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Abstract: With the acceleration of urban development, the population density of urban cities has
increased. As the spatial characteristics of multi-unit housing (MUH) perfectly fit this developmental
trend and, simultaneously, have high energy efficiency, the number of MUHs has increased rapidly
in recent decades. Although many studies have proposed high energy efficiency strategies, weather
uncertainty leads to errors between the operational performance of building energy and simulated
values. This study introduces a robust optimization framework that incorporates uncertainty consid-
erations into the optimization process to suppress energy consumption fluctuations and improve the
average building energy consumption performance. Neural networks are used to model the uncer-
tainty of multiple weather elements as normal distributions for each hour, and the accuracy of the
uncertainty model is validated by calculating the mean absolute percentage error (MAPE) between
the mean values of the distribution and the measurement values, which ranges from 3% to 13%. The
clustering algorithm is proposed to replace the sampling method to complete the sampling work
from the normal distribution space of the weather elements to serve the subsequent optimization
process. Compared with the traditional method, the sampling results of the clustering algorithm
show better representativeness in the sample space. The robust optimization results show that the
average energy consumption of the optimal scheme decreases by 13.4%, and the standard deviation
decreases by approximately 17.2%, which means that the optimal scheme, generated by the robust
optimization framework proposed in this study, has lower average energy consumption results and a
more stable energy consumption performance in the face of weather uncertainty.

Keywords: building performance gap; robust optimization; uncertain weather conditions; deep
learning; clustering algorithm; multi-unit housing

1. Introduction

Over the past few decades, global urbanization has been expedited by rapid industrial
and economic development. According to data provided by the United Nations, the urban
population is expected to account for 68% of the global population by 2050, resulting
in increased energy consumption [1]. Moreover, the energy consumption of residential
buildings in various countries accounts for 16–50% of the total national energy consumption,
with a global average of approximately 31% [2].

With the acceleration of urban development, the population densities of modern cities
have increased. As the spatial characteristics of multi-unit housing (MUH) perfectly fit
this development trend and result in high energy efficiency, which is consistent with the
design thinking for energy saving, the number of MUHs in many countries has increased
rapidly in recent decades, the total number of completed multi-family housing units in the
United States increased by 6% in 2020, reaching 375,000 units, which marks the highest
annual number of completed multi-family housing units in the past thirty years [3]. In 2018,
the number of newly registered residential buildings in British Columbia reached its peak
(46,463) since 2002, with an increase of 75.5% MUH [4]. In Japan, the number of houses
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in MUHs reached 23.34 million, accounting for 43.5% of the overall residential sector, an
increase of 2.5 times since 1998 [5].

Wu et al. [6] conducted a statistical analysis of the publication trends of articles related
to NZEBs in the Web of Science database over the past 23 years. The results revealed a
significant increase in NZEB research from 1994 to 2018. In terms of practical application,
energy-saving buildings must achieve the energy-saving performance expected on the
basis of the simulation results at the operational stage.

Measured historical weather data, such as typical meteorological year (TMY) weather
data, are used as the input of the simulation software to calculate the energy consumption
to predict building energy consumption in advance during the simulation stage. However,
due to the uncertainty of weather conditions, a gap usually exists between the building-
energy-consumption simulation results calculated by using historical weather data, which
is a fixed value, and the actual building energy consumption, which is called the “energy
performance gap” [7]. Shi et al. [8] investigated 21 energy-efficient buildings and showed
that performance gaps are always present and unpredictable, regardless of the building
type, location, climate, design, and construction method. Mahabir et al. [9] studied the
differences in the energy consumption of highly efficient residential buildings in the same
area under different weather conditions, and the results showed that the uncertainty of
weather conditions led to a difference of −40% to +40% in the energy consumption results.

To compensate for the lack of fixed weather data to account for such uncertainties,
several researchers have used historical weather data from years past to reproduce fluctua-
tions in uncertainty. Sun et al. [10] used 32 years (1982–2013) of measured meteorological
data to represent uncertainty, and Wang et al. [11] used weather data from 10–15 years in
four cities to assess the energy variations in office buildings. However, such methods are
usually limited by historical data; there is the possibility that extreme weather cannot be
considered, and the probability of the prevalence of various weather conditions within the
fluctuation range cannot be effectively calculated.

In recent years, a collection of probabilistic calculation methods for weather condition
uncertainties has been developed. Wang et al. [11] determined the range and frequency
of weather fluctuations by analyzing historically measured weather data over the past
15 years. Sun et al. [12] improved the variables in the calculation formula for weather
elements from fixed values to probability distribution to calculate the probability model
of weather elements using the statistics of measured data from hundreds of sites. Both
statistical and probabilistic calculation methods often do not consider the correlation
between weather elements, and it is difficult to reproduce time series of weather elements
with high precision.

Thus, the fixed value of the historical weather data results in a deviation between the
simulated building energy consumption and the actual data, which is the performance
gap. At present, uncertainty is rarely included in the calculation of objective functions in
energy consumption optimization studies. In fact, Luo et al. [13] and Imran et al. [14] used
multi-objective optimization algorithms and artificial intelligence to optimize building
energy consumption; however, the objective functions were established based on ideal fixed
conditions. In the global optimization process, the deviation caused by a fixed weather
value may lead to the final optimization result not being optimal, or even degraded. Thus, it
is necessary to consider uncertainty as comprehensively as possible during the optimization
phase to ensure the robustness of the optimization results.

Based on the literature review, it is evident that the lack of estimation of weather
uncertainty conditions during the simulation stage has led to deviations between simulated
results and actual operating conditions. This issue is widely present across various types
of buildings, including MUH buildings with a significantly increasing number, so this
issue cannot be ignored. In addition, the optimization framework at this stage rarely
considers uncertainty, which further leads to the deviation between the simulation results
and the actual fluctuations. To ensure the robustness of optimization results in the face
of uncertainty, the methodology to reproduce weather uncertainty comprehensively and
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accurately and to combine uncertainty with the global optimization process is critical.
This study proposes a highly efficient and robust optimization framework for calculating
building energy fluctuations based on the reproduction of weather uncertainty during
the simulation phase and optimizing the average value and standard deviation of energy
consumption fluctuations in order to reduce the average energy consumption performance
of MUHs and suppress the fluctuation range of energy consumption.

The robust optimization framework proposed in this study clarifies the method of
using neural networks to predict meteorological uncertainty in the design phase and
using clustering algorithms to improve the representativeness of samples in the optimized
sampling process. Furthermore, it highlights the incorporation of uncertainty fluctuations
during the optimization process, distinguishing it from traditional optimization procedures.

This article will consist of five chapters. Section 2 will introduce the establishment of
meteorological uncertainty models and the use of clustering algorithms and the principles
of robust optimization. Section 3 will primarily focus on introducing the objective models
used in this study, while Section 4 will analyze the model’s optimal results. Finally, Section 5
will provide a conclusion for the paper and suggest directions for future research.

2. Methodology

To account for the uncertainty fluctuations in weather conditions, during the opti-
mization process, the robust optimization framework consists of three parts. First, proba-
bility distribution models are established for weather elements to describe uncertainties,
and then the probability distribution model is sampled to establish weather uncertainty
scenarios for the subsequent optimization process. Finally, building variables and uncer-
tainty scenarios are input into the optimizer for robust optimization of building energy
consumption performance.

Neural networks were used to construct distribution models of weather uncertainty
fluctuations for subsequent optimization sampling, as described in Section 2.1. As this study
focuses on the optimization of annual energy consumption fluctuations, the neural network
produces a probabilistic model of the present weather elements instead of predicting the
future in the context of the accumulation of forecast errors.

Sampling based on the aforementioned probability model was necessary to evaluate
each building scheme in the optimization stage. However, multitarget optimization based
on sampling usually leads to an unaffordable computational load. Moreover, traditional
sampling methods are disadvantageous owing to their randomness. Thus, this study
proposes the use of clustering algorithms instead of traditional sampling methods, as
described in Section 2.2.

In the robust optimization stage, NSGA II was used as the optimizer to realize op-
timization. The optimization objectives are defined as the average energy consumption
and the standard deviation of energy consumption of each building scheme in the face of
various weather conditions from clustering to simultaneously optimize the stability of the
average energy consumption and energy consumption performance in the face of weather
fluctuations, as described in Section 2.3.

2.1. Uncertainty of Weather Conditions

The uncertainty of weather conditions is generated based on two neural networks.
The dual-stage attention-based recurrent neural network (DARNN) [15] is used to predict
the value of weather elements with weather elements as features, and the importance
of weather elements to the air-conditioning load is explained through the prediction
process based on the characteristic of attention mechanism. During the training process
of the Bayesian recurrent neural network (Bayesian-RNN) [16], the weights and bias are
established as a normal distribution based on the training set to realize the establishment
of a normal distribution model of the forecast target. Therefore, weather elements are taken
as prediction targets to establish their uncertainty models.
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2.1.1. Dataset for Neural Networks

This section describes the two datasets used to generate the probabilistic model of
weather uncertainty: a dataset of weather conditions and a dataset of building energy
consumption. For the DARNN, due to the importance of calculating weather elements for
computing air-conditioning energy consumption, the dataset is composed of weather data
as a feature and the air-conditioning energy consumption as a label. For the Bayesian-RNN,
the dataset only contains weather data, and, based on the importance calculation results
from the DARNN, non-important weather elements are used as features, while important
weather elements are used as labels.

The climate of Toyama Prefecture is characterized by cold and heavy snow in winter
and heat and humidity in summer; it is a typical rainy and snowy area in Japan.

The weather condition dataset comes from the meteorology of Toyama Prefecture
collected by the Japan Meteorological Agency [17], which is the hourly measurement data
from 2019 and 2020, including elements of sea level pressure (hPa), station pressure (hPa),
precipitation (mm), outdoor temperature (◦C), global horizontal radiation (MJ/m2), dew
temperature (◦C), vapor pressure (hPa), relative humidity (%), wind speed (m/s), and
cloud cover.

The dataset of building air-conditioning energy consumption is the annual energy
consumption calculated based on the weather data for 2019 and 2020 using EnergyPlus [18].
This is in reference to the simulation settings in Section 2.

Furthermore, the dataset summary of the two neural networks is presented in Table 1.

Table 1. Summary of training and testing datasets for neural networks.

Training Data Test Data

DARNN 2019/01–12 weather data
and energy consumption

2020/07 and 12 energy
consumption

Bayesian-RNN 2019/01–12 weather data 2020/01–12 weather data (solar radiation,
relative humidity, outdoor temperature)

2.1.2. Importance Interpretation of Weather Elements

In this study, the dual-stage attention mechanism of the DARNN is employed to
calculate the importance of weather elements for air-conditioning energy consumption.
The main function of the attention mechanism [19] is to introduce the neural network to
calculate the contribution weight of the encoder to the decoder. An ordinary attention
usually requires three values, namely the query tensor Q, the key tensor K, and the value
tensor V, as shown in Equation (1). The attention score is calculated as the importance of
the input value to the prediction target, as shown in Equation (2).

Q = WqQ

K = WkK

V = WvV

(1)

where Wq, Wk, Wv means weights matrix.

A = KTQ

A′ = softmax(A)
(2)

The DARNN consists of two parts: the encoder and the decoder. Both stages use
the attention mechanism and involve several steps, including calculating attention scores,
computing attention weights, updating inputs or calculating CoVe (contextualized vector),
and computing hidden states. Therefore, in the calculation process of the attention score
and weight, the important results for the weather elements are obtained. The specific
description and adoption of rationality for the importance interpretation of the DARNN
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were proven in a previous study by the author of [20]. The details of hyperparameters are
shown in Table 2.

Figure 1 provides an overview of the process of using the DARNN to predict the air-
conditioning energy consumption based on weather elements. The attention mechanism
in the neural network calculates the weights for each weather element with respect to the
target prediction. Since a total of 10 weather elements are considered, each with a time span
of one year (8760 h), the resulting weight data structure is [10, 8760]. To facilitate statistical
analysis, the weight data structure is transformed into [10, 1] by taking the average along
the time dimension, serving as the final outcome of importance interpretation.

Taking three units on the middle floor of the building as representatives, namely,
units 201, 202, and 203, and considering the importance of weather elements to the air-
conditioning energy consumption in winter and summer, the importance interpretation
results of the DARNN are shown in Figure 2. The 2019 dataset was used as the training
set for the DARNN, and the July and December 2020 datasets were used as the test set.
The results show that in both winter (December) and summer (August), the three most
important factors were solar radiation, outdoor temperature, and relative humidity.

Figure 1. Framework of importance interpretation of weather elements.

(a) (b)

Figure 2. Importance ranking of weather elements to energy consumption. (a) Importance ranking of
weather elements to energy consumption in winter; (b) importance ranking of weather elements to
energy consumption in summer.
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Table 2. Hyperparameter of DARNN.

Hyperparameter Encoder Decoder

Learning rate 0.001 0.001
Batch size 64 64
Hidden size 128 256
Num_layers 2 2
Sequence length 24 24

2.1.3. Uncertainty Modeling for Weather Elements

Based on the importance interpretation results, solar radiation, relative humidity, and
outdoor temperature were used as uncertainty modeling objects. As there are latent corre-
lations between weather elements, weather elements other than those mentioned above are
used as input values for the Bayesian-RNN, and the outputs are the uncertainty models of
the object weather elements, as shown in Figure 3, and the details of the hyperparameters
are shown in Table 3. The result of uncertainty modeling was that 8760 normal distribution
models were established for each element, that is, one normal distribution model at each
hour of the year, to reflect the change in weather elements over time. The predictive accu-
racy and underlying principles of the Bayesian-RNN for weather uncertainty have been
validated in the paper [20].

Figure 3. Framework of uncertainty modeling.

Where UMn means uncertainty model.

Table 3. Hyperparameter of Bayesian-RNN.

Hyperparameter Value

Learning rate 0.0001
Batch size 256
Hidden size 128
Num_layers 2 (BayesianLSTM layter, Linear layer)
Sequence length 24

To verify the reliability of the generated uncertainty model for three weather elements,
this study sampled 3000 sets of data based on the normal distribution model of each hour
and compared the mean value of the sampled data with the measurement data using the
mean average percentage error (MAPE) as an indicator during winter (December) and
summer (August), as shown in Table 4.

Taking the second week of December as an example, the line chart describes the uncer-
tainty modeling results of the three weather elements, and the different red concentrations
in the chart represent the mean plus or minus n times (n = 1, 2, 3) standard deviation, as
shown in Figure 4.
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Table 4. MAPE of uncertainty models for three weather elements.

Winter (December) Summer (August)

Outdoor temperature 9.50% 2.60%
Relative humidity 3.90% 4.20%
Solar radiation 13.00% 9.10%

(a)

(b)

(c)

Figure 4. Description of the prediction distribution for three weather elements. (a) Description
of the prediction distribution of outdoor tmperature in winter; (b) Description of the prediction
distribution of relative humidity in winter; (c) Description of the prediction distribution of solar
radiation in winter.
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2.2. Sampling by Clustering Algorithm

Sampling based on the uncertainty model described above is required to account
for uncertainty in the subsequent optimization process. However, traditional sampling
methods, such as the Monte Carlo sampling method, usually have difficulty ensuring the
representativeness of the sampling results in the sample space when extracting a small
number of sample results. Although increasing the number of samples can solve this
problem, the calculation load of the subsequent process increases significantly. Thus, this
study used the k-means algorithm [21] to obtain the cluster center as the final sampling
result. Although the clustering algorithm is a type of classification technique, its clustering
principle ensures that the representativeness of the clustering is centered in the entire
sample space; i.e., the clustering centers are included in the sampling space and evenly
distributed. Thus, the cluster centers are used as the sampling results.

2.2.1. Comparison between Clustering Algorithm and Traditional Sampling Methods

The Monte Carlo and Latin hypercube samplings are commonly used traditional
sampling methods. However, due to the reliance on randomness in the sampling pro-
cess, there are instances where the representativeness of the sampling results cannot be
guaranteed. In this study, these two methods are used as benchmarks for comparing the
sampling effectiveness of clustering algorithms. As the sampling objects in this study are
multiple normal distributions, to compare the representativeness of the sampling results in
the sample space between the clustering algorithm and the traditional sampling method
with a small number of samples, the standard normal distribution with a mean of 0 and
a standard deviation of 1 was sampled 25 times using the Monte Carlo method and the
Latin hypercube method. In addition, for the same normal distribution, 100,000 samples
were first randomly selected, and, thereafter, the samples were clustered using the k-means
algorithm to obtain 25 cluster centers as 25 samples, as shown in Figure 5.

The results show that the sampling results of both the Monte Carlo and Latin hy-
percube sampling methods have varying degrees of sample concentration, which leads
to a lack of representativeness for some normal distributions, especially at the edges. In
contrast, the clustering centers as the sampling results effectively solve the above problem,
which is uniformly distributed in the normal distribution space based on probability, and
the edges are effectively sampled.

Figure 5. Comparison of clustering results with traditional sampling methods.

2.2.2. Clustering for Establishment of Uncertainty Scenarios for Weather Elements

Each weather element was sampled 100,000 times based on the normal distribution at
each hour; thus, the sampling data results with the structure [8760, 100,000] were obtained.
As there are three weather elements, the final data structure obtained through the sampling
process is [3, 8760, 100,000]. The dimension of the number of samples was clustered to
obtain 100 cluster centers due to which the data structure became [3, 8760, 100], as shown
in Figure 6. Thus, there were 100 clustering centers as samples at each hour of the three
weather elements.
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Figure 6. Date structure of clustering result.

2.3. Robust Optimization

The proposed robust optimization framework in this study differs from traditional
optimization approaches in that it introduces uncertainty into the optimization process
to realize that the results of each scheme are range values. The mean value and standard
deviation of the range are used as the optimization objective functions. The inputs, outputs,
and optimization flow of the robust optimization framework are described in this section.

The input side of robust optimization contains two components, variables, and un-
certainty scenarios, both of which affect the building energy consumption, as described in
Section 2.3.1.

Two optimization objectives are included: the average value and the standard devi-
ation of building air-conditioning consumption for each building scheme in the face of
various weather uncertainty scenarios to represent the average performance and fluctuation,
as described in Section 2.3.2.

Section 2.3.3 describes the optimizer used in this study during the optimization process
and the order in which the variables and uncertainties participate in the calculation of the
optimization objectives.

2.3.1. Variables and Uncertainty of Robust Optimization

The optimization variables considered in this study are defined as building elements
that can be determined by engineers and designers during the design phase. The variables
came from three fields, the geometric information of windows and shading devices, build-
ing orientation, and thermal insulation performance, a total of 25 elements. Table 5 shows
the range of variation in each element in the case building, and more detailed building
information will be introduced in Section 3. These variables are discrete variables, and the
value accuracy of each variable is indicated by “Accuracy” in the table. In addition, X9
through X25 are variables of thermal insulation performance, and the range of values is
the four thermal insulation performance standards mentioned in Section 3.3, which do not
involve value accuracy.

The clustering results in Section 2.2 are used as inputs for the robust optimization of
weather uncertainty scenarios. During the optimization process, the optimizer randomly
generates building schemes based on variables and, thereafter, uses simulation software
to calculate the energy consumption performance of each scheme under various weather
uncertainty scenarios.

2.3.2. Objectives of Robust Optimization

Building energy performance is affected by both building variables and weather
uncertainties, as shown in Equation (3), so the energy consumption result of each building
scheme generated from variable space is a dataset rather than a fixed value.

Building energy performance = f (xm
1 , xm

2 , . . . xm
25, ξweather ) (3)
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where x denotes the optimization variables, xm denotes the mth set of building schemes
selected from the variable space, x1...25 denotes each variable in the mth building scheme
(such as the building orientation and window size), and ξ indicates the weather uncertainty
scenarios generated in Section 3.2.

Table 5. Characterization of optimization variables.

NO. Optimization Variables Range/Value Accuracy

X1 South window height [m] [1.7, 2.2] 0.05
X2 South window width [m] [1.0, 5.8] 0.05
X3 East window height [m] [0.5, 2.0] 0.05
X4 East window width [m] [0.9, 5.5] 0.05
X5 West window height [m] [0.5, 2.0] 0.05
X6 West window width[m] [0.9, 5.5] 0.05
X7 South shading device width [m] [0.1, 3.0] 0.01
X8 Building orientation [°] [−90, 90] 0.1
X9 External wall thermal insulation [-] G2, G1, H25, H4
X10 Internal wall thermal insulation [-] G2, G1, H25, H4
X11–X19 South window thermal insulation [-] G2, G1, H25, H4
X20–X22 East window thermal insulation [-] G2, G1, H25, H4
X23–X25 West window thermal insulation [-] G2, G1, H25, H4

To ensure the robustness of the optimization results, the optimization objective was
divided into two parts: the average value of the results dataset was used as the average per-
formance evaluation index in the face of uncertainty scenarios, and the standard deviation
was the evaluation index of the fluctuation range, as shown in Equations (4) and (5).

Objective function Avg = Avg.


f
(
xm

1 , xm
2 , . . . xm

n , ξweather 1
)

f
(
xm

1 , xm
2 , . . . xm

n , ξweather 2
)

...
f
(

xm
1 , xm

2 , . . . xm
n , ξweather j

)
 (4)

Objective function Std Dev = Std Dev.


f
(
xm

1 , xm
2 , . . . xm

n , ξweather 1
)

f
(
xm

1 , xm
2 , . . . xm

n , ξweather 2
)

...
f
(
xm

1 , xm
2 , . . . xm

n , ξweather j
)
 (5)

where ξweather1...j represents multiweather uncertainty scenarios.
Thus, considering that there are two air-conditioned rooms in each unit, namely, the

LDK and bedroom, a situation in which the optimization is difficult to converge because
of too many optimization objectives when each household is optimized individually has
been avoided. Four optimization objectives are defined in terms of air-conditioning energy
consumption in buildings:

1. The average of the total energy consumption in the LDK room facing uncertainty scenarios.
2. The standard deviation of the total energy consumption in the LDK room facing

uncertainty scenarios.
3. The average of the total energy consumption in the bedroom facing uncertainty scenarios.
4. The standard deviation of the total energy consumption in the bedroom facing

uncertainty scenarios.

2.3.3. Robust Optimization Flow

NSGA-II [22] was used as the optimizer; its configuration is shown in Table 6. In the
optimization process, a set of variable values is extracted by the optimizer from the variable
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space to generate a design scheme, and the air-conditioning energy consumption of the
scheme is calculated under various uncertainty scenarios based on EnergyPlus. The mean
and standard deviation of the energy performance of each design scheme were returned
to the optimizer to calculate the fitness, and the above process was repeated, as shown
in Figure 7.

Figure 7. Robust optimization flow.

Table 6. Configurations of NSGA-II.

Settings and Operator Method/Value

Max generation 100
Population size 40
Offspring size 10
Sampling Lartin hypercube
Selection Tournament
Mutation Polynomial Mutation (0.1)
Crossover Simulated Binary Crossover (0.5)

Compared with traditional optimization results, the optimization flow proposed
in this study produces an optimal energy consumption distribution probability model
rather than an optimal fixed energy consumption value. In the design stage, it can more
comprehensively describe the fluctuation of building energy consumption in the face of
weather uncertainty and help decision-makers make more accurate decisions.

3. Case Study and Simulation Settings
3.1. Geometry of Typical Residential Building

In this study, an LDK south-facing three-story MUH with three units on each floor has
been considered. One LDK (living room, dining, and kitchen), bedroom, toilet, entrance
with a corridor in each unit, plan of each floor, and size of each unit are shown in Figure 8.
All units have exterior windows on the south wall of the LDK and on the bedroom walls of
the east- and west-side units; the facade size of the unit is shown in Figure 9, with the west
unit as an example.

3.2. Simulation Settings

In this study, the mathematical modeling of weather uncertainties, described in
Section 2, and the resulting fluctuations in the energy consumption results were focused
on during the design phase, and ideal fixed values were used for other simulation settings.
The details of the fixed simulation settings are listed in Table 7 (refers to [23]). Only the
LDK and bedroom were air-conditioned rooms, and the family composition was envisaged
as a couple. Assuming that the infiltration frequency was 0.5/h and the enthalpy efficiency
of the total heat exchanger was 70%, the ventilation frequency was set to 0.15 times.
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Figure 8. Plan of each floor and size of each unit.

(a) (b)

Figure 9. Facade size of one unit. (a) South facade; (b) west facade.

Table 7. Simulation settings.

Air-Conditioning Room LDK Bedroom

Cooling period July-September
Heating period December-March
Cooling/Heating Setpoint 27 °C (28 °C during night)/20 °C
Family Stucture The couple(two people)
Infiltration rate 0.5 ACH (Energy recovery efficiency 70%)

3.3. Thermal Insulation Performance

Four thermal insulation performance standards were considered in this study: the
Japan 1992 energy-saving standard (H4), the Japan 2013 energy-saving standard (H25), the
HEAT20 G1 housing exodermis insulation standard (G1), and the HEAT20 G2 housing
exodermis insulation standard (G2) [24]. These four thermal insulation performance
standards also represent the thermal insulation performance of different grades of building
envelopes in Japan and serve as a benchmark for comparing the optimization results of
this study. The U values set for each thermal insulation standard for buildings in the
seven climate zones of Japan are listed in Tables 8–11. The building in question in Toyama
Prefecture is located in the fifth climate zone. Thus, the energy consumption of the building,
along with the thermal insulation performance of the fifth climate zone, was used as a
benchmark for the optimization results.

Table 8. Thermal insulation performance standard of H4.

Area 1 Area 2 Area 3 Area 4 Area 5 Area 6 Area 7

External wall (W/m2·K) 0.9 0.9 2.4 2.7 3 3 3.2
External ceiling (W/m2·K) 0.42 0.42 1.05 1.12 1.55 1.55 2.3
Window (W/m2·K) 2.91 2.91 2.91 2.91 4.65 4.65 4.65
External floor (W/m2·K) 0.9 0.9 2.0 2.1 2.9 2.9 4
Internal wall (W/m2·K) 3.04 3.04 3.04 3.04 3.04 3.04 3.04
Internal ceiling/floor (W/m2·K) 2.79 2.79 2.79 2.79 2.79 2.79 2.79
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Table 9. Thermal insulation performance standard of H25.

Area 1 Area 2 Area 3 Area 4 Area 5 Area 6 Area 7

External wall (W/m2·K) 0.7 0.7 0.9 0.9 1.3 1.3 1.3
External ceiling (W/m2·K) 0.27 0.27 0.35 0.35 0.35 0.35 0.35
Window (W/m2·K) 2.33 2.33 2.33 2.33 4.65 4.65 4.65
External floor (W/m2·K) 0.65 0.65 0.8 0.8 1 1 1
Internal wall (W/m2·K) 2.333 2.333 2.333 2.333 2.333 2.333 2.333
Internal ceiling/floor (W/m2·K) 2.079 2.079 2.079 2.079 2.079 2.079 2.079

Table 10. Thermal insulation performance standard of G1.

Area 1 Area 2 Area 3 Area 4 Area 5 Area 6 Area 7

External wall (W/m2·K) 0.65 0.65 0.7 0.75 0.75 0.98 0.98
External ceiling (W/m2·K) 0.23 0.23 0.25 0.25 0.25 0.3 0.3
Window (W/m2·K) 1.6 1.6 1.9 1.9 1.9 2.33 2.33
External floor (W/m2·K) 0.54 0.54 0.6 0.6 0.6 0.75 0.75
Internal wall (W/m2·K) 1.406 1.406 2.333 2.333 2.333 2.333 2.333
Internal ceiling/floor (W/m2·K) 2.079 2.079 2.079 2.079 2.079 2.079 2.079

Table 11. Thermal insulation performance standard of G2.

Area 1 Area 2 Area 3 Area 4 Area 5 Area 6 Area 7

External wall (W/m2·K) 0.5 0.5 0.5 0.35 0.35 0.7 0.7
External ceiling (W/m2·K) 0.24 0.24 0.24 0.19 0.19 0.24 0.24
Window (W/m2·K) 1.3 1.3 1.3 1.3 1.3 1.9 1.9
External floor (W/m2·K) 0.5 0.5 0.5 0.26 0.26 0.58 0.58
Internal wall (W/m2·K) 1.153 1.153 1.153 2.333 2.333 2.333 2.333
Internal ceiling/floor (W/m2·K) 1.609 1.609 1.609 2.079 2.079 2.079 2.079

4. Results
4.1. Building Information after Optimization

Through optimization, a series of optimal solutions were selected as examples to
illustrate the optimization results.

Before optimization, the thermal insulation performance of the fifth zone of the four
thermal insulation standards described in Section 3 was used in the case study building.
The optimal thermal insulation performance for each part of the building is listed in Table 12.
As the excessive thermal insulation performance of the external wall leads to an additional
cooling load, the thermal insulation of the external wall of the optimization result is the
fifth area of the G2 standard. However, the optimization results emphasize the importance
of the thermal insulation performance of internal walls to reduce the heating and cooling
caused by the temperature difference between adjacent rooms or units due to the difference
in unit location and ratio to exterior walls. The thermal insulation performance of the third
area, which was selected as the thermal insulation of the internal walls, was superior to
that of the fifth area.

Table 12. Thermal insulation of wall after optimization.

Thermal Transmittance
(W/m2·K)

Thermal Insulation Standard
and Climate Area

External wall 0.35 G2 5th zone
Roof 0.19 G2 5th zone
Floor 0.26 G2 5th zone
Internal floor/ceiling 2.709 G2 5th zone
Internal wall 1.153 G2 3th zone



Buildings 2023, 13, 1616 14 of 17

The optimal window sizes are listed in Table 13. Compared to the original situation,
the south window area becomes 45.3%, the west window area becomes 54%, and the east
window area becomes 73.5%. As the thermal insulation performance of each window was
optimized independently, the optimization results for the thermal insulation performance
of the window are shown in Tables 14–16. Compared with the original thermal insulation
performance of 1.3 W/m2·K for all windows, some windows in the optimization results
remained unchanged, and some windows declined to a certain extent.

Table 13. Size of window after optimization.

Height (m) Width (m)

South window (LDK) 1.75 1.97
West window (Bedroom) 0.64 0.9
East window (Bedroom) 0.67 2.34

Table 14. Thermal insulation of south window after optimization.

Thermal Transmittance (W/m2·K)

Unit No. ×01 ×02 ×03

South window
10× 1.3 1.3 1.6
20× 1.3 1.9 1.3
30× 1.3 1.9 1.3

Table 15. Thermal insulation of east window after optimization.

Thermal Transmittance (W/m2·K)

103 203 303

East window 2.33 1.9 1.3

Table 16. Thermal insulation of west window after optimization.

Thermal Transmittance (W/m2·K)

101 201 301

West window 1.3 1.3 1.6

In addition, the building orientation was optimized from south to 18.5◦ southwest,
and the depth of the southern shading devices was optimized from 1.1 m to 1.53 m.

4.2. Comparison of Energy Consumption before and after Robust Optimization

This section presents the improvement in the robustness of the building energy per-
formance before and after optimization when considering weather uncertainty scenarios.
The optimal scheme selected from the optimization results is the most effective for robust
optimization. For the convenience of statistical analysis and visualization of optimization
results for multiple objectives, the average energy consumption of the LDK and the bed-
room are combined into the average energy consumption of the entire building, while the
standard deviations of the LDK and bedroom are merged into the standard deviation of
the overall energy consumption of the entire building.

One hundred weather uncertainty scenarios were generated as described in Section 2.2.2;
thus, there were 100 energy performance results for each design scheme. Figure 10 shows
the air-conditioning energy consumption results of an entire building for thermal insulation
standards H4, H25, G1, and G2 (5th climate zone) and the optimal scheme, i.e., the probabil-
ity distribution function (PDF) curve generated based on the mean and standard deviation
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of 100 results. For the four thermal insulation standards on the display, G2 had the ideal
mean and standard deviation, that is, the lowest mean and smallest standard deviation.

Compared with the thermal insulation standard of G2, the thermal insulation perfor-
mance of the external wall in the optimal scheme of this study almost no change. However,
the thermal insulation performance of the internal wall is improved, and the building
geometry information (windows and shading device size, building orientation) is adjusted.

Usually, due to the influence of location and floor, there is a significant difference in the
indoor environment among different units, which leads to heat transfer between adjacent
units or rooms except for the outdoor environment. When considering the uncertainty of
weather conditions, the heat transfer between adjacent units becomes even more complex,
exacerbating fluctuations in energy consumption for units. The optimization results reduce
the heat transfer between adjacent units by improving the insulation performance of the
inner wall, thereby improving the average energy consumption performance and reducing
the fluctuation of building energy consumption. In addition, by increasing the depth of
shading objects, reducing the size of windows, and adjusting the orientation of buildings,
the impact of solar radiation on buildings is effectively reduced. Therefore, even in the
face of the same uncertainty of solar radiation, the optimization results have a more stable
performance of energy consumption.

For the optimal scheme, the average energy consumption decreased by 13.4% com-
pared with that of G2, and the standard deviation decreased by approximately 17.2%. In
other words, in the face of uncertainty, the optimal scheme proposed in this study has lower
average energy consumption results and a more stable energy consumption performance
than most energy-saving standards in Japan at the current stage.

Figure 10. Probability distribution function of annual load of entire building.

The optimization results verified that the robust optimization framework proposed in
this study can effectively optimize the energy performance stability and average energy
consumption of the scheme under uncertainty, thereby alleviating the gap between simula-
tion and measurement values, and ensuring a good performance of the building during the
actual use stage. At present, the majority of environmental performance evaluation sys-
tems, such as LEED [25], primarily rely on referencing the actual operational performance
when assessing the energy consumption performance level of buildings, which emphasizes
the importance of building energy performance in actual use. The results of this study
can assist decision-makers in designing high-performance buildings that have a practical
significance in actual usage, rather than solely relying on fixed simulation results.

5. Conclusions

This study combines a weather uncertainty scenario modeling method using deep
learning and a highly representative sampling method using a clustering algorithm and
proposes a robust optimization framework to achieve the optimization of building energy
performance considering uncertainty. The optimization framework is based on the high-
precision reproduction of weather element uncertainty in the simulation stage to achieve
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the modeling of fluctuations in air-conditioning energy consumption and improve the
evaluation indices to the mean and standard deviation to ensure the ability to evaluate
building energy fluctuations during the simulation stage.

The weather uncertainty scenario modeling method establishes the uncertainty fluctu-
ations of solar radiation, relative humidity, and temperature as normal distributions for
each hour of the year. The reliability of this method is demonstrated by calculating the mean
absolute percentage error (MAPE) between the mean values of the normal distribution and
the measurement values, which ranges from 3% to 13%.

Compared to traditional sampling methods, using the cluster center of a clustering
algorithm as sampling results leads to a more uniform sample results distribution, which
results in better representativeness of the overall sampling space. Moreover, for a normal
distribution, the clustering algorithm does not overlook regions with lower probabilities.

Furthermore, taking the mean value and standard deviation of energy fluctuation as
the optimization objectives, the optimization results show that in the face of weather uncer-
tainty, the average energy consumption of buildings has decreased by 13.4%, and the stan-
dard deviation of energy consumption fluctuations has decreased by 17.2%. The goals of
low average energy consumption and low energy fluctuation of the building were achieved,
namely, the risk from uncertainty fluctuation was controlled by robust optimization.

The scientific contribution of this study is to validate the feasibility of utilizing deep
learning to establish a normal distribution model for certain meteorological elements, proposing
and demonstrating the feasibility and advantages of using cluster centers as sampling points
and providing other researchers with a sampling alternative with low random interference.
In addition, the feasibility of combining a clustering algorithm, deep learning, and robust
optimization to achieve optimization considering uncertainty is also demonstrated by the
uncertainty modeling results and optimization results of this study. This demonstrates that
further optimization of building solutions under the premise of considering uncertainty is
necessary even in the context of the current high insulation performance standards.

In the robust optimization process of this study, the standard deviation is selected
as one of the optimization objectives, which effectively reduces the fluctuation range.
However, there are obvious conservative phenomena in the optimization results. After
optimization, although the maximum energy consumption in the fluctuation range has
been significantly reduced, the minimum energy consumption value has also become
larger, that is, the minimum energy consumption result has worsened. Therefore, as a
future research direction, it is necessary to consider new objective functions to address the
conservatism issue.
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