
windows, it was as 64.06 W (Table 5). The attempt was made to further optimize the energy
usage and the electricity features of the systems via Equations (2)–(4), without tackling the
temperature and humidity changes in the experiment area. For instance, on 14 March, a
state-of-the-art air purifier needed to have a lowest fan setting of at least 7.344 W (Joule/s) to
take action instead of natural ventilation; thus, further energy loss from the openings and
windows can be minimized by the system without decreasing the temperature of the indoor
spaces (Table 6). If the purifier was allowed to apply 40 W for a maximum fan setting, then
the system needed to run for at least 161.75 s for the conditions on 18 November and 152 s
for the conditions on 14 March for the purification of the indoor air using the same energy
as that lost during the experiments (Table 6).

The energy optimization algorithms were only expressed for the simpler solutions in
deciding on the needed capacities of the smart systems, whereas the conditions were not
purely linear in this research. Thus, the related real-time IoT data from the sensors on the
thermal comfort levels were also processed through machine learning and deep learning
models to decide on the optimization of the operation of the automated systems, which
can be activated or stopped before the needed energy and desired values are exceeded. In
other words, apart from the fixed algorithmic solutions, regression models such as machine
learning and deep learning models were further explored in finding the optimal model to
operate the automated systems (Table 3). A series of experiments was conducted by deploy-
ing MATLAB Regression Learner to develop machine learning and deep learning models
and to predict the desired sensor values and states that could stimulate the systems to take
action or to decrease and terminate the energy usage. Comparing the results of the root
mean square error (RMSE) values of learning models revealed that the complex algorithms
and deep learning models (Table 4) could be further evaluated for more sophisticated
conditions and robust calculations in energy optimization (Tables 7–11).

For instance, in predicting the ventilation experiments, the wide neural network
returned the best results for the partial training dataset (Figure 8), and the optimizable
(2) neural network had the best performance for the partial test dataset once GSV was set
as the response (Table 7). Thus, the wide neural network was also developed and tested to
predict GSV by randomly selecting the given inputs (Table 8).
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In the following experiments, however, the rational quadratic GPR returned the best
RMSE result for the partial training dataset, and the trilayered neural network performed
the best for the partial dataset once the temperature of the room was set as the response
parameter (Figure 10, Table 9). In predicting the responses for a longer period, exponential
GPR returned the best RMSE result for the training dataset (Figure 11), and the optimizable
(1) neural network returned the best RMSE for the test dataset once GSV was set as the
response (Table 10). By setting temperature as the response (Table 11), rational quadratic
GPR returned the best RMSE for the training dataset (Figure 12), even though most of the
neural networks also returned similar results. On the other hand, the test dataset allowed
for a better examination of the efficiency of the trained networks, and the optimizable
(3) neural network returned the best RMSE result by far for the test dataset (Figure 13,
Table 11).

In brief, various machine learning and deep learning models yielded the best results
for different datasets and response parameters. It can be concluded from these results
that different learning models can be trained and optimized for each different action and
parameter. On the other hand, it should be noted that most of the optimizable neural
networks were more lightweight and returned more consistent results for the training
datasets and better results in predicting the test datasets compared to the machine learning
algorithms (Tables 7 and 9–11).

Better performance results for the unknown test datasets were much more significant
for the real-time learning and real-world applications. Moreover, the prediction accuracies
of the neural networks improved by increasing the depth and training iteration; they per-
form much better on complex test datasets with longer periods. They also had the potential
to be improved by increasing the number of fully connected layers (Tables 10 and 11). In
this regard, the novel deep neural networks were developed and further trained in this
research for energy-efficient automated systems predicting thermal comfort levels and
well-being (Table 4).

Regarding the user-rated well-being values and Fanger’s approach, the attempt was
made to advance the calculation methods by adopting the deep neural networks, such as
CNN, in recognizing and correlating the thermal comfort levels and user activities in the
datasets (Table 2, Figures 3, 4 and 7). On the other hand, it is observed from the results
that developing learning models for ideal prediction is yet another challenge and a difficult
research problem, as only a few learning models predicted the ideal responses in this
research (Figures 9, 10 and 13).

Thus, the experiments were also conducted to develop new classification-based neural
networks by increasing the depth of the learning models (Figure 5), and they were tested
on the dataset with the classified user activities (Table 2). Accordingly, the new CNNs
with different depths and the CNNs of the earlier related research [3] were used in the
experiment on the training dataset by only including four classes of thermal comfort levels
(2, 4, 5, 8 in Table 2). The networks were also trained with regard to both non-Fanger
and Fanger’s approaches by excluding and including the user-rated well-being votes in
the dataset.

The results show that the earlier version of the CNN, used in the real-time learning
system, needed more depth and accuracy in predicting the dataset with four classes and
the user-rated well-being values (Tables 12 and 13). The experiments also revealed that
involving the user-rated well-being values also increased the difficulty and challenges for
the learning models. In this regard, it can be concluded that the consideration of Fanger’s
approach in developing deep learning models also needs novel and efficient solutions to be
applied to energy-efficient automated systems; the attempt to investigate this was made in
this research (Tables 4 and 13).

Limitations and Proposals of the Research

The limitations and future proposals of this work can be briefly discussed. There are
still limited data about the building performance and natural ventilation experiments for
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the explored context. For instance, there are no data from other spaces as there is a lack
of smart systems or corresponding IoT data. Thus, only hypothetical models could be
developed with regard to the adjacent areas, with the help of BIM simulation; the heat
coefficients of the building components of each area were simulated. On the other hand,
the developed algorithms allowed the calculation of the optimization of energy use for
natural ventilation without depending on the heat coefficients. Instead, machine learning
and deep learning models were explored for the more complex conditions to be adapted
to the internal dynamics and correlations among the indoor facts and usage patterns and
were considered to be much more significant in this research.

Be that as it may, the usage of IoT systems can be encouraged and multiplied in
various environments to calculate heat losses and energy efficiency in the surrounding areas.
Additionally, the usage periods in this research were not divided into seasons as a limitation
of the dataset once the related studies in the literature were considered [6]. Comprehensive
datasets from the experiment environments with affordable new hardware resources and
scalable computing technologies can be developed and trained for energy-efficient solutions
and sustainable environments in different contexts for future work [24,61].

All in all, a systematic approach for defining the parameters and energy-efficient
solutions for automated systems in thermal comfort control was explored and executed
through the existing datasets in a special care context. The BIM simulations provided
abundant resources about the context in evaluating the building energy performance,
energy use, and optimization for heating, cooling, and ventilation of the experiment
area. These provided the basis for the sizing and electrical features of the state-of-the-art
automated systems to be applied in this context. The contextual data from the experiment
area were also processed to develop energy-optimization algorithms, ML, and deep learning
models in order to predict thermal comfort levels and classify activities so that the efficiency
of the automated systems, by applying learning models, could be improved by decreasing
the energy usage and the runtime needed to take action. In brief, from the experiments
and results, a combination of different optimization methods, algorithms, and learning
models can be proposed for developing and deploying energy-efficient state-of-the-art
technologies to take action for thermal comfort control with regard to the specific context
of indoor environments and the occupations of the users:

• BIM simulations should be encouraged in providing context-based information from
the areas in which IoT-based smart systems are to be installed.

• Energy optimization algorithms should be explored and applied with regard to the
thermal comfort parameters, such as air quality and context-based data, to be evaluated
in the building performance, energy usage, and thermal conductivity when deciding
on the optimal electricity features of the automated systems without changing other
thermal comfort levels.

• Machine learning models that fit best when optimizing the energy use and operation
of the automated systems should also be discovered and applied with regard to the
thermal comfort parameters and contextual information.

• Finally, more complex, yet lightweight, deep learning models that are to be trained
quickly and are good at accurate prediction should be explored and applied to smart
systems that take action by recognizing the classified activities needed to control
thermal comfort and well-being.

6. Conclusions

Smart systems and technologies in buildings offer well-being and thermal comfort
control, and they have the potential to be developed systematically with regard to ther-
mal comfort parameters, user preferences, and energy-efficient concerns. Based on the
experiments conducted, it can be inferred that BIM simulations and IoT systems are highly
effective in acquiring, generating, and processing comprehensive data from indoor spaces.
Additionally, black box models were found to be highly useful for processing sensor data
through advanced algorithms and learning models, thereby enabling effective thermal com-
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fort control and enhancing overall well-being. These findings have significant implications
for the development of advanced building management systems and can pave the way for
more efficient and sustainable indoor environments in the future.

It is clear from the results that context-based information and the outcomes of com-
putations of the building performances of indoor spaces, acquired with the help of BIM
simulation and modeling, are absolutely crucial in the evaluation of the experiments related
to thermal comfort parameters, such as natural ventilation, in order to develop zero-energy
buildings as well as state-of-the-art and energy-efficient automated systems for thermal
comfort control. Moreover, energy-optimization algorithms that are developed with the
help of context-based information from BIM simulations and smart systems allow for a
decision on the critical thermal comfort parameters, energy usage, and power loads for
the capacities and electricity features of the automated systems. Nevertheless, the energy-
optimization algorithms are only considered when the heating loads and thermal conditions
are caught in a balance during the ventilation experiments, even though the phenomena of
airflow and natural ventilation need to be considered through the changing states. In this
regard, the development of machine learning and deep learning models is understood to
be extremely significant in the optimization of the operation of energy-efficient automated
systems that can predict the critical energy levels and user activity when the temperature
and heating loads in the indoor spaces are changed and not in equilibrium, or once they
cannot be resolved by simpler equations. The experiments on learning models showed that
machine learning and deep learning models that fit best to the conditional changes might
facilitate and optimize the operation of the automation systems efficiently with regard
to the varying circumstances and might help to decide how and when these intelligent
systems should take action. In this regard, the use of artificial intelligence models in the
development of state-of-the-art automated systems is also seen as crucial in understanding
user activity and thermal comfort levels in indoor spaces. Thus, user-defined ratings and
Fanger’s approach were considered in developing novel learning models to decide on
the thermal comfort levels during the operation of smart systems, which were found to
be absolutely crucial in recognizing and predicting the user activity and thermal comfort
levels that can significantly decrease the energy used for thermal comfort control.

The systematic approaches applied in this research can enable the development of
energy-efficient state-of-the-art smart systems for thermal comfort control and well-being.
Consequently, thermal comfort levels in buildings can be optimized by the automated
systems with regard to the contextual information about the building components and the
evaluation of their performances and also by considering the user activities and preferences
in indoor environments in designing energy-efficient buildings with smart systems.
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AI Artificial Intelligence
BIM Building Information Modeling
◦C Celsius
CH4 Methane
C4H10 Butane
cm Centimeter
CNN Convolutional Neural Network
CO2 Carbon dioxide
GPR Gaussian Process Regression
GPU Graphic Processing Unit
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GSV Gas Sensor Value
HVAC Heating, Ventilation, Air Conditioning
IoT Internet of Things
K Kelvin
kB Kilobyte
LAN Local Area Network
LPG Liquefied Petroleum Gas
m Meter
min Minute
ML Machine Learning
obs/s Observations per second
PCA Principal Component Analysis
PCS Personal Comfort Systems
PMV Predicted Mean Vote
R-CNN Region-Based Convolutional Neural Network
RMSE Root Mean Squared Error
s Second
sq m Square Meter
W Watt
WOB Window Opening Behavior
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