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Abstract: As an industry that consumes a quarter of social energy and emits a third of greenhouse
gases, the construction industry has an important responsibility to achieve carbon peaking and
carbon neutrality. Based on Web of Science, Science-Direct, and CNKI, the accounting and prediction
models of carbon emissions from buildings are reviewed. The carbon emission factor method, mass
balance method, and actual measurement method are analyzed. The top-down and bottom-up carbon
emission accounting models and their subdivision models are introduced and analyzed. Individual
building carbon emission assessments generally adopt a bottom-up physical model, while urban
carbon emission assessments generally adopt a top-down economic input-output model. Most of
the current studies on building carbon emission prediction models follow the path of “exploring
influencing factors then putting forward prediction models based on influencing factors”. The studies
on driving factors of carbon emission mainly use the Stochastic Impacts by Regression on Population,
Affluence, and Technology (STIRPAT) model, the Logarithmic Mean Divisia Index (LMDI) model, the
grey correlation degree model, and other models. The prediction model is realized by the regression
model, the system dynamics model, and other mathematical models, as well as the Artificial Neural
Network (ANN) model, the Support Vector Machine (SVM) model, and other machine learning
models. At present, the research on carbon emission models of individual buildings mainly focuses
on the prediction of operational energy consumption, and the research models for the other stages
should become a focus in future research.

Keywords: prediction models; process-based method; economic input-output method; hybrid method

1. Introduction

Over the past 100 years, the concentration of carbon dioxide in the atmosphere has
increased significantly and continues to increase at a rate of 2 ppm/year [1]. With the
annual increase in atmospheric greenhouse gas emissions, global warming has become the
most serious environmental problem mankind has ever faced. Tests show that from 1880 to
2012, the average global temperature rose by 0.85 owing to the influence of the greenhouse
effect [2,3], which will continue to have a significant impact on natural ecology and social
economy in the future [4,5].

To avoid disastrous consequences, the Paris Agreement committed the world to
keeping the global average temperature rise below 2 degrees Celsius above pre-industrial
levels within this century, and to make efforts to limit the rise to 1.5 degrees Celsius [6–9].
Global greenhouse gas emissions will peak as soon as possible and reach net zero emissions
in the second half of this century. The construction industry consumes about a quarter of
the energy of the whole society, and contributes about a third of the carbon emissions and
nearly 50% of the carbon dioxide emissions for the whole life cycle when the production,
transportation and construction of building materials is considered [10,11]. Compared
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with other industries, the building industry has great potential to save energy per unit cost.
Between 2021 and 2060, the embodied carbon emissions of China’s construction industry
are expected to fall by between 20.9 billion and 45.3 billion tons of carbon dioxide, while
carbon emission levels in 2060 are expected to be 49% lower than in 2020, and the emission
reduction space is huge [12].

The detailed accounting of building carbon emissions is the basis of building energy
saving and emission reduction. Zhang and Yan [13] proposed a process-based building life
cycle assessment model to discuss the energy consumption and carbon emission trends of
China’s building industry from 2000 to 2016. The study found that building scale, building
structure type, and material production efficiency are three important drivers of carbon
emissions. In order to simulate the carbon emissions of different economic sectors, Zhou
and Li [14] proposed a Bayesian neural network model (IO-BNN) based on the economic
input-output method. The authors use this model to study Guangdong’s carbon emissions,
and the results show that Guangdong’s carbon emissions are expected to peak in 2025
under the optimal policy scenario.

Predicting building carbon emissions is necessary to realize building carbon neutrality.
The STIRPAT model, LMDI model, regression model, grey system theory, and other models
are widely used in the field of carbon emission accounting [15–18]. Wang and Hu [19]
compared four machine learning-based generators using one year of measured data to
achieve optimal thermal comfort management and carbon emission prediction for public
buildings in large Spaces. The optimization results show that the hybrid machine learning
model can reduce carbon emissions further than manual management. Yang and Wang [20]
propose a combined prediction model for predicting carbon emissions. The combined
model first decomposed the original data twice, then used the chameleon swarm algorithm
and carnivorous plant algorithm to train kernel parameters, and finally used the model to
predict carbon emissions. It was found that each index of this model is better than other
comparison models.

In conclusion, there are various accounting models and prediction models for building
carbon emission assessment, each with different emphases. However, there is a lack of
systematic research on the above two types of models. What models are available for
carbon emissions accounting and prediction? How accurate are their calculations? What
is their scope of use? What are the differences between the models? Which models can
play a more important role in the implementation of the national “carbon peaking and
carbon neutrality” strategy? In order to answer the above questions, this paper will make
a comprehensive review of building carbon emission accounting models and prediction
models. The contributions of this paper are as follows: (1) The principles and application
scenarios of the carbon emission factor method, measurement method, and mass balance
method are discussed. (2) The differences and connections between three common building
carbon emission accounting models (the process-based method, economic input-output
method, and hybrid method) are analyzed. (3) The basic principles and applications of
mathematical prediction models (such as the factor decomposition method, regression
model, and gray system theory) and machine learning prediction models (such as the neural
network and support vector machine models) are discussed. It is expected that this study
will provide a reference for the reduction of carbon dioxide emissions in the construction
industry and contribute to the realization of carbon peaking and carbon neutrality goals as
soon as possible.

2. Methodology

The methodological design of literature reviews plays an indispensable role in scientific
research. This section introduces the research scope, the search process, the search result,
and the inclusion criteria of the articles by means of a systematic review.
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2.1. Research Scope

According to the detailed definition of the whole life cycle of buildings given by
GB/T 51366-2019 [21], the research scope of this paper is as follows: the carbon emission
calculation model and the prediction model related to the production and transportation of
building materials, construction and demolition, operation and other activities, including
macro and micro levels.

This paper aims to answer the question: “Which building carbon emission accounting
models and prediction models are available respectively, and what are their advantages
and disadvantages and applicable scenarios”. This paper searched for relevant literature
from recent years. The literature used in this paper was mainly identified by searching
three databases: Web of Science, Science-Direct, and CNKI, while Engineering Village 2
and Google Academic were used as supplementary searches. As a search record, we used
the keywords outlined below.

Keywords related to the model: building carbon emissions, life cycle, the whole life
cycle assessment, top-bottom, bottom-up, economic input-output method, process-based
method (PB method), hybrid method, measurement method, carbon emission factors,
boundary conditions, building materials production, building materials transportation,
construction, demolition, maintenance, residential buildings, public buildings, commercial
buildings, educational buildings, frame structures, brick-and-concrete structures, wood
structures, ISO14000 series.

Keywords related to prediction model: pre-evaluation, big data analysis, factor anal-
ysis, mathematical model, machine learning, evaluation tool, physical model, statisti-
cal model.

In addition, parts of the bibliography of the retrieved articles are also included in the
scope of review, including the cited case buildings.

In order to obtain more comprehensive analysis results, the research results of the last
15 years were searched. Only papers published in peer-reviewed journals were considered.
In the initial search, more than 147,000 studies related to the above keywords were obtained.
The selection was divided into three rounds. In the first round, 520 relevant studies were
obtained according to the title and abstract. In the second round, a total of 128 relevant
papers were obtained by skimming the full text. In the third round, 45 studies that are
highly relevant to the research topic were identified through intensive reading of the
full text.

2.2. Criteria for Data Screening

Further screening of 520 relevant studies followed the following criteria:

• Is the object of study a single building or regional complex, rather than a single
component within the building?

• Does the study explicitly use a carbon emission calculation model or prediction model?
• Did the study conduct a case study of the model used and analyze the advantages

and disadvantages?

2.3. Carbon Emission Accounting Methods

In order to further summarize the 45 papers, this paper divided them into two cate-
gories: the carbon emission accounting model, and the prediction model. In the accounting
model, we focus on the characteristics of each model and its scope of application, while in
the prediction model, we focus on its interpretation and application.

3. Carbon Emission Accounting Model
3.1. Carbon Emission Accounting Methods

Carbon emission accounting provides reliable data support and a solid basic guar-
antee for promoting the green and low-carbon transformation of the economy and soci-
ety. At present, there are three carbon emission accounting methods widely used in the
world: the carbon emission factor method, the mass balance method, and the measure-
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ment method [22]. These three methods are suitable for different industries and different
conditions of use.

In 1996, the IPCC compiled and published the first edition of the Guidelines for
National Greenhouse Gas Emission Inventories. This put forward the carbon emission
factor method, which is the most widely-used method of carbon emission accounting at
present [23]. The idea of this method is to find activity data (A) and the emission factor
(EF) for each emission source according to the carbon emission inventory list, and take the
product of the two as the estimated carbon emission (E), that is:

E = A × EF (1)

where E is greenhouse gas emission (such as CO2, CH4, et al.); A is activity data (specific
amount of use directly related to carbon emissions by a single emission source); EF is the
carbon emission factor, which is the amount of greenhouse gases released per unit of use of
an emission source. Data sources can be found in various carbon emission factor databases,
such as the Emission Factor Database (EFDB) of the International Panel on Climate Change
(IPCC), and the China Products Carbon Footprint Factors Database (CPCD) of China.

The advantage of using the carbon emission factor method to calculate carbon emis-
sions is that the process is simple, easy to understand, and has strong operability. This
method can be applied to the calculation of carbon emissions at the micro or macro scales.
More importantly, various countries and industries have created rich carbon emission
factor databases for inquiry [24]. However, its shortcomings are also obvious: the carbon
emission factors in these databases are highly regional and highly uncertain.

The basic principle of the mass balance method is the law of conservation of mass,
that is, the carbon content of the input material is equal to the sum of the carbon content of
all the output material [25], that is:

E =
[
∑ (Min × Cin)− ∑(Mout × Cout)

]
× 44

12
× GWP (2)

where Min is the input material quantity; Cin is the carbon content of the input material;
Mout is the output material quantity; Cout is the carbon content of the output material; 44

12 is
the conversion coefficient of carbon element to carbon dioxide; GWP is the global warming
potential. The advantage of this method lies in the systematic and detailed study of the
carbon emissions in the production process, which is more scientific and rigorous, but the
disadvantage is that it requires a comprehensive understanding of the production process.

As the name implies, the measurement method calculates carbon emissions by using
special instruments to measure the velocity, discharge and concentration of the emitted
gas [26]. The calculation formula is:

E = Qair × cair × α (3)

where Qair is the flow rate of the medium (air), Cair is the concentration of CO2 in the
medium (air), and α is the unit conversion factor. The measurement results of the actual
measurement method are the most intuitive and accurate, but the data acquisition is difficult
and costly, so it is often used for sample detection.

In order to illustrate the difference between the above three methods more vividly, a
factory is used as an example: the measurement method is an experimental method with
high accuracy, but the implementation is difficult and the cost is high, and it is suitable
for monitoring the carbon emissions of the products in the factory during use. The mass
balance method determines the carbon emissions caused by the production of each item by
analyzing the carbon flow of the entire batch of products before and after production, and
is applicable to the carbon emission analysis of the production process of batch products.
The carbon emission factor method condenses the carbon emissions of each product into a
coefficient on the basis of the mass balance method, so as to quickly calculate the carbon
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emissions of similar products. The core advantages of the carbon emission factor method
are that it is simple, fast, and low cost.

A detailed introduction of the three carbon emission accounting methods is shown in
Table 1.

Table 1. Comparison of three main carbon accounting methods.

Method Input Advantages Limitations Applicable Scale Applications

Emission factor
method

Activity level,
Carbon emission
factor.

Simple, clear, and
easy to understand.
A mature database
of formulas,
activity data and
emission factors.
There are plenty of
application
examples for
reference.

Subject to technical
level, production
status and
technological
process, etc.
The emission
factors are regional
and uncertain.

Macroscopic scale;
mesoscale;
microscale.

It is suitable for
industries with
stable changes in
socio-economic
emission sources
or where the other
two methods are
not suitable.

Mass balance
method

The amount of
input material and
its carbon content;
the amount of
output material
and its carbon
content.

The research is
systematic and
comprehensive.
Strong science,
high
implementation
effectiveness.
Captures the
differences
between various
types of facilities
and equipment.

Need a
comprehensive
understanding of
the production
process, chemical
reaction; adverse
reactions and
management, etc.;
heavy workload;
data demand is
high.

Macroscopic scale;
Mesoscale.

Suitable for
industries with
good data
foundations.
Examples include
the chemical and
steel industries.

Measurement
method

Flow rate,
concentration; unit
conversion factor.

Fewer
intermediate links;
accurate results.

Large
consumption of
manpower and
material resources,
high cost;
data are difficult to
obtain;
poor
representativeness
or required
representativeness
of test samples.

Microscale.

This method is
suitable for small
areas and simple
emission sources,
such as industrial
chimneys
or small areas of
natural emission
sources with the
ability to obtain
first-hand
detection data.

Based on the above summary, neither the mass balance method nor the measurement
method is applicable to the construction industry, so the building industry mainly adopts
the carbon emission factor method to calculate carbon emissions.

3.2. Building Carbon Emission Calculation Methods

In the past, research on building carbon emissions mainly focused on the carbon
emissions generated by energy consumption in the operation stage. In recent years, re-
search is more inclined to study the whole life cycle [27,28]. The whole life cycle of a
building includes all processes related to the building from the production, processing,
and transportation of building materials to the construction, operation, maintenance, and
demolition of the building, which is called “cradle-to-grave” [29]. Among them, the process
of producing building materials themselves, from raw material mining and transportation
to stacking in the warehouse ready for delivery to customers after production, is called
“cradle to gate” [30]. In terms of research dimensions, current studies on building carbon
emissions are mainly divided into two categories: one is the micro model for individual
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buildings, and the other is the macro model for national, provincial and other scales. Ac-
cording to the calculation idea, the building carbon emission model can be divided into
top-down and bottom-up models [31,32]. According to different system boundaries and
methodological principles, the assessment methods of the building carbon emission life
cycle can be divided into three types: the PB method, the EI-O method, and the hybrid
method [33–35]. The literature search is shown in Table 2, and a detailed introduction is
provided as follows.

3.2.1. The PB Method

The PB method is a bottom-up method, which is often used in the study of carbon
emissions at the microscopic level such as single buildings. This is the main method of the
ISO standard because of its high accuracy and detailed process. According to the detailed
process of building from nothing to something, the calculation of carbon emissions needs
to analyze the list of building materials, each part of the project list, and the energy use list
of the building operation stage; that is, every link in the product supply chain needs to
carry out inventory analysis. The advantage of this method is that it allows the detailed
analysis of information on the research objective to the maximum extent. However, with
the expansion of research boundaries and in-depth research details, it is very complicated
and time-consuming to analyze every link of the building life cycle, and these inventory
data are sometimes difficult to obtain in the actual calculation. Therefore, this method may
lead to assumptions, high costs, and a high time investment [36]. Some of the processes
excluded from this assumption can seriously interfere with the objectivity and reliability of
the research. Most of the differences in the LCA studies are attributable to the differences in
the boundary and scope. The models developed based on process analysis can be divided
into two categories: the physical model, and the statistical model. The physical model refers
to dividing the life cycle of a specific building and modeling, obtaining various energy
intensity indexes (such as air conditioning and heating energy consumption per unit area,
the average energy consumption of residential households, etc.), and then combining the
corresponding macro parameters (building area, number of people, number of households,
etc.) to construct the building energy accounting model. The modeling of this kind of
model is complicated and time-consuming, but it has high precision and strong detail.
Some physical models have been used, such as TBM, which was established by Peng Chen;
LEAP, which was developed by the Energy Research Institute of National Development
and Reform Commission; and CBEM, which was established by Yang Xiu.
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Table 2. Details of literature research on building carbon emissions.

Author PB Method I-O
Method Hybrid Method Microscale Macroscopic Scale Location Life Cycle Stage Building Type Boundary Information

Ooteghem and Xu [37] YES YES Toronto The whole life cycle Single-story retail
building

The maintenance process includes
production of replacement materials,
transportation and waste disposal

Gerilla et al. [38] YES YES Saga The whole life cycle Residential building Operational energy consumption
includes heating, lighting and so on

Peng [10] YES YES Nanjing, China The whole life cycle Office building
Operating energy consumption
includes air conditioning, lighting,
elevators, office and other equipment

Shao et al. [39] YES YES Beijing, China Construction and
operation Office building

The construction phase input list
includes: materials, equipment, energy
and manpower

Acquaye and
Duffy [40] YES YES Ireland - - -

Biswas [41] YES YES Australia From cradle to use Teaching building

Operation energy consumption
includes lighting, computer, office,
kitchen heating, air conditioning, fans,
etc.

Wang et al. [42] YES YES China - - -

Yu et al. [43] YES YES China
Material preparation,
construction and
demolition

Bamboo structure
single-story house
model

Including felling, pruning, stranding,
winch loading, transportation, storage,
processing and all information related
to bamboo handling

Mao et al. [28] YES YES China construction stage Semi-prefabricated
building -

Cuéllar-Franca and
Azapagic [44] YES YES UK The whole life cycle Hypothetical

residential building

The operational phase includes water
consumption and maintenance carbon
emissions

Dong et al. [45] YES YES Beijing, China - - -

Monahan and
Powell [46] YES YES Norfolk, England From cradle to scene Residential building

Construction includes the production
of building materials, transportation
and the sorting and transportation of
waste at the construction site

You et al. [47] YES YES China The whole life cycle Residential building
Operating energy consumption
includes heating, cooling, hot water
preparation, lighting,

Chang et al. [48] YES YES China - - -

Yan et al. [49] YES YES Hong Kong, China Construction stage Commercial
building

Construction includes manufacturing
and transportation of building
materials, energy consumption of
construction equipment and energy
consumption of processing resources

Nässén et al. [50] YES YES Sweden - - -

Li et al. [51] YES YES Nanjing, China The whole life cycle Residential building
Electricity and natural gas are
considered as energy consumption in
operation
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In terms of the case study, Peng [10] conducted a full life cycle carbon emission
assessment for a public building in Nanjing by Ecotect based on the process method, and
found that the carbon emission proportions in the operation stage, construction stage, and
demolition stage were 85.4%, 12.6%, and 2%, respectively. Yan et al. [49] studied the carbon
emissions of a building during construction in Hong Kong, and the results showed that
83% of the carbon emissions came from the production of building materials, while only 8%
and 9% of the carbon emissions were contributed by building materials transportation and
construction equipment. The statistical model is generally based on regression analysis, and
the carbon emission of individual buildings is used to calculate the total carbon emissions
of the whole region. For details, see Section 4.1. The technical details and flexibility of this
model are poor.

3.2.2. EI-O Method

The biggest difficulty in the practical application of the PB method is that the division
of the system boundary is arbitrary, and this uncertainty is often the main cause of research
differences. The EI-O method overcomes this difficulty. The EI-O method developed by
Leontief is a top-down approach [52]. The model analyzes the final carbon emissions at
the macro level and correlates the final carbon emissions with the input-output economic
data of the economic sector, using the “integrated system boundary”, which avoids the
randomization of the boundary division. The advantage of this boundary division is that
it allows different studies based on the EI-O method to be compared directly with each
other. The models based on this method can be divided into economic and technical
models. The former is mainly based on GDP, population, building area, and other variables
to demonstrate the relationship between carbon emissions and the economy. Therefore,
compared with the bottom-up physical model and statistical model, the top-down economic
model lays more emphasis on the influence of macroeconomic factors, which also leads to
the lack of technical details of the model. Nässén and Holmberg [50] evaluated the Swedish
construction industry using the EI-O method and compared the results with process-
based studies. They found that the EI-O method produced much higher operational energy
consumption than the PB method, but the energy consumption related to building materials
production and so on did not differ much. Chang et al. [47] established an environmental
input-output life cycle evaluation model for 24 sectors, and the results showed that the
implied energy consumption of the construction industry accounted for about one-fifth of
economic energy consumption in 2015. The above literature analysis shows that the EI-O
method is especially suitable for the carbon emission analysis of the building industry on
the macro-scale of provinces and cities, rather than individual buildings. In addition to
clear boundaries and easy comparisons, another important advantage of the EI-O method
is that it saves manpower and material resources. It uses publicly available data, such as
sectoral energy consumption data, which makes the EI-O LCA model both time-saving and
efficient. The disadvantage of the EI-O method is that it is not rigorous enough, and the
use of industry data averages, production technology assumptions, and outdated data may
affect the accuracy of EI-O results.

3.2.3. Hybrid Method

After the first oil crisis in the 1970s, Bullard et al. proposed a hybrid method for
energy input-output analysis [53]. This method combines the advantages of the top-down
and bottom-up methods, adopting the PB method for carbon emissions generated by
energy consumption in the construction stage and the EI-O method for carbon emissions
generated by upstream and downstream production of building materials. The hybrid
method combines the accuracy of the PB method with the integrity of the EI-O method
to overcome the truncation error of the system boundary and enhance the pertinence of
evaluation objectives [54]. For example, Zhang and Liu [35] calculated and compared the
life cycle carbon emissions of two residential buildings using the PB method, the EI-O
method, and the hybrid method. Considering the uncertainty of the parameters and the
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influence of the system boundary, conclusions based solely on the PB method and the EI-O
method have relatively large errors. The hybrid rule is helpful to reduce the error. Zhang
et al. [13] analyzed the life-cycle carbon emissions of two high-rise residential buildings
using the PB method and the hybrid method. The results show that the analysis error
of the latter is smaller than that of the former. In general, all kinds of hybrid models are
mostly used for the carbon emission prediction of the building industry at the provincial
and municipal scale, while the carbon emission accounting for individual buildings and
other small scale is mostly based on the PB method [55]. According to the combination of
the PB method and the EI-O method, there are currently three different forms of hybrid
model: the Tiered hybrid model, the I-O-based hybrid model and the Integrated hybrid
model. For more information about each hybrid model, please refer to related research [56].

In conclusion, the PB method is suitable for carbon emission accounting at the micro
level, especially for single buildings. The calculation results are highly accurate but the
steps are cumbersome. The EI-O method is applicable to the accounting of building carbon
emissions at the macro level, especially at the provincial and municipal levels. The data
source is generally the National Bureau of Statistics or industry data reports. The calculation
process is simple but the accuracy is poor, and the research results are often used to provide
support for the formulation of economic policies. The hybrid method can ensure the
accuracy of the analysis results and simplify the research process by taking advantage of
the above two methods.

Detailed information on the model based on the PB method, the EI-O method, and the
hybrid method is listed in Table 3.

Table 3. Comparison of three building carbon emission models.

Model Research Method Classification Characteristic Advantage

Bottom-up PB method
Physical model

The energy consumption
intensity of individual
buildings is simulated, and
then the energy consumption
intensity of the region is
estimated.

Strong detail, high
precision.

Statistical model

Based on the regression
analysis method, the carbon
emissions of individual
buildings are used to calculate
the regional carbon emissions.

Energy saving,
savemanpower, high
efficiency.

Up-bottom EI-O method
Economic model

The relationship between
carbon emissions and the
economy is demonstrated
based on GDP and other
variables.

Emphasize
macroeconomic factors.

Technical model
It also includes factors such as
energy mix and technological
progress.

The boundary
truncation error is
overcome.

Hybrid Hybrid method Hybrid model It has the advantages of the PB
method and the IO method.

The details are strong
and economic
considerations are
taken into account.

3.3. The Division of the Whole Life Cycle Framework of the Building

The whole life cycle assessment of buildings is developed from the life cycle assessment
standards ISO 14040 and ISO 14044 [57]. This standard establishes the principles and
framework of life cycle assessment, namely: (a) Definition of objectives and scope; (b) List
analysis; (c) Impact assessment; (d) Explain. Building on these two standards, ISO 14067:
2018 guides and regulates the principles, requirements and guidelines for product carbon
emissions [58]. The standard is characterized by an emphasis on setting the appropriate
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accounting scope for each product category. The European Committee for Standardization
has proposed standards EN 15804:2019 and EN15978, which share the same modular
concept (see Figure 1); both follow ISO 14040, and cover all life-cycle stages [59]. At
present, the latest building life cycle classification standard adopted in China is GB 51336-
2019 (see Figure 2), which divides the whole life cycle into five stages: production and
transportation of building materials, construction, demolition, and operations. Compared
with the EU classification standard, the domestic standard regards the transportation of
building materials as a separate stage to reflect its importance. The default transport
distance of other building materials is 500 km, except for the default transport distance of
concrete which is 40 km [21].
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4. Building Carbon Emission Prediction Model

At present, research on methods of predicting building carbon emissions is mainly
based on the analysis of the leading factors of carbon emissions and then the establishment
of various prediction models based on the leading factors, which can not only predict
the carbon emission prospects of individual buildings, but also analyze the overall future
carbon emission prospects of urban areas. The models can be divided into two categories:
mathematical models, and machine learning models [60,61]. The regression model and the
system dynamics model are the most widely used mathematical models [62]. See Table 4
for a detailed literature summary and model introduction.

4.1. Mathematical Model

The mathematical models used in the prediction of building carbon emissions include
the factors decomposition model based on Kaya identity, various regression models, system
dynamics model, grey system theory, and so on.
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4.1.1. The Factor Decomposition Model Based on Kaya Identity

The Kaya identity was proposed by Japanese professor Yoyichi Kaya at an IPCC
symposium in 1990 [63]:

CO2 =
CO2

PE
× PE

GDP
× GDP

POP
× POP = CI × EI × INC × P (4)

where CO2, PE, GDP and POP are, respectively, carbon dioxide emissions, primary energy
consumption, gross domestic product, and total population. Therefore, the influencing
factors of carbon dioxide emissions are decomposed into emission coefficient factor (CI),
energy intensity factor (EI), economic development factor (INC), and population factor (P).

This formula is currently the mainstream analysis method for decomposing and explain-
ing the driving factors of carbon emissions. Its structure is simple, the factors are intuitive and
quantifiable, and it can explain the driving factors of carbon emissions strongly. Since being
proposed, it has been widely used in the fields of energy and environment [64]. However,
the shortcoming of the Kaya identity is that the decomposition factors are limited to the
relationship between CO2 and population, energy, and economy. Therefore, researchers have
successively proposed the IPAT decomposition method, STIRPAT model, LMDI decomposi-
tion method and other extended solutions based on Kaya identity [16,65,66].

1. IPAT model

The IPAT equation, namely the environmental impact equation, was proposed by the
scholar Ehrlich in the 1970s [67]:

I = PAT (5)

The equation summed environmental impact (I) into the product of population (P),
affluence (A), and technology (T). At present, researchers have mainly applied the model to
study the effects of human activities on global warming, energy use, farmland degradation,
carbon footprint, and pollution levels [68]. For example, Nie et al. [69] used the IPAT model
to analyze the medium- and long-term economic growth, energy demand and carbon
emission scenarios of Jiangsu Province, and introduced the main parameters and results
of the three scenarios. Later, the researchers extended the IPAT model by adding other
factors and proposed the IPBAT model [70], the ImPACT model [71], and the ImPACTS
model [72]. However, the common shortcoming of these models is that they do not allow for
hypothesis testing of missing items in the equation, and they also imply a linear assumption
of the model that different variables have equal effects on the results, which is the biggest
shortcoming of the model. To overcome this limitation, York et al. [73] reconstructed IPAT
as a stochastic model, which they called the “STIRPAT model”.

2. STIRPAT model

The extended STIRPAT model is an annotated form of the IPAT model with high
convenience and application flexibility [15], that is:

I = aPb AcTde (6)

where a is a constant term, b, c and d are the elastic coefficients of the three variables (P,
A, and T), respectively, and e is the error term, representing a random variable that is not
controllable or observable. In practice, the logarithm of the above formula is often taken
into the following form:

ln I = a + b ln P + c ln A + d ln T + e (7)

In view of the high versatility of the STIRPAT model, this model can be used to build a
model of influencing factors of building carbon emissions, analyze the factors that have the
greatest impact on building carbon emissions, and then further build a prediction model of
building carbon emissions.
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Table 4. Details of literature research on building carbon emission prediction model.

Author Name Characteristics

Nie et al. [69] IPAT model

Reducing environmental change to the product of three
interrelated driving forces, population, affluence, and
technology. The disadvantage is that it does not allow
hypothesis testing for missing items in the formula, and its
extension model is commonly used, such as STIRPAT, etc.

Gu et al. [74] LMDI model Complete decomposition, no unexplained residuals, the
results are more accurate, the widest range of use.

Zhou et al. [75] MNR model

Regression analysis is simple and convenient, and suitable for
preliminary analysis, but the equation assumptions are strict,
“pseudo-regression” phenomena often appear, and large data
samples are required. Often combined with STIRPAT, LMDI,
and other factor decomposition models.

Sim [76] System dynamics

It can effectively deal with nonlinear, complex and high-order
practical problems, and can reflect the relationship between
internal and external factors of the research object. It is
especially good at dealing with long-term periodic and
nonlinear complex system problems.

Wang and Gong [77] Grey relational degree model

The degree of correlation between factors is judged according
to the degree of similarity of the development trend of each
factor, and there is no limit to whether there is any rule in the
sample.

Li [78] Grey GM (1,1) model
It requires less information, has high accuracy, is easy to
check, and is very effective in dealing with small sample
prediction problems.

Song and Zhang [79] BP neural network

The nonlinear mapping ability is strong, it can approximate
any continuous function, and it has the characteristics of
adaptive learning and robust fault tolerance. However, the
convergence rate of this model is slow and it may exhibit
non-convergence and local minimum problems.

Hao and Gao [80] NSGA-II-BP neural network
This algorithm can optimize the weight and threshold of the
BP neural network, so as to improve the convergence speed of
the latter.

Heydari et al. [81] GWO-GRNNW

Grey wolf optimization mimics the hunting behavior and
social leadership of the grey wolf. Different types of wolves
assume different leadership levels, which can improve the
spatial search efficiency.

Xu and Song [82] FCS-SVM
The FCS algorithm avoids human influence when selecting
kernel function type, kernel parameter, and penalty parameter
in the SVM algorithm.

Wei et al. [83] FOA-LSSVM
FOA is an intelligent optimization algorithm based on
Drosophila foraging behavior. Combined with LSSVM, FOA
can solve complex nonlinear mapping problems well.

Lin et al. [84] decomposed CO2 emissions into nine factors, such as population, ur-
banization employment level, and energy intensity. Combined with statistical data from
1991 to 2013, the STIRPAT model was used to analyze the effects of urbanization and real
economic development on national CO2 emissions. Based on the STIRPAT model, the
grey correlation method, and neural networks, Zhang et al. [85] studied and predicted the
carbon emissions of the construction industry in Jiangsu Province. The results showed that
steel output, road transport distance, urbanization rate, and labor rate had a positive effect
on the carbon emissions of the construction industry.

3. The LMDI model

The traditional Divisia’s decomposition method has randomness in the parameter
setting, which leads to residual errors in the decomposition results, and large residual errors
affect the accuracy of the result analysis. LMDI decomposition is improved by Divisia’s
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decomposition method. For the complete mathematical principle, see [86]. The LMDI
decomposition model is a complete decomposition without unexplained residuals, which
makes the results more accurate. This model is now widely used in the analysis of building
carbon emissions or building energy-influencing factors. For example, based on data on
carbon emissions and GDP in Inner Mongolia from 1999 to 2009, Gong and Ji [87] used
the LMDI model to study the carbon emission decomposition of six industries in Inner
Mongolia, including the building industry, and evaluated the carbon emission driving
intensity from the perspective of the total effect and industry. Chen et al. [88] combined
spatial autocorrelation analysis, kernel density estimation, and the LMDI spatiotemporal
model to analyze and study the driving factors of carbon emissions from urban residential
buildings in 30 provinces of China during the period 2000–2019. Their results showed
that residential area, population, and urbanization level were important driving factors
affecting provincial carbon emissions. The above cases prove the application of the LMDI
model in predicting the carbon emissions of the building industry

4.1.2. The Regression Model

The regression model is a mathematical model that quantitatively describes statistical
relations and studies the relationship between dependent variables and independent
variables. The regression equation is obtained by determining model parameters, and is
used to predict changes in the trends of dependent variables. Some extended regression
models, such as the double regression model, principal component regression model,
multiple nonlinear regression model, multiple linear regression model, cubic polynomial
model, etc., are mainly used in the actual prediction of building carbon emissions. At
present, the carbon emission regression formula of the building demolition stage mostly
adopts Zhang’s [89]:

Cd1 = A(0.06X + 2.01) (8)

where, Cd1 is the carbon dioxide emissions in the demolition stage of the building, A is
the building area, and X is the above-ground floor. After analyzing the embodied carbon
emissions of 78 office buildings, Luo [90] proposed the following regression formula:

Ce = 1.58x1 + 378.97x2 + 64.57x3 + 94.19 (9)

where, Ce is the embodied carbon emissions of the building, x1 is the amount of steel
used (kg), x2 is the amount of concrete used (m3), and x3 is the amount of wall materials
used (m3).

In order to establish the carbon quota allocation plan for 2030, Zhou and Niu [75] used
the double support vector regression model to forecast China’s provincial-level net carbon
emissions during 2021–2030. Aiming at the carbon emission of residential buildings in
Tianjin, Mao [17] used four models, including principal component regression analysis, to
establish prediction models and engage in comparative analysis. When analyzing multi-
factor models, regression models are simple, convenient, and suitable for preliminary
analysis. However, the assumptions of regression equations are strict, and it is necessary to
know all explanatory variables that cause the change of dependent variables. Otherwise,
the problem of “pseudo-regression” can easily occur.

4.1.3. System Dynamics Model

System dynamics is a system simulation method proposed by Professor Forrester in
1956 to solve the problem of production management. It is a method to deepen analysis
and solve problems step by step according to the idea of “qualitatively—quantitatively—
qualitatively—model construction” [91]. Based on the idea that “system structure deter-
mines system function”, this method constructs a mathematical model according to the
dependency between system behavior and internal mechanism, and seeks the root of the
problem from the internal structure of the system. System dynamics can effectively solve
nonlinear, complex and high-order practical problems, so it is widely used in the study of
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society, economics, and the environment. The framework of its modeling process is shown
in Figure 3. Based on the system dynamics model, domestic and foreign scholars have
carried out a lot of discussions on the subject of total carbon emission prediction and influ-
encing factor analysis, which has played an important role in promoting the development
of building carbon emissions. Based on the theory of system dynamics, Li et al. [92] estab-
lished a prediction model considering the characteristics of regional energy consumption
structure, and predicted the energy consumption structure of Liaoning Province during
2019–2038. With the help of system dynamics, Liu [93] explored the causal relationship and
feedback mechanism of influencing factors on carbon emissions of prefabricated buildings,
and predicted the changing trends of total carbon emissions and the effects of emission
reduction. The advantage of system dynamics is that it can effectively deal with nonlin-
ear, complex, and high-order practical problems, and can reflect the relationship between
internal and external factors of the research object. It is especially good in dealing with
long-term periodic and nonlinear complex system problems.
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4.1.4. Grey System Theory

The grey relational degree model, developed from grey system theory, is a method to
solve multi-factor and nonlinear problem analysis, which is often used in the selection of
influencing factors. This method can make up for the shortcomings of requiring a large
sample size (more than 30) in the systematic analysis of mathematical statistics such as
regression analysis, and it has no limit on whether there is a rule of samples. Its basic idea
is to judge the degree of correlation between factors according to the degree of similarity of
the development trend of each factor. The influencing factors of building carbon emissions
are often coupled, and the degree of influence of various factors is not obvious. Grey
correlation analysis is often applied to this kind of situation.

The grey prediction model is a method to predict systems with uncertain factors.
This method requires less information for modeling, has high precision, and is easy to
check. It is very effective in dealing with small sample prediction problems. Since the grey
prediction model is based on the first-order ordinary differential equation, it is also called
the first-order unitary grey model, denoted as GM (1,1). Yue and Li [94] used the grey
prediction model to predict the carbon emissions of hospital buildings in the whole life
cycle, and conducted a quantitative analysis of carbon emissions at the hospital operation
stage using dynamic analysis and static analysis. Based on the building model data series,
Li et al. [78] used the GM (1.1) model to forecast the energy demand of Shandong Province
from 2016 to 2020. The results showed that the energy demand of Shandong Province in
2020 increased by 20% compared with that in 2015.

The smooth implementation of building energy-saving and emission-reduction poli-
cies requires targeted improvement of leading carbon emission factors. Factor decomposi-
tion models, such as the IPAT model, STIRPAT model, and LMDI model based on Kaya
identity, decompose the driving force of carbon emissions into leading factors, such as
population and GDP. Then, according to the statistical data over the years, the carbon



Buildings 2023, 13, 1617 15 of 22

emission level of the city is predicted from a macro perspective. The main feature of this
model is that it can clearly obtain the contribution rate of each factor to carbon emission,
which is suitable for macro carbon emission analysis. The regression model is applicable
to individual buildings at the microscopic level. It constructs regression formulas about
major factors according to the statistical data of building carbon emissions. The regression
formula is especially applicable in the initial stage of building design where the acquisition
of data lists is scarce. The system dynamics model is a kind of model that deeply studies
the relationship between internal and external factors in a system according to the idea
of “system structure determines system function”. It is often used in conjunction with
other prediction models. The grey relational degree model is a kind of model used to solve
multi-factor and nonlinear problems. Compared with the regression model, this model is
not limited by the number of samples, and requires less information to construct and has
higher accuracy. Its application range is second only to the regression model.

4.2. Machine Learning Models

Machine learning models are widely used in the field of carbon emission prediction
because of their characteristics of high precision, mature theory and low model cost. At
present, the neural network model and the support vector machine model are the most
used models.

4.2.1. BP Neural Network

The back propagation (BP) neural network is a multi-layer feedforward neural network
model trained according to the error back propagation algorithm. It is a black box model. As
shown in Figure 4, the model includes three types of nodes: input layer nodes, output layer
nodes, and hidden layer nodes. Each layer of neurons can communicate bidirectionally
with the front and back neurons. The BP neural network has a strong nonlinear mapping
ability, can approximate any continuous function, and has adaptive learning and robust
fault tolerance characteristics, so it is widely used in the field of building carbon emission
prediction, and is one of the most widely used neural network models. It is noteworthy that
the BP neural network has problems of slow convergence, or even non-convergence and
local minimum. Therefore, Hao and Gao [80] proposed an improved BP neural network
based on the Non-dominated Sorting Genetic Algorithm-II (NSGA-II) genetic algorithm
on the basis of the original model. The genetic algorithm is a multi-objective optimization
algorithm, which can improve the convergence speed of the algorithm. Heydari et al. [81]
proposed a generalized regression neural network based on the grey wolf optimization
algorithm to predict carbon emissions, and the method was well applied to predict the
carbon emissions of an Italian power grid.
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4.2.2. The Support Vector Machine Model

Developed by Vapnik et al. [95] in 1995, the SVM model is a machine learning approach
based on statistical learning theory. It can be divided into Support Vector Classification
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(SVC) and Support Vector Regression (SVR). The latter can be used for the study of re-
gression equations between independent and dependent variables and is therefore widely
used in predictive analysis, regression estimation, function approximation, etc. In theory,
this method can obtain the global optimal solution, and has good generalization ability
for unknown samples. It has significant advantages in solving small samples and non-
linear problems. The support vector machine model overcomes the shortcomings of low
generalization ability and overfitting of neural networks and is considered an alternative
to neural networks. Therefore, it is widely used in the prediction of carbon emissions in
the construction industry. For example, Song [96] trained the support vector regression
model with historical carbon emissions as samples and used it to forecast China’s carbon
emissions from 2010 to 2015. However, the support vector machine model also has its own
defects: the efficiency and performance of this method are affected by the type of kernel
function, kernel parameter and penalty parameter, but these parameters are generally
determined according to experience, which will lead to increased errors. Therefore, some
scholars often combine the SVM algorithm with other algorithms. For example, Xu [82]
used the SVM prediction model, optimized using the fuzzy cuckoo search (FCS) algorithm,
to predict building carbon emissions, and used the FCS algorithm to search the parameters
of the SVM algorithm to avoid the influence of human factors. Wei et al. [83] used the fruit
fly algorithm to optimize the parameters of the least squares support vector machine, and
predicted the carbon dioxide emissions from the optimized model.

The neural network method has a strong nonlinear fitting ability and can map any
nonlinear relationship, which can result in a good prediction effect when building a complex
carbon emission prediction model. However, the nature of the black box model of neural
networks determines its poor portability. Compared with the neural network model, the
support vector machine model has a more solid mathematical theoretical foundation, and
has significant advantages in solving small samples and nonlinear problems. Currently, it
is widely used in the field of carbon emission prediction.

In addition to the above models, there are other models with a smaller scope of
application, which are not described in detail due to limited space, as shown in Table 5.

Table 5. Details of literature research on some building carbon emission prediction models.

Author Name Characteristic

Zha et al. [97] Divisia method Compared with other factor decomposition methods, it has the unique
advantages of zero residual error and uniform polymerization.

Feng and Wang [98] Tapio decoupling model

It is often used to analyze the strength of the link between regional
economic development and carbon emissions, which can be divided
into three categories: “decoupling”, “linking” and “negative
decoupling”.

Zhang [99] LEAP model
The model is an ensemble model covering all sectors of energy
consumption, production and energy use, which can be used to
analyze urban energy demand and carbon emissions.

Ma et al. [100] K-means clustering
and logistic model

The K-means algorithm is easy to implement, simple, and has a fast
clustering speed. The logistic algorithm is simple in calculation and has
obvious economic significance. It can describe the growth of
S-shaped curves.

Mansoor et al. [101] LSTM It has a strong approximation ability to nonlinear and non-stationary
time series and is more accurate than BP neural network.

5. Conclusions and Perspectives

Countries are paying more attention to the problem of the worsening global climate
caused by the increase in greenhouse gas emissions. In order to achieve the goal of carbon
peaking and carbon neutrality, the construction industry is bound to make every effort
to reduce energy consumption and greenhouse gas emissions from the perspective of the
whole industry chain and the whole life cycle. All of these efforts are based on reliable and
reasonable accounting of carbon emissions from the construction industry. With the correct
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accounting method, the carbon emissions of buildings, regions, cities, and even countries
can be predicted so as to make overall planning easier and allow strategic adjustments
to be made to the industrial structure and industrial development. For this purpose, this
paper reviews the carbon emission accounting model and the prediction model.

• Carbon emission accounting methods can be divided into the carbon emission factor
method, the mass balance method, and the measurement method. The carbon emission
factor method is the main method recommended by IPCC, and is also the most widely
used method at present. Although many countries and organizations have provided
rich carbon emission factor databases for inquiry, the accuracy of carbon emission
factor calculations using these databases is not good due to the poor timeliness or wide
application range of the data contained in the databases. Therefore, supplementing
and updating the carbon emission factor database is important work in the calculation
of carbon emissions in various industries.

• Building carbon emission models are divided into the PB method, EI-O method, and
hybrid method. Starting from the energy and material list of the building, the PB
method calculates the carbon emissions of the whole building in detail, with high
calculation accuracy but high cost. The EI-O method analyzes the carbon emissions of
the whole building industry from a macro perspective, and is suitable for the analysis
of carbon emissions at the city level. The hybrid method combines the advantages of
the first two methods, and is the most widely used method at present.

• Research on the driving factors of carbon emission is mainly carried out using the
STIPAT model, LMDI model, grey correlation degree, and other models. The main
feature of these models is that the contribution rate of each factor to carbon emissions
can be clearly obtained, and these models are suitable for carbon emission analysis at
the level of industry and society.

• The prediction model is realized through mathematical models such as the regression
model and the system dynamics model, as well as machine learning models such as the
neural network model and the support vector machine model. In terms of application,
various regression models, support vector machine models and their improved models
are the research hotspots. However, in addition to the regression model, which is
often used to predict the carbon emission of individual buildings, other commonly
used prediction models mostly focus on the carbon emission prediction at the city or
provincial level.

With the implementation of the “carbon peaking and carbon neutrality” policy and
the implementation of the energy-saving emission reduction policy in the building in-
dustry, the accounting and prediction of building carbon emissions will become more
and more important and common. At the level of model application, there are still the
following problems:

• For the renewal and expansion of carbon emission factors, society should label the
vast majority of products with carbon emission factors, similar to the “net content”
label for every commodity. This work can be conducted by the manufacturer, so that
the timeliness and details of the carbon emission factors can be addressed at the same
time. The government should introduce corresponding compulsory measures and
provide preferential policies to improve the enthusiasm of manufacturers.

• Most of the predictions of building carbon emissions in the literature focus on the
macro level, and less attention is paid to predicting the carbon emissions of individual
buildings, especially for prediction models in the building design stage. As the main
model for predicting the embodied carbon emissions of single buildings, the accuracy
of the regression model requires a large amount of measured data as the analysis
basis, but it is difficult to obtain complete and effective measured data, which requires
further accumulation by researchers.
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BP neural network Back Propagation neural network
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FCS Fuzzy Cuckoo Search
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