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Abstract: Monitoring individual exposure to indoor air pollutants is crucial for human health
and well-being. Due to the high spatiotemporal variations of indoor air pollutants, ubiquitous
sensing is essential. However, the cost and maintenance associated with physical sensors make this
currently infeasible. Consequently, this study investigates the feasibility of virtually sensing indoor
air pollutants, such as particulate matter, volatile organic compounds (VOCs), and CO2, using a
long short-term memory (LSTM) deep learning model. Several years of accumulated measurement
data were employed to train the model, which predicts indoor air pollutant concentrations based on
Building Management System (BMS) data (e.g., temperature, humidity, illumination, noise, motion,
and window state) as well as meteorological and outdoor pollution data. A cross-validation scheme
and hyperparameter optimization were utilized to determine the best model parameters and evaluate
its performance using common evaluation metrics (R2, mean absolute error (MAE), root mean square
error (RMSE)). The results demonstrate that the LSTM model can effectively replace physical indoor
air pollutant sensors in the examined room, with evaluation metrics indicating a strong correlation in
the testing set (MAE; CO2: 15.4 ppm, PM2.5: 0.3 µg/m3, VOC: 20.1 IAQI; R2; CO2: 0.47, PM2.5: 0.88,
VOC:0.87). Additionally, the transferability of the model to other rooms was tested, with good results
for CO2 and mixed results for VOC and particulate matter (MAE; CO2: 21.9 ppm, PM2.5: 0.3 µg/m3,
VOC: 52.7 IAQI; R2; CO2: 0.45, PM2.5: 0.09, VOC:0.13). Despite these mixed results, they hint at the
potential for a more broadly applicable approach to virtual sensing of indoor air pollutants, given the
incorporation of more diverse datasets, thereby offering the potential for real-time occupant exposure
monitoring and enhanced building operations.

Keywords: machine learning; deep learning; virtual sensing; LSTM; IAQ; monitoring

1. Introduction

Indoor air pollutants are of different sizes and types, are harmful at different concen-
trations, and have different intake pathways and effects. The major groups of pollutants are
inorganic gases, organic gases, particulates, microbial pollutants, and viral and bacterial in-
fections [1]. Controlling indoor air pollutant exposure is especially relevant since we spend
up to 87% of our time in buildings [2], rendering them the most important environments.
In efforts to make buildings more energy efficient, they have become better sealed and
indoor spaces more dependent on HVAC systems [2]. Studies have shown that bad indoor
air quality leads to a multitude of different symptoms and health impacts. The gravity
of these impacts depends on the pollutants, their concentration, the exposure time, and
individual factors such as age, constitution, and health [3]. Most frequently, occupants
experience tiredness, burning eyes, headaches, and concentration problems [3]. Prolonged
exposure may also lead to respiratory syndromes and immune system reactions such as
asthma, especially in vulnerable groups such as children or elderly persons [3]. According
to a study from the WHO, air pollution is a significant health threat and a primary environ-
mental factor in causing premature deaths in Europe [4]. Exposure to fine particulate matter
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has been linked to over 400,000 premature deaths in European countries [5]. Therefore,
many countries are taking steps to reduce indoor air pollutant concentration by enforcing
exposure limits. An in-detail summary of exposure limits in different countries is given
in Abdul et al. [6]. The European Union largely adopted the exposure limits suggested by
the WHO in [7]. Effective strategies for reducing indoor air pollutant exposure include
source control, which involves identifying and minimizing sources of pollution, mitigation
measures such as removing pollutants and introducing clean air, and monitoring indoor
air pollutant concentrations [1]. These measures are situated at different points of the
building life cycle: source control is relevant in the planning and construction phase of
buildings, and mitigation and monitoring are required during the use of the building.
Building codes progressively ensure source control in new buildings by restricting harmful,
pollutant-emitting materials. However, the majority of existing building stock was built
without awareness of indoor air quality concerns. Therefore, improving indoor air quality
in existing buildings is key. Monitoring and mitigation measures are especially relevant
in the non-residential sector since occupants have little influence on the indoor environ-
ment, as opposed to residential buildings. Therefore, the following study will focus on
non-residential typologies in the existing building stock; specifically, typology—with high
occupant density and prolonged exposure will be part of the study.

2. Indoor Air Pollutants in the Non-Residential Building Stock

Several studies have examined the spatiotemporal distribution of indoor air pollutants
within rooms in non-residential building stock. Szigeti et al. [8] examined the spatiotempo-
ral distribution of particulate matter in European office buildings and found a significant
variation between buildings. Within buildings, temporal variation is more pronounced than
spatial distribution variations [8]. According to Szigeti et al. [8], occupants may be exposed
to significantly different pollutant concentrations in different rooms within a building.
Li et al. [9] examined the spatiotemporal distribution of particulate matter within one room
(workshop) with localized sources and found high spatial and temporal variations within
a single room. Sahu et al. [10] examined the distribution of indoor air pollutants—CO2,
particulate matter, VOC—in a multi-story library with shared air volume. They found
high spatial and temporal variations within the library, with temporal variations mainly
driven by the number of occupants and spatial variation more pronounced between the
different stories. Studies Szigeti et al. [8], Li et al. [9], and Sahu et al. [10] show that indoor
air pollutants show significant spatiotemporal variations. Therefore, a continuous and
spatiotemporally high-resolution monitoring is required in order to evaluate occupant ex-
posure and control ventilation units. The state of research in continuous and spatiotemporal
high-resolution indoor air pollutant monitoring was analyzed, looking at fifteen studies,
monitoring indoor air pollutants in non-residential buildings: [9,11–24]. Over all studies,
the most measured pollutant is particulate matter, examined by 14 out of 15 publications.
In 8 of 15 studies measured one or multiple volatile organic compounds, and 7 out of
15 studies measured CO2. Carbon monoxide and nitrogen dioxide were assessed in 5 out of
15 studies, and ozone and sulfur dioxide in 2 studies. Several other pollutants as nitrogen
oxide and fungi, are only considered in 1 publication. The studies evaluated the importance
of different pollutants in non-residential buildings and found that carbon monoxide and
radon only accumulate in particular spaces, such as kitchens with gas ovens and basements,
and are insignificant in typical non-residential buildings [11,25]. Irga et al. [14] found
the levels of nitrogen oxide, volatile organic compounds, fungi, and sulfur dioxide to be
harmless in 11 office buildings. According to Challoner et al. [22], the most problematic
pollutant in non-residential buildings is fine particulate matter, exceeding health thresholds
in 10% of the measured time. Additionally, carbon dioxide regularly exceeds the threshold
of 1000 ppm in naturally ventilated buildings [15]. Likewise, volatile organic compounds
are effectively controlled by mechanical ventilation systems but can reach problematic con-
centrations if the ventilation system is switched off or buildings are naturally ventilated [15].
The reviewed articles exclusively use on-site measurement technology since laboratory
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analysis is not able to gather continuous, high-resolution measurements. Most studies
used MOS technology VOC sensors, NDIR technology CO2 sensors, and OPC technology
particulate matter sensors.

3. Virtual Sensing for Indoor Air Pollutants

Ubiquitous monitoring of indoor air pollutants requires durable, low-cost, low-
maintenance, low-energy sensor equipment. NDIR and OPC technologies are optical mea-
surement principles requiring fragile components and suffer from measurement drift and
longevity issues due to the build-up of foreign particles in the measurement chambers [26].
Furthermore, optical measurement methods have higher energy consumption and are less
suited for battery operation. Even though MOS-based VOC sensors are low cost and low
energy, MOS-based VOC measurements are prone to drift and suffer from reproducibility
issues [27]. These drawbacks necessitate careful maintenance, diligent monitoring for
failures, and thorough post-processing of data, which is often overlooked in building
operations. A mitigation of these shortcomings is presented in previous studies [28,29]
that developed calibration models to improve accuracy and reduce the drift of IAP sensors.
However, those systems have not found their way into practice yet. Therefore, alternatives
to the measurement of particulate matter (PM), volatile organic compounds (VOC), and
carbon dioxide (CO2) have to be found.

Virtual sensing of PM, VOC, and CO2 is an alternative to ubiquitous sensor deploy-
ment. Virtual sensing “aims to approximate unmeasured physical quantities in a dynamic
system using existing sensor information. This is especially beneficial when important
locations of the system are difficult to instrument, or the cost of sensors is very high” [30].
“A virtual sensor uses low-cost measurements and mathematical models to estimate a
difficult to measure or expensive quantity” [31]. The models are based on related physical
measurements, control signals, operation information, and design information [32]. Vir-
tual sensing finds widespread application in the domains of process control, automotive,
avionics, and robotics [31]. However, with the exponential rise of available data points
through developments in IoT and cost reduction of sensors, virtual sensing has been in-
creasingly adopted in the building industry [32]. The application of virtual sensing in
the building industry is manifold. Buildings gather many data points, and nearly every
physical sensor can provide additional information for virtual sensing. Li et al. [31] gives
an example of the potential of virtual sensing in buildings: “A ’smart’ lighting fixture could
provide power, lighting, and heat gain outputs based on the input control signal. A ’smart’
window could provide estimates of heat gain and even solar radiation based on low-cost
measurements and a model”. Application scenarios in buildings include HVAC operation
monitoring [33,34], indoor infiltration rate [35], zone temperature distribution [36], zone
occupancy estimation [37] and indoor air pollutant monitoring [38–40]. Generally, virtual
sensors can be differentiated into three application scenarios: replacement and backup,
observation, and assistance [32]. Replacement and backup virtual sensors are deployed in
parallel to their physical counterparts and, by computing the residuals between physical
and virtual measurement, are able to detect sensor faults or calibration drifts [41], and can
replace their physical counterparts if needed [32]. Observation virtual sensors estimate a
data point without their physical counterpart using other measurements and mathemat-
ical models [32]. Assistance virtual sensors do not estimate a physical quantity but are
integrated into other virtual sensors to improve accuracy. The output of assistance virtual
sensors is often normalized [32]. Virtual sensors can further be differentiated regarding
their modeling method and the underlying measurement characteristics [31]. Modeling
methods are white-box, grey-box, and black-box models [31]. Measurement characteris-
tics can be differentiated in transient (e.g., power usage, indoor temperature) or steady
state (e.g., system failure state) data [31]. White and grey-box models require in-depth
knowledge of the building. These approaches are infeasible for older buildings due to
unavailable planning documents, undocumented changes, and performance deterioration.
One alternative would be a black-box model, which requires extensive measurement data.
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To summarize, virtual sensing for indoor air pollutant prediction in non-residential ty-
pologies requires transient-state observational virtual sensors created using a black-box
modeling method.

Other studies have already examined the applicability of virtual sensing for indoor air
pollutant prediction. A study by Gabriel and Auer [42] used multi-layer perceptron (MLP)
artificial neural networks and support vector machines (SVM) to create an observational
virtual particulate matter sensor based on available Building Management System (BMS)
data (temperature, pressure, humidity, sound, illumination, window opening state, and
printer power consumption). Six months of measurement data were used to train and
test the two machine-learning models. Gabriel and Auer [42] found that MLPs performed
best, and the results indicated that physical particulate matter sensors could be replaced by
virtual sensors based on BMS data. Kusiak et al. [41] created virtual replacement sensors
for temperature, humidity, and CO2 with four modeling approaches for the calibration
and monitoring of physical sensors using HVAC, climate, and other indoor air pollutant
data. MLPs were found to perform best in modeling the physical sensors. Kusiak et al. [41]
conclude that the virtual sensors are able to detect failures of their corresponding physical
sensors and replace them if necessary. Skoen et al. [38] used MLPs to create an observational
virtual sensor using temperature and humidity as input for modeling CO2. Skoen et al. [38]
concludes that estimating CO2 only based on temperature and humidity is difficult and
requires additional measurements to support the black-box model. Leidinger et al. [43]
created a virtual replacement sensor for selective VOC sampling of formaldehyde, benzene,
and naphthalene using an array of low-cost MOS sensors as input. Leidinger et al. [43]
used linear discriminant analysis to estimate the target variables. Under laboratory con-
ditions, the study achieved a classification ratio of over 99%. However, in field tests, the
classification ratio significantly dropped (83%) due to VOC emissions of the hardware [43].
A summary of Literature on Virtual Sensor Creation is given in Table 1. Research in other
domains showed that long short-term memory (LSTM) recurrent neural networks are
suited for time-series data in virtual sensor creation due to their ability to incorporate
measurements from a lookback window into their model. LSTMs are recurrent neural
networks specialized in time series data by incorporating memory cells in their network
architecture, which enable them to identify and remember patterns in time series data [30].
In the building industry, LSTMs have already been applied to building load management
for forecasting energy consumption [44,45] and predicting occupancy [46]. LSTMs have
not yet been applied to modeling virtual indoor air pollutant sensors.

Table 1. Summary of Literature on Virtual Sensor Creation.

Study Virtual Sensor Type Methods Used Main Findings

Gabriel and Auer [42] Particulate Matter MLP, SVM
MLPs performed better than SVM; results

show the potential of virtual sensors to
replace physical ones

Kusiak et al. [41] Temperature, Humidity, CO2 MLP, SVM, Pacereg, RBF
MLP outperformed other models; Virtual

sensors can detect and replace failing
physical sensors

Skoen et al. [38] CO2 MLP Estimating CO2 based only on temperature
and humidity is challenging

Leidinger et al. [43] VOC Sampling Linear Discriminant Analysis 99% lab accuracy, 83% field accuracy due to
hardware VOC emissions

Karijadi et al. [44] and Jang et al. [45] Energy Consumption LSTM LSTMs have been successfully applied in
energy consumption forecasting

Qolomany et al. [46] Occupancy LSTM LSTM can be used for predicting occupancy
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4. Study Definition

The literature indicates that monitoring occupant pollutant exposure and mitigating
indoor air pollutant concentrations is important to ensure health and well-being. Since
occupants in non-residential typologies have no or low possibility of intervention regarding
indoor air quality, particular care has to be taken in providing adequate indoor conditions
in these typologies. Due to the high spatiotemporal variation of indoor air pollutants in non-
residential buildings, high-resolution monitoring is required. However, ubiquitous sensing
of indoor air pollutants is infeasible due to the high cost and time required for installation,
operation, and maintenance. Therefore, virtual sensing is suggested as an alternative to the
ubiquitous deployment of physical sensors. Previous studies have already been conducted,
applying virtual sensing to indoor air pollutant estimation. However, these studies mostly
assessed only one air pollutant, even though exposure monitoring requires the estimation
of multiple pollutants. Furthermore, all currently available studies build virtual sensors
based on data from one zone in a single typology and do not consider the transferability of
the models to other zones and/or typologies. Additionally, all studies reviewed here used
less than a year of measurement data to build the models, thus introducing significant bias
into the models. Despite the demonstrated effectiveness of LSTM in handling time-series
problems across various domains, it is observed that none of the known virtual sensing
approaches to indoor air pollutants have adopted LSTM as their modeling approach [47,48].

Therefore, our study examines the feasibility of observational virtual sensors for PM,
VOC, and CO2 based on an LSTM modeling approach. The study uses multiple years of
accumulated measurement data from multiple zones and typologies to build the virtual-
sensor model and check its transferability to other zones and typologies. The capability of
the virtual sensor was evaluated independently for the room where the model was trained
and on unknown rooms.

Figure 1 gives a visual overview of the study definition.

LSTM virtual IAP sensor 
BMS data 

(Building Management System)

temperature

humidity

noise

...

Outdoor data

radiation

wind speed

pollution

...

Meta data

time / date

max. occup.

room size

...

Indoor Air Pollutant
Concentration

PM

CO2

VOC

Figure 1. Flowchart of the study definition with a black box LSTM model and input/output compo-
nents (Own representation).

5. Methods

In this study, we employed an LSTM model trained on collected measurement data to
predict indoor air pollutant concentrations using BMS, outdoor meteorological, and out-
door pollution data as model inputs. In the following sections, we detail the methods used.
Section 5.1 describes the steps performed in order to build the dataset, including the mea-
surement equipment, the measurement setup, and the measurement location. Section 5.2
presents the steps to preprocess the data for machine learning model training. Section 5.3
encompasses the training of the models, while Section 5.4 focuses on model evaluation.
Finally, the transferability tests are detailed in Section 5.5.

A graphical representation of the method is illustrated in Figure 2.
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Database - ETL
extract, transform, load

Preprocessing
Resample, impute minor gaps, balance, scale

Data cleaning
Remove measurement errors and smooth
measurement inaccuracy

Data enrichment
Add contextual data, metereological data, outdoor
pollution

LSTM virtual sensing model

Training Data (75%) Testing Data (25%)

hyperparameter
optimization

Model training
Early stopping, checkpoints 

Model evaluation:
pollutants: CO2, PM, VOC
metrics: RMSE, MAE, R2

Validation (25%)Training (75%)

Preprocess

Build

Evaluate

Measurement Equipment
Select, Evaluate, Calibrate Dataset

Measurement Setup
Location, Placement

Measurements
June 2021 - December 2022

Measurements
March 2023 Transfer

Evaluation
pollutants: CO2, PM, VOC
metrics: RMSE, MAE, R2

Figure 2. Flowchart of the implemented data processing and machine learning pipeline (Own
representation).
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5.1. Measurements

Measurement equipment was developed for indoor air pollutant (IAP) measurements.
The measurement infrastructure for the BMS, meteorological, and outdoor pollution data
was already in place. The BMS is implemented based on the LoRaWAN standard. Lo-
RaWAN is a wireless IoT standard that achieves long-range communication with low power
consumption, thus enabling battery-powered nodes. Due to the minimal installation effort
and battery-powered nodes, it is applicable as a retrofit solution. The BMS data recorded
measurements at a 1 min interval.

The IAP nodes are required to measure CO2 concentrations in parts per million (ppm),
particulate matter concentrations in micrograms per cubic meter (µg/m3), and total volatile
organic compound concentrations as Indoor Air Quality Index (IAQI). Furthermore, the IAP
nodes must achieve continuous, automated measurements with a high sampling rate (10 s)
over a prolonged period of time and should account for measurement drift by frequent
recalibration. While the initial data sampling rate is 10 s, these measurements will be
resampled to a one-minute interval later. This higher sampling rate allows for smoother
and more reliable data, as it enables using more data points for each resampled data point.
Due to the high volume of data collected, data must be stored centrally rather than locally on
the measurement nodes. Therefore, a communication infrastructure supporting high data
rates and low latencies was required. Since tuning periods will be needed in subsequent
deployments, sensor costs must be low to achieve the goal of a ubiquitous deployment.

No currently available commercial system fulfilled these requirements. Therefore,
custom indoor air pollutant nodes (see Figure 3) were developed in order to meet the re-
quirements. Sensors were selected based on their evaluation in the literature. For particulate
matter measurements, we selected the Sensirion SPS30 sensor (Sensirion AG, Switzerland,
Stäfa) based on its evaluation in previous studies [49]. Ref. [49] ascertained a very strong
correlation with the reference instrument for fine particulate matter [49]. The Sensirion
SPS30 utilizes the optical particles counter measurement principle, which has been shown
to have good accuracy in measuring particulate matter of varying diameters [27].

For VOC measurements, we chose the Sensirion SGP30 (Sensirion AG, Switzerland,
Stäfa) sensor. The sensor employs a metal oxide sensing (MOS) element, which is able
to detect a wide range of volatile organic compounds through changes in the material’s
resistance due to chemical reactions with the pollutants. However, due to their broad
sensitivity, it is not possible to identify the pollutant concentrations of individual VOCs,
which means the output value of these sensors is qualitative. However, ref. [49] evaluated a
range of VOC MOS sensors under different pollution events and, in the case of the Sensirion
SGP30, performed well compared to reference instruments, thus making it viable for a
qualitative evaluation of VOC pollution.

For CO2 measurements, we selected the Sensirion SCD30 (Sensirion AG, Switzerland,
Stäfa) due to its proven accuracy [27]. This sensor uses the optical NDIR measurement
principle, which is the common standard in accurately measuring CO2 concentration [50].
The sensors were connected to a microcontroller, which performs continuous measurements
in the defined interval, automatic recalibration, and upload the data to a central database
via WiFi connectivity.

Figure 3. Custom-built IAP sensor node (Own representation).
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Since multiple indoor air pollutant nodes would be deployed, it was important to
reduce sensor bias. Therefore, a cross-calibration scheme was introduced in this study.
Cross-calibration is a method used to reduce sensor bias and improve accuracy by com-
paring the readings of individual sensors to a chosen reference sensor. In our case, one
sensor was selected as the reference, and all other sensors were calibrated to perform like
the reference sensor. This approach ensures consistency among the sensor readings.

The cross-calibration procedure was conducted over a 24 h period, during which
a wide range of environmental conditions were introduced to test sensor response over
the entire measurement range. Based on the gathered data, calibration curves for each
individual sensor are generated using regression analysis. By applying these calibration
curves to the input data of the latter measurements, we could reduce the influence of
sensor biases.

Table 2 gives an overview of the used measurement equipment.

Table 2. Overview of the measurement equipment and sensors used.

Property Sensirion SPS30 Sensirion SGP30 Sensirion SCD30

Parameter Particulate Matter Volatile Organic
Compounds (VOC) Carbon Dioxide (CO2)

Measurement Principle Optical Particle Counter Metal Oxide
Sensing (MOS) Optical NDIR

Evaluation Source [27,49] [49] [27,50]

Measurement Interval 10 s 10 s 10 s

Use in Literature [51,52] [53,54] [55,56]

Measurements were taken in a high-rise office building in the center of Munich with
23 stories and 130,000 m2 floor area that accommodates about 2500 employees. The building
is supplied with heating and cooling through thermally activated ceilings (concrete core
activation) supplied by groundwater heat pumps. A central mechanical ventilation system
supplies the building with fresh air introduced into the room through induction units and
extracted through exhaust outlets in the center of the zones. The ventilation system is
not designed to supply heating or cooling energy. The ventilation operates at a constant
schedule of 1.6 air changes per hour between 5.15 am and 8 pm. In addition to the
mechanical ventilation systems, rooms in the lower stories also have operable windows. All
rooms have radiation-controlled shading systems that can be overridden by the occupants.
The building is in close proximity to much-frequented roads and railway tracks.

The examined office (Office 1) is located on the third floor of the building. It has
two external façades, which are orientated toward the northwest and southeast. The room
provides workplaces for about thirty-five employees and features operable windows. Mea-
surements were taken in Office 1 from June 2021 to December 2022 with three independent
indoor air pollutant nodes. The placement of the IAP nodes is in accordance with the guide-
lines for monitoring indoor air pollutants of the United States Environmental Protection
Agency (EPA):

• Installation of the nodes in the breathing zone (1.10 m height)
• More than 0.5 m away from walls, corners, and windows
• More than 1 m away from local pollutant sources and occupants
• Not in front or below air supply units
• Not exposed to direct sunlight

The floorpolan of the office as well as the sensor node setup is shown in Figure 4.
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Figure 4. Floorplan illustrating sensor placement and room layout of Office 1 (Own representation).

5.2. Preprocessing

The following section outlines the steps that were taken to bring the raw datasets into
a form that can be used as input for a machine-learning model. These include filtering
or selecting relevant data, handling missing or corrupted values, normalizing the data,
and splitting the data into training, validation, and test sets.

The initial data preparation involved extracting measurement data from IAP and the
BMS node from the database and transforming the data from a long format to a wide
format. This data was then loaded into a Pandas data frame for further processing. Pandas
is a widely used library in Python for data analysis. It provides a structure for storing and
manipulating the data in preparation for machine learning tasks.

The available measurement data was enriched by adding contextual and outdoor
environmental data. For contextual data, date and time tags were added, with hours and
days encoded as continuous sinus. Workdays, weekends, holidays, and seasons were
added as boolean tags. Furthermore, information on the HVAC operation schedule, room
size, and number of occupants were integrated into the dataset.

Additionally, outdoor environmental data from a local meteorological station was
added to the dataset. The outdoor environmental data encompasses air temperature,
ground temperature, dew point temperature, global and diffuse radiation, humidity, illu-
mination, air pressure, precipitation, sunlight hours, wind- direction and -speed, as well
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as outdoor particulate matter concentration. The meteorological station is at a distance of
5 km.

We noted that measurements after power cycling the nodes, e.g., after a power outage,
showed elevated values for temperature and humidity for a short timespan after. In order
to avoid model bias, measurements up to 15 min after a power cycle were excluded from
the data set. Furthermore, random measurement fluctuations due to sensor inaccuracies
were removed programmatically from the data set by smoothing measurements.

The final pre-processing steps involved optimizing the dataset for machine learning.
We resampled the data to a one-minute frequency, a balance between attaining high accu-
racy, capturing brief temporal fluctuations, and ensuring smooth, even data. Missing data
up to 15 min was input due to transient sensor response post power cycling, which we
found to normalize after this interval. Overall, the input data amounted to less than 16 h
for the whole measurement period. Finally, the datasets were balanced and normalized
using a min-max scaler for each feature.

5.3. LSTM Setup and Training Protocol

We opted for a deep learning approach utilizing a recurrent neural network archi-
tecture, specifically an LSTM with two hidden layers. Data were fed into the LSTM as
a three-dimensional input tensor, with the first dimension representing the length of the
input variables (temperature, humidity, etc.), the second dimension being the lookback
period (number of past timesteps), and the third dimension representing the batch size,
which indicates the number of input sequences processed concurrently during training and
inference. The learning rate, batch size, lookback period, and the number of neurons in the
two hidden layers were determined through hyperparameter optimization.

The model’s hyperparameters were optimized using Bayesian optimization, a method
that uses a Gaussian process objective function and utilizes probabilistic reasoning to opti-
mize the model’s hyperparameters with the goal of minimizing the model error. An early
stopping function was implemented to prevent model overfitting by monitoring the vali-
dation loss and terminating model training if the validation loss did not improve for five
consecutive runs. The overall training of the LSTM took 28 min on a GPU. An overview
of the model input is provided in the Appendix A in Table A1, and the model output is
shown in Table A2.

Data collected from Office 1 were used to train the machine learning model. To ensure
that the model could generalize and predict indoor air pollutant concentrations, a cross-
validation scheme was employed. This process involved reserving 25% of the data for
testing purposes and using the remaining data to train the models. This training data were
further divided into a training set (75%) and a validation set (25%), with the latter being
employed to trigger the early stopping algorithm to prevent overfitting, determine the best
epoch, and perform hyperparameter optimization.

5.4. Evaluation

Model predictions were evaluated using the set-aside testing dataset, employing the R2,
mean absolute error (MAE) and root mean squared error (RMSE) metrics for quantification.
Metrics were calculated individually for each model, pollutant, and room. We selected the
MAE, RMSE, and coefficient of determination (R2) metrics to assess model performance,
as they are widely used in model performance evaluation [57]. MAE and RMSE are not
dimensionless and are expressed in the units of the evaluated target. The MAE metric
output represents the mean absolute difference between predicted and true values for all
tested timesteps. Due to its quadratic component in the RMSE calculation, larger errors
are weighted more heavily than smaller ones [57]. Consequently, MAE provides a good
indication of the overall error in target units, while RMSE indicates the number of high
deviations. R2 is a dimensionless metric that measures the proportion of the total variance
in the dependent variable that is predictable from the independent variables. Smaller
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values for both RMSE and MAE signify a better fit, while a higher value for R2 indicates a
more accurate fit.

RMSE(y, ŷ) =

√
∑N−1

i=0 (yi − ŷi)2

N
(1)

MAE(y, ŷ) =
∑N−1

i=0 |yi − ŷi|
N

(2)

R2(y, ŷ) = 1− ∑N−1
i=0 (yi − ŷi)

2

∑N−1
i=0 (yi − ȳ)2

. (3)

5.5. Transferability Testing

To evaluate the model’s ability to predict indoor air pollutant concentrations in other
rooms and environments, the trained and assessed model was transferred to an unseen
office room (Office 2) in the same building with a different layout, occupancy patterns,
density, and orientation.

Office 2 is located on the third floor of the same building as the previous room. It
has one external façade, which is oriented towards the east. The room accommodates ten
employees and features operable windows. Measurements were taken in Office 2 in March
2023 using one IAP node. The same BMS data points used in the training of the LSTM
model in Office 1 are available in Office 2. The outdoor meteorological and pollution data
were retrieved from the same source, as both rooms are located in the same building.

The locations of the nodes and the room layout are depicted in Figure 5.

Figure 5. Floorplan illustrating sensor placement and room layout of Office 2 (Own representation).

The measurements of the IAP nodes were solely used for evaluation in Office 2. The
trained model was used as is.

The model inputs, as specified in Table A1, were provided by the BMS-node as well as
outdoor and metadata. The model then predicts the indoor air pollutant concentrations
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for each timestep (1 min). In the evaluation, the predicted values were then compared to
the actual measurements of the IAP nodes for March 2023. As previously, three prediction
metrics were calculated: MAE, RMSE, and R2.

6. Results

In this section, we present and discuss the results of our machine-learning model.
Section 6.1 presents the results of the model training and its evaluation metrics. Section 6.2
reports the results of transferring the model to Office 2.

6.1. Model Evaluation

Figure 6 displays the predictions of the trained LSTM model for the testing set in Office
1 (yellow) and the measured truth (blue) for each indoor air pollutant. The evaluation
metrics are calculated individually for each pollutant and shown in the top-left corner of
each plot. The testing was conducted for three months, from March 2022 to May 2022. A
visual assessment of the time series plots reveals a high correlation between the truth and
prediction. The most significant deviations between truth and prediction are identified
for CO2 predictions. In the case of CO2, the model tends to slightly overestimate the CO2
concentration during low concentration periods, whereas high concentration events show
a closer fit. However, the model occasionally predicts pollutant peaks incorrectly during
low concentration periods and vice versa. In the case of CO2 predictions, they appear
to be more accurate during the second half of the testing period. For particulate matter,
the visual assessment shows an excellent fit between prediction and truth. All peaks are
identified correctly. The time series plot demonstrates a slight underestimation of peaks
and high pollution events by the prediction compared to the truth. In the case of VOC,
the visual assessment of the time series plots reveals an excellent fit between prediction
and truth. The model can detect all concentration peaks, even though VOC concentration
is highly dynamic. However, a slight underestimation of pollutant peaks can be observed
in the time series, especially during the first half of the testing period.

Table 3 summarizes the evaluation metrics (R2, RMSE, MAE) for each pollutant.
Overall, the model exhibits a low error for all pollutants, as demonstrated by the MAE
and RMSE performance metrics. In the case of CO2, the mean absolute error amounts to
15.4 ppm for the testing period, while a slightly increased RMSE value of 20.2 ppm indicates
that no outliers significantly impact the model’s predictions. The CO2 measurements ranged
from 380 to 560 ppm during the measurement period. For particulate matter, the errors
amount to 0.3 and 0.5 µg/m3 for MAE and RMSE, respectively, indicating consistently
low error rates without outliers. The measurements ranged from 0 to 13 µg/m3 during
the measurement period. In the case of volatile organic compounds, MAE and RMSE
errors amounted to 20.1 IAQI and 31.4 IAQI, respectively, demonstrating low error rates
without major deviations. The measurements for VOC ranged from 0 to 450 IAQI. The R2

performance metric is a statistical measure representing the goodness of fit of the LSTM
model and indicates the percentage of variance in the truth data that can be explained
by the LSTM model. In the case of CO2, an R2 value of 0.47 indicates that the model
explains a substantial part of the variance in CO2 concentration and has a reasonably
good fit, providing meaningful predictions. For PM, a high R2 of 0.88 was identified,
indicating that the model explains a significant percentage of the variability in particulate
matter measurements. Furthermore, it shows a very good fit and indicates that the model
is highly predictive of PM. In the case of VOC, a high R2 of 0.87 was identified, which
shows that a significant percentage of VOC volatility is explained by the LSTM virtual
sensing model. Furthermore, the R2 indicates a very good fit for VOC and that the model is
highly predictive.
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Figure 6. Comparison of virtual indoor air pollutant sensors (yellow) and physical indoor air
pollutant sensors (blue) with overlayed evaluation metrics for Indoor Air Pollutants: VOC (bottom),
PM (middle), and CO2 (top) for Office 1 (Own representation).

Table 3. Evaluation metrics LSTM virtual sensing model in Office 1.

Pollutant MAE R2 RMSE

CO2 15.4 0.47 20.2

PM2.5 0.3 0.88 0.5

VOC 20.1 0.87 31.4

The model successfully identified all pollutant peaks during the testing period, with the
only error being a slight underestimation of peak concentrations. For CO2, a less ideal but
still satisfactory prediction result was achieved. This led to minor errors and a less accu-
rate representation of the variability in actual concentrations, resulting in some erroneous
predictions, such as misidentified pollutant peaks during the testing period. Nevertheless,
the predictions yielded a mean absolute error within the range of measurement inaccuracies
for most sensors.

The performance metrics of MAE = 15.4 ppm, RMSE = 20.2 ppm, and R2 = 0.47 for CO2
showed very low errors with insignificant outliers. The R2 value indicated a reasonably good
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fit and predictive capability. For PM, the metrics MAE = 0.3 µg/m3, RMSE = 0.5 µg/m3,
and R2 = 0.88 signified a strong prediction capability with minimal errors and an excellent
fit. Similar results were observed for VOC, with MAE = 20.1 IAQI, RMSE = 31.4 IAQI,
and R2 = 0.87. Overall, the LSTM model demonstrated strong performance in predicting
indoor air pollutant concentrations, with some room for improvement in CO2 predictions.
Based on the findings from this study, the LSTM model shows promise to potentially
replace physical sensors, contributing to more cost-effective and efficient air quality moni-
toring solutions.

6.2. Transferability Evaluation

Figure 7 displays the predictions of the trained LSTM model (yellow) for Office 2,
as well as the measured actual values (blue) for each indoor air pollutant. The test took
place in March 2023.
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Figure 7. Comparison of virtual indoor air pollutant sensors (yellow) and physical indoor air
pollutant sensors (blue) with overlayed evaluation metrics for Indoor Air Pollutants: VOC (bottom),
PM (middle), and CO2 (top) for Office 2 (Own representation).

Visual assessment of the time series plots revealed a correlation between actual values
and predictions for all pollutants, albeit with varying degrees of fit. The highest correlation
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between actual and predicted values was observed for CO2 predictions. The prediction
model successfully identified pollutant peaks, albeit with underestimation. During low
pollutant events, such as weekends or nights, the model results were less smooth and
tended to overestimate variability in pollutant concentrations. Occasionally, the model
predicted pollutant peaks under unpolluted conditions.

For particulate matter, the visual assessment showed a general fit between the magni-
tudes of predicted and actual concentrations. However, the prediction failed to detect some
peaks and underestimated all others. In some cases, the prediction exhibited a phase shift,
resulting in delayed identification of rising concentrations.

For VOC, a visual assessment of the time series plots revealed that the model could
identify some concentration peaks. However, the model frequently and erroneously de-
tected pollutant peaks when none were present.

Table 3 summarizes the evaluation metrics (R2, RMSE, MAE) for each pollutant.
Overall, the model exhibited very low errors for all pollutants, as evidenced by the MAE
and RMSE performance metrics. For CO2, the mean absolute error was 21.9 ppm during
the testing period, while a slightly increased RMSE value of 30.4 ppm indicated that no
outliers affected the model’s predictions. CO2 measurements ranged from 420 ppm to
610 ppm during the measurement period.

For particulate matter, errors amounted to 0.3 and 0.6 µg/m3 for MAE and RMSE,
respectively, indicating consistently low error rates without outliers. Measurements ranged
from 0 to 4 µg/m3 during the measurement period. For volatile organic compounds, MAE
and RMSE errors were 52.7 IAQI and 66.4 IAQI, respectively, demonstrating very low error
rates without significant deviations. Measurements for VOC ranged from 0 to 330 IAQI.

For CO2, an R2 value of 0.45 indicated that the model accounted for a substantial por-
tion of the variability in CO2 concentrations, exhibited a reasonably good fit, and provided
meaningful predictions. For PM, a low R2 of 0.09 suggested that the model explained a
smaller percentage of the variability in particulate matter measurements, demonstrated a
less accurate fit, and was less predictive. For VOC, a low R2 of 0.13 indicated that the model
explained a smaller percentage of VOC variability and was less accurate and less predictive.
The evaluation metrics are summarized in Table 4.

Table 4. Evaluation metrics LSTM virtual sensing model transfer in Office 2.

Pollutant MAE R2 RMSE

CO2 21.9 0.45 30.4

PM2.5 0.3 0.09 0.6

VOC 52.7 0.13 66.4

The LSTM-based virtual indoor air pollutant sensor was tested for Office 2 using
the testing dataset for March 2023. The evaluation results indicated varying degrees of
correlation between the actual and predicted pollutant concentrations. For CO2, the model
successfully identified pollutant peaks, albeit underestimated, and exhibited an MAE of
21.9 ppm, RMSE of 30.4 ppm, and R2 of 0.45, indicating a reasonably good fit and predictive
capabilities. For particulate matter and volatile organic compounds (VOC), the model
showed less accurate predictions in terms of R2 values; however, the MAE and RMSE errors
remained low. For PM, despite the model’s failure to detect some pollutant peaks and a
low R2 of 0.09, the MAE and RMSE were consistently low at 0.3 µg/m3 and 0.6 µg/m3,
respectively, indicating a relatively low error rate without significant outliers. Similarly,
for VOC, the model erroneously detected pollutant peaks in some cases and showed a low
R2 of 0.13. Yet, the MAE and RMSE remained low at 52.7 IAQI and 66.4 IAQI, respectively,
demonstrating low error rates without major deviations. In conclusion, the LSTM model
exhibits varying performance in predicting indoor air pollutant concentrations for Office
2, with better results for CO2 predictions and low error rates in terms of MAE and RMSE
for PM and VOC predictions. However, there is room for improvement in capturing the
variability of PM and VOC concentrations, as indicated by the low R2 values.
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7. Discussion

The findings of this study indicate that machine learning models, particularly LSTM
networks, are effective in predicting indoor air pollutants, especially particulate matter,
and VOC, as demonstrated by the low error rates achieved in the testing set of Office
1. The testing results from Office 1 indicate certain limitations of the virtual sensing
model in capturing the full range of variability in CO2 concentrations. This limitation
may be attributed to the model’s reduced precision in predicting occupancy and occupant
count. Skoen et al. [38] previously noted similar findings when applying Multi-Layer
Perceptron (MLP) models for virtual sensing of CO2, notably, even though the R2 values
from Skoen et al. (0.39) closely match the 0.47 achieved in this study, and a significantly
lower Root Mean Square Error (RMSE) of 31.4 was obtained in this study, compared to
Skoen et al.’s 122.85 [38]. This suggests that, despite the model’s inability to capture full
variability with Long Short-Term Memory (LSTM), the error margins remained relatively
low, particularly when compared to other models. When the pre-trained models were
applied to other rooms of identical typologies, they still exhibited predictive capacity. How-
ever, these models demonstrated a decreased ability to explain the variability of pollutant
concentrations as well as increased errors. This suggests a limitation in model transfer-
ability to different rooms, with a significant decline in the model’s predictive capability
noticed, particularly in terms of capturing the ground truth variability. It is postulated
that this decrease in performance is attributable to the limitations of the training dataset,
which was exclusively trained in Office 1. Given that occupancy and numerous other
dynamic factors influence indoor air pollutants, indoor environments can significantly
differ from each other. They may also display vastly different pollutant dynamics, as pre-
viously demonstrated by Szigeti et al. [8]. It is anticipated that the model’s performance
will be reduced when applied to rooms in other buildings or those belonging to different
typologies, as these environments may present conditions not encountered during model
training. Consequently, it is crucial to enhance the transferability and performance of the
virtual sensing LSTM model by generating larger and more diverse datasets.

While current results do not yet allow for a complete replacement of physical sensors
with LSTM models, the promising predictions of IAP concentrations in the training room,
along with the successful prediction of CO2 levels in a separate office, demonstrate po-
tential. The general application of this model is not yet feasible, but, given more diverse
data, the outlook for the full replacement of physical sensors with such models becomes
more attainable.

The use of machine learning techniques to create virtual sensors for monitoring
indoor air pollutants has the potential to provide real-time data and improve building
operations. Further research and development may lead to the use of virtual sensors for
wider application in building environments, potentially allowing for the optimization of
mechanical ventilation systems and operable window usage. It is important to continue
exploring the potential of virtual indoor air pollutant sensors as a tool for improving indoor
air quality and the overall comfort and health of building occupants.

Further research is needed in expanding the training data for LSTM models for virtual
sensing of indoor air pollutants and testing their generalizability across various typologies
and buildings in different climate zones. Additionally, future studies could investigate
the integration of these models into Heating, Ventilation, and Air Conditioning (HVAC)
systems and evaluate their performance when only a fraction of the given input data is
available. This would help advance the practical implementation of virtual sensing in
real-world scenarios and contribute to the field of indoor air quality monitoring.

8. Conclusions

This study demonstrates the potential of machine learning models, specifically LSTM
networks, to accurately predict indoor air pollutant concentrations in a range of envi-
ronments. By using a large dataset with several years of accumulated data, we were
able to build a virtual indoor air pollutant sensor that exhibited strong performance in
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predicting indoor air pollutant concentrations for the room in which it was trained. The
evaluation results indicated a very high correlation between the actual and predicted
pollutant concentrations for particulate matter and VOC, with performance metrics such
as MAE = 0.3 µg/m3, RMSE = 0.5 µg/m3, and R2 = 0.88 for PM; and MAE = 20.1 IAQI,
RMSE = 31.4 IAQI, and R2 = 0.87 for VOC. These results show that the model was able to
identify most pollutant peaks during the testing period with only a slight underestimation
of peak concentrations. For CO2, the model achieved less ideal but reasonable prediction
results. The performance metrics of MAE = 15.4 ppm, RMSE = 20.2 ppm, and R2 = 0.47 for
CO2 indicated very low errors with insignificant outliers, and the R2 value suggested a
reasonably good fit and predictive capabilities. However, the model was not able to explain
the variability of the actual concentrations and showed some erroneous predictions, such
as misidentified pollutant peaks during the testing period. Nevertheless, the predictions
resulted in a mean absolute error within the range of the measurement inaccuracy of most
sensors. When transferring the model to another room, the LSTM model demonstrated
varying performance, with better results for CO2 predictions and low error rates in terms of
MAE and RMSE for PM and VOC predictions. Specifically, the CO2 predictions exhibited a
mean absolute error of 21.9 ppm, RMSE of 30.4 ppm, and R2 of 0.45, indicating a reasonably
good fit and predictive capabilities. However, there is room for improvement in capturing
the variability of PM and VOC concentrations, as indicated by the low R2 values of 0.09
for PM and 0.13 for VOC. Despite these challenges, the LSTM model shows its potential
in generalizing its ability to predict indoor air pollutant concentrations in different rooms.
To enhance the model’s performance when transferring to other rooms, further research
and optimization could focus on refining the LSTM architecture, incorporating additional
features such as building materials, type of air distribution, and the distance of the nodes
from vents and windows, or exploring other machine learning techniques to improve the
model’s ability to capture the variability of different pollutants. In summary, the LSTM-
based virtual indoor air pollutant sensor presents a promising approach to monitoring
air quality in indoor environments. With further refinement and optimization, this model
could potentially replace physical sensors, contributing to more cost-effective and efficient
air quality monitoring solutions. Ultimately, the development and deployment of accurate
virtual sensing models can play a crucial role in addressing indoor air pollution, leading to
improved public health and well-being.
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Abbreviations
The following abbreviations are used in this manuscript:

BMS Building management system
IAP Indoor air pollutants
IAQ Indoor air quality
IoT Internet of things
MAE Mean absolute error
RMSE Root mean squared error
LSTM long short-term memory network
VOC Volatile organic compounds
PM Particulate matter
IAQI Indoor air quality index
ppm Parts per million
GPU Graphics processing unit
HVAC Heating, Ventilation, and Air Conditioning
MOS Metal oxide sensing
OPC Optial particle counter
NDIR Non-dispersive infrared
SVM Support vector machine
MLP Multi-layer perceptron
ETL Extract transfer load

Appendix A

Table A1. Input Features for LSTM Model.

Feature Description Dimension (Normalized) Group

month_sin Continuous sinusoidal
encoding of month 0–1 Meta

hr_sin Continuous sinusoidal
encoding of hour 0–1 Meta

day_sin Continuous sinusoidal
encoding of day 0–1 Meta

workday Boolean tag for workdays 0, 1 Meta

weekend Boolean tag for weekends 0, 1 Meta

holiday Boolean tag for holidays 0, 1 Meta

season Boolean tags for each season 0, 1 Meta

hvac Boolean tag for
HVAC operation 0, 1 Indoor

room_size Size of the room 0–1 Meta

occupants Occupant density 0–1 Meta

temp Outdoor air temperature 0–1 Outdoor

ground_temp Outdoor ground temperature 0–1 Outdoor

dew_point_temp Outdoor dew
point temperature 0–1 Outdoor

global_rad Outdoor global radiation 0–1 Outdoor

diffuse_rad Outdoor diffuse radiation 0–1 Outdoor

humidity Outdoor humidity 0–1 Outdoor

illumination Outdoor illumination 0–1 Outdoor

air_pressure Outdoor air pressure 0–1 Outdoor
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Table A1. Cont.

Feature Description Dimension (Normalized) Group

precipitation Outdoor precipitation 0–1 Outdoor

wind_dir Outdoor wind direction 0–1 Outdoor

wind_speed Outdoor wind speed 0–1 Outdoor

particulate_matter Outdoor particulate
matter concentration 0–1 Outdoor

indoor_temp Indoor air temperature 0–1 Indoor

indoor_humidity Indoor humidity 0–1 Indoor

indoor_air_pressure Indoor air pressure 0–1 Indoor

indoor_illum Indoor illumination 0–1 Indoor

noise_level Indoor noise level 0–1 Indoor

window_state State of window
(open/closed) 0, 1 Indoor

power_consumption Power consumption
of equipment 0–1 Indoor

Table A2. LSTM model output.

Output Description Dimension (Normalized)

pm Particulate matter concentration 0–1

co2 CO2 concentration 0–1

voc Volatile organic
compound concentration 0–1
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