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Abstract: Despite multiple efforts to improve safety in construction, insufficient hazard identification
remains a significant concern. Failure to address these hazards can lead to severe safety incidents
that harm workers and a firm’s reputation. This problem is especially prevalent in construction
small and medium enterprises (SMEs) due to their limited resources, reliance on manual labor,
and lack of technical expertise regarding safety concerns. Thus, this study addresses the gap by
offering a computational framework that provides a comprehensive evaluation of occupational
hazards, considering multiple factors, such as severity, frequency of occurrence, and the likelihood
of detection, which are risk dimensions of failure mode effect analysis (FMEA). Notwithstanding
the FMEA-based evaluation methods for safety evaluation in the construction sector, drawbacks
attributed to the interdependencies of the risk dimensions and the handling of judgment uncertainties
are evident. In this work, an extension of the FMEA is developed that assigns an occupational hazard
to a risk category under a holistic framework that better addresses the current limitations of the FMEA.
In particular, the study offers a two-fold contribution: (1) putting forward the proposed Choquet–
FMEA–Sort methods under a q-rung orthopair fuzzy set (q-ROFS) environment and (2) demonstrating
an actual case study in the Philippines that comprehensively evaluates occupational hazards in
construction SMEs. Results of a demonstrative case of residential construction projects show that
out of the 26 identified occupational hazards, 18 pose a high risk to workers, while the remaining
eight pose a moderate risk. High-risk occupational hazards require more attention for mitigation
efforts, especially in residential construction SMEs facing resource constraints. The computational
framework offered in this work aids decision-makers in identifying high-risk occupational hazards in
a more systematic approach. The robustness and stability of the proposed methods were tested using
layers of sensitivity and comparative analyses.

Keywords: occupational hazards; FMEA; residential construction; q-rung orthopair fuzzy sets;
Choquet integral
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1. Introduction

In the construction industry, infrastructures are built to support the activities of the
various sectors of the economy [1]. The industry is considered one of the service sectors
that significantly influence an economy, demonstrating its criticality to development [2].
In Australia, the construction industry is one of the largest industries contributing signifi-
cantly to its Gross Domestic Product (GDP) and employing over 1.15 million workers. This
contribution, however, was reduced by about 8% in 2020 due to the ongoing COVID-19
pandemic [3]. However, amidst the pandemic in the Philippines, the industry contributed
16.6% of the country’s GDP, employing 9.6% of the 45.075 million work force in 2021 [4].
The construction industry comprises about 90% small and medium enterprises (SMEs),
has a broad scope, and is vastly diversified [2,5]. The various demands in the industry are
primarily provided through individual specialization. For instance, specific contractors
with specialized focus handle auxiliary services attached to a construction project. However,
updates in regulations requiring more specialized skillsets, while necessary in improving
standards, may result in the further division of SMEs’ scope of work brought about by
costly upgrading, training requirements, and accreditation [6]. In general, the construction
industry is conservative, less flexible, and less receptive to changes due to the uncertainty
and complexity of construction projects [7]. Additionally, the productivity and output of
SMEs are highly affected by the availability of limited skilled workers [8]. They are also
known to have limited financial resources and market share with tight profit margins, re-
sulting in inadequate investments in state-of-the-art infrastructures and resources necessary
for safety measures [5,9,10].

Construction work is loosely regulated and considered one of the most dangerous
industries in developing economies [11], with labor-intensive methods and limited atten-
tion to health and safety issues [12]. Construction workers depend vastly only on their
individual and peers’ experiences in identifying construction hazards [11]. In addition,
they feel obliged to make quick decisions in dealing with hazards independently. Workers’
response to these situations may not be ideally the safest course as they are influenced by
construction production pressure, workflow, and coordination with coworkers, technical
heads, and managers’ attitudes, among others [11]. The Occupational Safety and Health
Administration (OSHA) has tracked injury patterns from different construction projects.
Reports indicate that falls are the leading cause of fatalities in the industry, accounting for
one-third of all construction worker fatalities [13]. These fall incidences include falls from
roofs, ladders, scaffoldings, and other surfaces, resulting in 20% of the absences of construc-
tion workers from work. Injuries resulting from struck-by incidents, caught-in/between,
and electrical incidents are the major causes of fatal injuries [14]. These four hazards repre-
sent the fatal-four hazards widely known in the industry. In response, OSHA has produced
and offered free training materials on the fatal-four hazards, currently administered by
authorized trainers, trade unions, and employers [15].

Due to workers’ vulnerability in construction sites, workplace safety has become
particularly interesting in existing literature, offering myriad approaches to dealing with
it [16]. These studies, including those associated with (1) safety performance measure-
ment [17,18]; (2) safety program and management [11,19]; (3) human factors [20,21]; (4)
technologies [22–25], aimed at improving safety in the construction industry, covering
various areas of interests. In China, Liu et al. [17] conducted a cloud model-based safety
performance evaluation on prefabricated building projects with multiple factors (e.g., hu-
man, material, management, and methods and technical). Similarly, Guo et al. [18] de-
veloped and tested a model to better understand construction workers’ safety behavior
regarding climate and individual factors. Others paid more attention to safety programs
and management in examining the multilevel safety culture and environment of new safety
programs [19] and understanding the causal mechanisms of unsafe behaviors of construc-
tion workers [11]. Studies on human factors exploring workplace environment and climate
to human error and behavior also become highlights [20,21]. There has recently been
an increased application of digital technologies, such as Building Information Modeling
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(BIM), in the construction industry to improve overall planning and monitoring initiatives.
Studies varied from integrating real-time construction safety monitoring systems for haz-
ardous gas, which integrate wireless sensor networks with BIM [22], sensing systems for
construction backover [23], to real-time vulnerability assessment using image processing
and artificial intelligence [25], and unmanned aircraft systems application in construction
safety inspection [24].

While different approaches were put forward to improve construction safety, poor
hazard recognition remains widespread at all levels. Perlman et al. [26] investigated hazard
recognition of construction superintendents, and their findings suggest that despite the
superintendents’ vast work experience and safety training, they could hardly identify all
hazards presented via photographs and the virtual environment. Similarly, 280 construction
workers in the US performed a hazard recognition assessment in a study reported by Albert
et al. [27]. Results showed that workers could identify only 57% and 18% of fatal-four and
non-fatal-four hazards, respectively. Jeelani et al. [28] investigated the improvement of
hazard recognition of construction workers trained under personalized recognition training
programs in response to the gaps in poor hazard recognition. Results highlighted a 35%
increase in detection after an intervention. Meanwhile, Jeelani et al. [29] further investigated
visual search patterns using eye-tracking technology of workers participating in hazard
recognition activity. Additionally, cognitive demands of construction hazard recognition
were measured and investigated by Liao et al. [30]. Despite extensive works in the literature,
poor hazard recognition remains prevalent. One dominant cause for alarming injury rates
is poor hazard recognition resulting in unintentional exposure and injuries [31], accounting
for as high as 50% of work-related safety hazards in a US study [29]. These numbers reveal
the significance of hazard recognition concerning incident prevention, which unfortunately
draws limited attention from the domain literature. Numerous practices, however, are
currently in place and are adopted to encourage construction hazard recognition. Training
programs focused on safety knowledge transfer have become a norm for effective hazard
management and recognition [32]. However, Namian et al. [33] argued the efficiency of
designing these programs with adult learners, which comprise most, if not all, of workers
in construction projects.

Despite some interventions, poor hazard recognition skill is still largely concerning in
the construction industry [34], where construction workers fail to recognize many safety
hazards. These unrecognized safety hazards can lead to unintended exposure and tragic
safety incidents [35]. They are also likely to remain unmanaged and can cascade into unex-
pected safety incidents [36]. Unfortunately, traditional hazard recognition interventions
(e.g., job hazard analyses and safety training) have been unable to tackle the industry-wide
problem of poor hazard recognition levels. Emerging evidence has demonstrated that
traditional hazard recognition interventions have been designed without understanding
the challenges workers experience during hazard recognition efforts [35]. This dilemma
is more pronounced in construction SMEs, given limited resources, high manual labor,
and insufficient attention to safety issues brought about by inadequate technical workers
(e.g., safety officers). Moreover, current approaches to hazard recognition in the literature
fail to capture overarching information about the hazard under investigation. For example,
excessive hand and arm vibration from vibrating power tools may not be detected as a haz-
ard during exposure. However, prolonged exposure to such activity may result in muscle
spasms, musculoskeletal disorders, and even hand-arm vibration syndrome [37]. Using the
current binary detection approach (i.e., hazard, no hazard) that lacks the dynamic element
of hazard exposure, such an activity may not be recognized as a hazard. Thus, obtaining
thorough information about a potential hazard may augment current hazard detection
approaches, contributing to better management and allocation of targeted safety initiatives.
Such a resource-efficient approach is deemed more beneficial to construction SMEs.

Thus, this work offers an approach that evaluates the degree of risk of a hazard rather
than assessing it from a binary detection perspective, as current practices suggest. In our
proposed approach, a hazard is viewed in multiple dimensions, encompassing its severity,
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frequency of occurrence, and propensity for detection. This view may be more relevant and
comprehensive as it captures detailed information about the hazard’s breadth and depth of
impact. For instance, the excessive hand and arm vibration from vibrating tools may be
less severe; however, its occurrence is high, especially in construction SMEs, but detection
is low, which may impact the design of necessary response mechanisms to address the
hazard. This approach provides a complete overview of the hazard instead of focusing
only on its severity. For this view, the inherent concepts offered by failure mode and effect
analysis (FMEA), a tool popular in manufacturing industries [38], help manage such an
approach. FMEA is a systematic and structured method of identifying and preventing
system, product, and process problems before they occur, assessing their impact and
planning corrective actions. Generally, it concentrates on avoiding safety-related incidents,
enhancing safety, and increasing overall stakeholder satisfaction. In recent decades, the
application of FMEA has been extended to include risk management assessment, even in
the construction industry [39,40].

Given the importance of identifying and assessing occupational hazards in the con-
struction industry [41], scholars advocate integrating several methods in statistical model-
ing, multicriteria decision-making, and expert systems, among others, into the conceptual
framework of the FMEA [41]. In the FMEA, failure modes (or hazards in our case) are as-
sessed for severity, occurrence, and detection. A metric known as the “risk priority number”
(RPN) is determined via aggregating these factors to obtain a holistic overview of the degree
to which the failure modes impact a system (e.g., project). Following the criticality of that
single-valued metric, several literature reviews have been reported to investigate, review,
and evaluate the primary applications of FMEA and its various extensions to handle as
much information in the computational process, especially in detecting and assessing con-
struction hazards. Some FMEA applications in the construction industry include evaluating
the construction quality of apartments [42], occupational risks [41,43], factors affecting cost
increases [44], delay factors [45], and construction method [46], among others, with the
majority of works focusing on project risks [47–52]. Consequently, the recent extensions of
FMEA applications intend to address the gaps in the degree of uncertainty and complex-
ity relative to evaluating the factors (i.e., severity, occurrence, and detection) in various
construction industry applications. These include the use of the fuzzy analytic hierarchy
process (AHP) [47,48], big data [42], mathematical programming [50], Markov chains [53],
Pythagorean fuzzy multi-objective optimization based on ratio analysis (MOORA) [43],
fuzzy Stepwise Weight Assessment Ratio Analysis (SWARA) and Weighted Aggregated
Sum Product Assessment (WASPAS) [52], and hesitant fuzzy sets [51], among others.

Our proposed approach advances the previous FMEA applications in the construction
sector in the following ways. First, conceptually, we advance the application of Mete [43]
and Dahooie et al. [41] in breadth and width to comprehensively evaluate all relevant
hazards, especially in construction SMEs. Secondly, we argue that the use of SWARA or
AHP in assigning weights to the FMEA factors may be ill-founded due to the inherent
interrelationships of the factors. For instance, excessive hand and arm vibration from
vibrating tools may have low severity at the outset. However, such severity likely increases
with multiple occurrences over a sustained period. Thus, from a holistic point of view, it is
relevant to address the interdependencies of these factors to capture the overarching nature
of the impact of such hazards. Along with this view, we adopted the Choquet integral as
an effective tool to encompass the relative magnitude of the factors and the magnitude of
interactions and dependencies between them. Choquet integral’s non-linearity and aggre-
gation strength encompass other ordinary aggregation operations, and it has now become a
popular tool for aggregating information. Choquet integral applications include classifica-
tion [54,55], multi-attribute decision-making (MADM) under a fuzzy environment [56,57],
and data modeling [58,59].

Third, the integration of Pythagorean fuzzy sets in Mete [43] and hesitant fuzzy sets
in previous works [41,51] is highly motivated by the notion of better capturing the uncer-
tainties inherent in the judgment elicitation process. However, despite these extensions,
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decision-makers have limited space to elicit ambiguity and imprecision, which are highly
relevant in most applications. Thus, in this work, the integration of q-rung orthopair
fuzzy sets (q-ROFS) within the computational framework of the FMEA to handle hazard
evaluation in the construction sector is proposed. The notion of q-ROFS introduced by
Yager [60] augments the limitation of previously adopted tools (e.g., fuzzy set theory, intu-
itionistic fuzzy sets, Pythagorean fuzzy sets, Fermatean fuzzy sets) in handling judgment
uncertainties brought about by incomplete information, lack of understanding of the do-
main problem, and the idiosyncrasies at which decisions are made. Finally, due to the
comprehensive list of occupational hazards this work attempts to assess, a multicriteria
sorting (MCS) approach is deemed more relevant. An MCS problem assigns the hazards
to pre-determined categories, a process more suitable for engaging in identifying a sub-
set of these hazards that requires more attention. Thus, this work offers two significant
contributions to the literature: (1) a comprehensive evaluation of occupational hazards
prominent in construction SMEs and (2) the proposed Choquet–FMEA–Sort under a q-
ROFS environment. An actual case study on residential construction projects is carried
out to demonstrate our contributions. The insights of the case study and the proposed
method provide inputs to designing targeted initiatives for effective safety management
and improved hazard recognition.

The remainder of the article is arranged as follows. Section 2 reviews the domain
literature on construction hazards. Section 3 presents some relevant preliminary concepts
of q-ROFS, q-ROF entropy, and the Choquet integral. Section 4 outlines the case environ-
ment and demonstrates the application of the proposed methodologies in sorting various
occupational hazards in residential construction workplaces. Sensitivity and comparative
analyses are offered in Section 5 to evaluate the variations of the findings given some
changes in parameters and to compare how the proposed approach augments similar tools.
The findings and their insights are discussed in Section 6. It ends with concluding remarks
and identifying future works in Section 7.

2. Literature Review

Construction projects are implemented in a complex and dynamic environment, often
exposed to vast uncertainties [61]. One of the effects of such complexity is the presence
of construction hazards. Succinctly, construction hazards are situations in construction
sites that may threaten life, health, property, and the environment. An extant study in the
literature highlighted several methodologies for risk mitigation and prevention of such
hazards. One of the most prominent methods with a robust framework for evaluating
failure modes is the FMEA approach [49]. In its application in the construction industry,
the “failure modes” are identified as construction hazards. Thus, identifying the “failure
modes” with the highest priority offers crucial elimination in eliminating the hazard and
its associated consequences (i.e., accidents).

Working on a scaffold/stair and working at a height above two meters are activity-
based hazards that may result in falling incidents. According to OSHA, these fall incidences
constitute 20% of the absences of construction workers from work. In an empirical work
by Kaskutas et al. [62], they found that fall prevention and safety communication training
for supervisors will positively impact the safety of all workers on the construction site.
Most prominent among construction SMEs, labor-intensive activities include handling
manual non-electric tools (e.g., hammer, saw, chisel, pliers, shovel), using hydraulic and
power tools (e.g., cutter, drill, grinder), utilizing vibrating power tools (e.g., jackhammers,
compactors, hand drills), and prolonged and repeated lifting and carrying of objects heavier
than 20 kg. These tasks significantly expose workers to injury due to repetitive motion,
applying significant physical effort, assuming uncomfortable body positions, constant
contact with vibrations, and encountering force [61]. Hence, several methods have been
utilized to investigate the severity of these activities and ergonomic solutions to mitigate
the impact. Zhu et al. [63] mapped out existing exoskeletal technologies to aid manual
handling tasks in construction. Dale et al. [64] pointed out that the implementation of
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participatory ergonomic intervention in construction SMEs is hindered by their lack of
resources or organizational structure to support such a program. They emphasized the
importance of the inclusion of both the upper management and construction workers in
the intervention program to produce significant results.

On the other hand, electricity, machinery, and equipment are popular physical haz-
ards usually involved in construction works. Specifically, these hazards include carrying
out electrical wiring installation and troubleshooting, conducting mechanical/electrical
maintenance and driving vehicles on the construction site. Anderson et al. [65] identified
2454 construction incidents related to electrical safety. They also categorized these inci-
dents wherein a large number documented as general physical injury involving laceration,
abrasion, strain or stress, and collision by an object. Meanwhile, the second largest cause of
incidents is attributed to near-miss electrical incidents, which are linked to the following
causes: (a) documentation/procedure error, (b) lockout/tagout incidents, (c) accidentally
cut conduit, and (d) voltage found after lockout/tagout. For a more comprehensive discus-
sion, the reader is advised to direct to Anderson et al. [65]. Meanwhile, Floyd [66] provided
a guide on applying the hierarchy of electricity hazard control measures.

Construction works are inherently involved with harmful dust, gases, and fumes [67].
They come from various activities, such as operating hydraulic and power tools (e.g., cutter,
drill, grinder), applying lacquer/paint thinner, using airborne fibers and materials (e.g., as-
bestos, roofing insulation, fiberglass) in roof works, and handling cement, sand, gravel,
and other concrete aggregates. Calvert et al. [67] reported that the construction industry
has a relatively high prevalence rate of workers exposed to skin contact with chemicals,
secondhand smoke and vapors, gas, dust, and fumes in comparison to other industries. On
a large scale, dust pollution due to construction activities does not only adversely impact
workers’ health but also the environment. Wu et al. [68] emphasized this environmental
concern in their investigation of the current dust prevention strategies of construction
firms in China. Aside from those hazardous working conditions, welding/hot work and
manual excavation should receive special attention. The US fire department responded
to an estimated 4580 structure fires involving hot work per year from 2014–2018 [69]. Fol-
lowing its prevalence and criticality, OSHA provides proactive safety guidelines for such
activities [13].

Antwi-Afari et al. [70] examined the variability of a worker’s gait pattern in haz-
ardous and non-hazardous conditions. The study proposes a novel, non-intrusive hazard
identification method involving a wearable insole pressure system to formulate proactive
incident-prevention intervention programs. Hazardous workplace conditions involve
working on uneven surfaces, working in the workplace with cables, dangling wires, cut
wood, and scrap metals scattered around, working on ground/lower floors with possible
flying and falling objects, working in a workplace with protruding objects (e.g., nails),
exposure to the extreme noise level in the workplace, and working within a danger zone
(e.g., a possible collision with equipment). Notably, workplace injury results from the
interaction between the workers and a set of elements in the workplace (e.g., uneven
surface, material at height, wind) [71]. Hence, it is important to consider every workplace
element in designing safety standards. BIM is a widely utilized efficient tool that accurately
designs a digital model of a project’s physical structure that captures every element in the
setting. Thus, aside from digitizing the structure of a construction project, it has also been
used to monitor and mitigate workplace hazards, where Hallowell et al. [72] integrated the
attribute-based safety risk data into the BIM.

Construction activities often occur in an unprotected environment, where the workers
are exposed to the sun’s extreme heat [73] or are vulnerable to animal and insect bites.
Other hazards in an unprotected environment include clearing or cutting poisonous plants
and working with structural lumber. Statistical data for fatal injuries from insect bites and
animal attacks in the construction and extraction industry were reported in 951 cases in 2011–
2021 [74]. On the other hand, documented data identified 986 cases wherein workers were
fatally injured due to exposure to environmental heat stress in 2011–2021 [74]. Strategies to
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mitigate the physical and mental health impact of exposure to extreme weather conditions
have been provided by the National Institute for Occupational Safety and Health [75]. The
implementation of such strategies has been expanded by Karthick et al. [73].

3. Preliminaries

This section details the preliminary concepts of q-ROFS, q-ROF entropy, and the
Choquet integral.

3.1. The q-Rung Orthopair Fuzzy Sets

The q-ROFS was proposed by Yager [60] as a computational approach that handles
uncertainty inherent in the decision-making process. Furthermore, Yager [60] emphasized
that q-ROFS is more precise and flexible in handling vague judgments of decision-makers
compared to prior tools. The definition, basic operations, score and accuracy function, and
distance measure of q-ROFS are defined as follows.

Definition 1 ([60]). Let X be a non-empty universe of discourse. The q-ROFS Q is presented as

Q = {〈x, µQ(x), νQ(x)〉 : x ∈ X} (1)

where the functions µQ(x) : X −→ [0, 1] and νQ(x) : X −→ [0, 1] refer to the degree of mem-
bership and degree of non-membership of x ∈ X in Q, respectively, such that 0 ≤ (µQ(x))q +
(νQ(x))q ≤ 1 for some finite q ≥ 1, ∀x ∈ X. The degree of indeterminacy πQ is defined as follows:

πQ(x) =
(
1− (µQ(x))q − (νQ(x))q) 1

q (2)

For convenience, 〈µQ(x), νQ(x)〉 is referred to as a q-rung orthopair fuzzy number (q-ROFN)
on R, and is written as Q = (µQ, νQ).

Some interesting results were put forward by Yager [60]. For instance,

Theorem 1 ([60]). If (µQ, νQ) is a valid q1-rung orthopair membership grade, then it is a valid
q2-rung orthopair membership grade for q2 > q1.

Proof. Since (µQ)
q1 + (νQ)

q1 ≤ 1, then (µQ)
q2 + (νQ)

q2 ≤ 1 for q2 > q1. Thus, (µQ, νQ) is
a q2-rung orthopair membership grade. �

Theorem 1 implies an important Corollary, as shown below.

Corollary 1. For q2 > q1, all q1-rung orthopair fuzzy sets are q2-rung orthopair fuzzy sets.

To illustrate, suppose µQ = 0.85 and νQ = 0.25. For q = 2, the condition 0.852 +
0.252 ≤ 1 is satisfied; therefore, (0.85, 0.25) is a valid orthopair membership grade. The
same is valid for q = 3, since 0.853 + 0.253 ≤ 1. Thus, (0.85, 0.25) is also a 3-rung orthopair
membership grade.

The following presents certain operations of q-ROFS.

Definition 2 ([76,77]). Let
..
q1 = (µ1, v1) and

..
q2 = (µ2, v2) be two q-ROFNs and λ > 0, then

corresponding operations are defined as follows:

..
qc

1 = (v1, µ1) (3)

..
q1 ∪

..
q2 = (µ1 ∨ µ2, v1 ∧ v2) (4)

..
q1 ∩

..
q2 = (µ1 ∧ µ2, v1 ∧ v2) (5)
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..
q1

⊕ ..
q2 =

(
q
√

µ
q
1 + µ

q
2 − µ

q
1µ

q
2, v1v2

)
(6)

..
q1 ⊗

..
q2 =

(
µ1µ2, q

√
vq

1 + vq
2 − vq

1vq
2

)
(7)

λ
..
q1 =

(
q

√
1−

(
1− µ

q
1

)λ
, vλ

1

)
(8)

..
q1

λ
=

(
µλ

1 , q

√
1−

(
1− µ

q
1

)λ
)

(9)

..
q1 	

..
q2 =

(
µ1v2, q

√
vq

1 + µ
q
2 − vq

1µ
q
2

)
(10)

..
q1 �

..
q2 =

(
q
√

µ
q
1 + vq

2 − µ
q
1vq

2, v1µ2

)
(11)

where
..
qc

1 is the complement of
..
q1.

Definition 3 ([76]). Suppose that
..
q = (µ, ν) is a q-ROFN, then a score function S

( ..
q
)

is defined as

S
( ..
q
)
= µq − νq (12)

Definition 4 ([76]). Suppose that
..
q = (µ, ν) is a q-ROFN, then an accuracy function H

( ..
q
)

is
defined as

H
( ..
q
)
= µq + νq (13)

Theorem 2 ([76]). For any two q-ROFNs
..
q1 = (µ1, v1), and

..
q2 = (µ2, v2), a comparison method

using the score function S and H is defined as follows:

(1) If S
( ..
q1
)
> S

( ..
q2
)
, then

..
q1 >

..
q2;

(2) If S
( ..
q1
)
< S

( ..
q2
)
, then

..
q1 <

..
q2;

(3) If S
( ..
q1
)
= S

( ..
q2
)
, then If H

( ..
q1
)
> H

( ..
q2
)
, then

..
q1 >

..
q2; If H

( ..
q1
)
= H

( ..
q2
)
, then

..
q1 =

..
q2.

Theorem 2 allows for the ordering of q-ROFNs, which has a vital role in various areas
of applications, especially in MADM. However, some limitations exist for the score and
accuracy functions of Liu and Wang [76], prompting others in the literature to offer another
formulation. Listed in Table 1 are the existing score function formulations. Note that the
list is not comprehensive.

Table 1. Selected existing score functions.

Proponents Score Functions

Peng et al. [78] S
( ..
q
)
= 1

2

(
µ2 +

(
q
√

1− vq
)2
)

Jana et al. [79] and Wei et al. [80] SJW
( ..
q
)
=

µq−vq+1
2

Banerjee et al. [81] Sb
( ..
q
)
= 1−vq

2−µq−vq

Farhadinia and Liao [82] S f l
( ..
q
)
= µq + λπq

Rani and Mishra [83] Srm
( ..
q
)
= µq(1 + π)
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In addition to the basic operations of the q-ROFNs introduced by Liu and Wang [76],
they also proposed the aggregation operator, namely q-rung orthopair fuzzy weighted
averaging operator (q-ROFWA), which is defined as follows.

Theorem 3. Suppose that
..
qk =

(
µ ..

qk
, ν..

qk

)
(k = 1, 2, . . . , n) is a collection of q-ROFNs, then the

q-ROFWA is obtained by

q-ROFWA
( ..
q1,

..
q2, . . . ,

..
qn
)
=

 q

√√√√(1−
n

∏
k=1

(
1− µ

q
..
qk

)ωk

)
,

n

∏
k=1

ν
ωk..
qk

 (14)

where ωk > 0 (∀k) and ∑n
k=1 ωk = 1. Here, ωk denotes the weight assigned to

..
qk.

Aside from the basic operations and aggregation operator for q-ROF, distance measures
that handle q-ROFS have also been introduced in the literature. One of these measures is
the Euclidean distance. The Euclidean distance measure is based on the idea that every
instance in the dataset can be represented as a point in a dimensional space known as a
‘Euclidean space.’ It measures the actual straight-line distance between two points in a
Euclidean space.

The Euclidean distance measure dqROF(α1, α2) between any two q-ROFS α1 and α2 can
be defined as follows.

Definition 5 ([84]). Let αi = (µαi , ναi ) and βi =
(
µβi , νβi

)
be two sets of q-ROFS in X where

i = 1, . . . , n. Then, the Euclidean distance measure dqROF(αi, βi) is defined as

dqROF(αi, βi) =

(
1

2n ∑
i∈X

(∣∣∣µq
αi − µ

q
βi

∣∣∣2 + ∣∣∣νq
αi − ν

q
βi

∣∣∣2)) 1
2

(15)

Suppose that ωi is the weight of i ∈ X and ∑n
i=1 ωi = 1(0 ≤ ωi ≤ 1), we can define

the weighted Euclidean distance measure dwqROF(αi, βi) between two q-ROFS αi and βi as
follows:

dwqROF(αi, βi) =

(
1
2 ∑

i∈X
ωi

(∣∣µαi
q − µβi

q∣∣2 + ∣∣ναi
q − νβi

q∣∣2)) 1
2

(16)

Theorem 4. Suppose that αi and βi (i = 1, . . . , n) are two sets of q-ROFS in X, such that
αi = (µαi , ναi ) and βi =

(
µβi , νβi

)
. Then, the weighted Euclidean distance measure dwqROF(αi, βi)

satisfies the following properties:

(1) 0 ≤ dwqROF(αi, βi) ≤ 1,
(2) dwqROF(αi, βi) = dwqROF(βi, αi),
(3) dwqROF(αi, βi) = 0, if an only if αi = βi, i.e., µαi = µβi and ναi = νβi .

3.2. q-ROF Entropy and Cross-Entropy

The entropy method, derived from the concept of Shannon entropy, assesses the
content of the information of a given evaluation [85]. In a MADM problem, entropy can be
utilized to evaluate the criterion [86] by measuring the diversity of information. Information
entropy associated with a given criterion j denotes the degree of discriminability of the
alternatives on that criterion. Hence, more considerable weight is assigned to the criterion
with higher criterion data [87]. Liang et al. [88] introduced the entropy and cross-entropy
measure for q-ROFS.



Buildings 2023, 13, 1129 10 of 33

Definition 6 ([88]). Let
..
q =

(
µ ..

q, ν..
q

)
be a q-ROFS, then the entropy of

..
q, denoted as E

( ..
q
)

is
defined as,

E
( ..
q
)
=

1√
2− 1

(
sin
(π

4

(
1 + µ

q
..
q
− ν

q
..
q

))
+ sin

(π

4

(
1− µ

q
..
q
+ ν

q
..
q

))
− 1
)

(17)

where E :
..
q −→ [0, 1] .

Definition 7 ([88]). Suppose that
..
q1 =

(
µ ..

q1
, v ..

q1

)
, and

..
q2 =

(
µ ..

q2
, v ..

q2

)
are two q-ROFS. Then,

the cross entropy of
..
q1 and

..
q2 denoted as CE

( ..
q1,

..
q2
)

where 1 < p ≤ 2 is,

CE
( ..
q1,

..
q2
)
=

1
1− 21−p

µ
pq
..
q1

+ µ
pq
..
q2

2
−

µ
pq
..
q1

+ µ
pq
..
q2

2

p

+
ν

pq
..
q1

+ ν
pq
..
q2

2
−

 ν
q
..
q1
+ ν

q
..
q2

2

p

+
π

pq
..
q1

+ π
pq
..
q2

2
−

π
q
..
q1
+ π

q
..
q2

2

p (18)

In MADM, the criterion that provides more information is considered more important.
Hence, the average combination entropy of a criterion is defined as follows.

Definition 8 ([88]). Suppose A = {a1, a2, . . . , am} be the set of alternatives and C = {c1, c2, . . . , cn}
be the set of criteria. The evaluation of alternative ai with respect to the criterion cj is represented by a

q-ROSF
..
qij =

(
µ..

qij
, ν..

qij

)
. Then, the average combination entropy of a criterion denoted as I

(
cj
)

can
be calculated as,

I
(
cj
)
=

1
2m

m

∑
i=1

((
1− E

( ..
qij

))
+

1
m− 1

m

∑
θ=1,θ 6=1

CE
( ..

qij,
..
qθ j

))
(19)

3.3. Fuzzy Measures and q-ROF Choquet Integral

The Choquet integral operator of Murofushi and Sugeno [89] is widely considered
an aggregation operator that captures the inherent interdependencies and interactions
among the elements through fuzzy measures [90,91]. For brevity, only the overview of
fuzzy measures and Choquet integral concepts are described in this section.

Definition 9. A fuzzy measure µ on a set X is a set function µ : P(X) −→ [0, 1] and satisfies the
following:

(i) Boundary conditions: µ(∅) = 0 and µ(X) = 1,
(ii) Monotonicity: If A, B ∈ P(X), and A ⊆ B, then µ(A) ≤ µ(B).

To calculate the fuzzy measure among the set of elements, λ-fuzzy measure was introduced by
Sugeno (1974), wherein

µ(A ∪ B) = µ(A) + µ(B) + λµ(A)µ(B), λ ∈ [−1, ∞), ∀A, B ∈ P(X), A ∩ B = ∅ (20)

Parameter λ determines the interaction between the elements. If X = {x1, x2, . . . , xn}, then
λ satisfies Equation (21).

µ(X) =
1
λ

(
n

∏
i=1

[1 + λµ(xi)]− 1

)
, λ 6= 0 (21)
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The fuzzy density of the subset containing a single element xi is denoted by µ(xi). For every
subset C ∈ P(X), we have

µ(C) =


1
λ

(
∏

§i∈C
[1 + λµ(xi)]− 1

)
ifλ 6= 0,

∑
§i∈C

µ(xi) ifλ = 0.
(22)

Thus, λ can be determined from the condition µ(X) = 1, that is,

λ + 1 =
n

∏
i=1

(1 + λµ(xi)) (23)

Definition 10 ([92]). Let f be a real-valued function and µ be a fuzzy measure on a set X =
{x1, x2, . . . , xn}, then the discrete Choquet integral of f with respect to µ is defined as follows,

Cµ( f ) =
n

∑
i=1

[
µ
(

A(i)

)
− µ

(
A(i−1)

)]
f
(

x(i)
)

(24)

where (i) represents a permutation on X such that f
(

x(i)
)
≥ f

(
x(i+1)

)
, i = 1, 2, . . . , n− 1 and

A(i) =
{

x(1), x(2), . . . , x(i)
}

, A(0) = ∅.

To capture the uncertainty and vagueness of eliciting judgment in a decision-making
problem, various extensions of the Choquet integral with the different generalizations of
fuzzy sets have also been explored in the literature, including intuitionistic fuzzy Choquet
integral [93], Pythagorean fuzzy Choquet integral [57], interval-valued intuitionistic hesi-
tant Choquet integral [94], and the fuzzy grey Choquet integral [95]. Among the considered
fuzzy sets, q-ROFS offers a broader range of decision space for uncertainty. Hence, to utilize
this strength of q-ROFS, Liang et al. [88] introduced the Choquet integral for q-ROFS. The
Choquet integral operation is discussed as follows:

Definition 11. Let α be a q-ROF evaluation on X, and µ be a fuzzy measure on X. Then, the
q-ROF Choquet integral (q-ROFCI) of α with respect to µ is defined as

q-ROFCIµ(α) =

(
q

√
1−

n

∏
i=1

(
1− u

(
x(i)
)q)µ(X(i))−µ(X(i+1))

,
n

∏
i=1

ν
(

x(i)
)µ(X(i))−µ(X(i+1))

)
(25)

where α
(

x(i)
)

=
(

u
(

x(i)
)

, ν
(

x(i)
))

. Furthermore, (i) represents a permutation on X ac-

cording to a monotonous order that α
(

x(i)
)
≤ α

(
x(n)

)
, i = 1, 2, . . . , n − 1 and A(i) ={

x(1), x(2), . . . , x(i)
}

, A(n+1) = ∅.
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4. Methodology

This section presents the proposed methodologies and their application in sorting
various occupational hazards in residential construction projects. Figure 1 shows the
thematic framework of the study. The construction hazards were assessed and examined
with reference to the three risk dimensions: severity, detection, and occurrence. The
aggregate scores for each risk dimension would determine its classification, whether a
certain construction hazard is of high, medium, or low risk.
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4.1. The Proposed Methodologies

In this section, the proposed methodologies are presented, wherein the RPN of the
FMEA method was obtained using the q-ROFCI to capture uncertainty in the decision-
making process and the interdependencies of the risk dimensions of FMEA. Moreover,
two methods of sorting alternatives based on the resulting q-ROF RPN are introduced.
As shown in Figure 2, three phases are involved in the proposed methodologies. Phase
I calculates the coefficient of each risk dimension of FMEA using q-ROF entropy and
cross-entropy, while Phase II obtains the q-ROF RPN. On the other hand, Phase III sorts
the alternatives according to their corresponding q-ROF RPN. The steps involved in the
proposed methodologies are detailed as follows.
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Figure 2. The proposed methodologies.

4.1.1. Phase I—Calculate the Risk Dimension Coefficients Using q-ROF Entropy and
Cross-Entropy

Step 1. In FMEA, the set of failure modes is evaluated under the set of risk dimensions
(i.e., severity, detection, occurrence). These failure modes (contextually, occupational haz-
ards) are determined through a focus group discussion, literature survey, or a standardized
list. An evaluation matrix X =

(
xij
)

m×n is then constructed, wherein xij is the evaluation
of ith failure mode to jth risk dimension.

Step 2. Construct the q-ROF decision matrix. Using a pre-defined linguistic scale, the
evaluation matrix X is then transformed into q-ROF Q =

(
qij
)

m×n, where qij =
(
uij, vij

)
and πij =

(
1− uq

ij − vq
ij

) 1
q .
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Step 3. Calculate the entropy of the q-ROF evaluation qij, denoted as E
(
qij
)

and the
cross-entropy among failure modes denoted as CE

(
aij, aθ j

)
, where θ ∈ i, θ 6= i. The E

(
qij
)

and CE
(
aij, aθ j

)
are obtained using Equation (17) and Equation (18), respectively.

Step 4. Compute the risk dimension coefficient. The average combination entropy,
denoted as the coefficient or fuzzy density of jth risk dimension, is calculated using
Equation (19).

4.1.2. Phase II—Obtain the RPN of Each Failure Mode Using the q-ROF Choquet Integral

Step 5. Determine the fuzzy measures. The fuzzy measure of each failure mode is
obtained using the parameter λ, which is calculated using Equation (23). Then, the fuzzy
density of jth risk dimension is determined using Equation (22).

Step 6. Define the central profiles of each risk dimension.
The set of A = {a1, . . . , ai, . . . , am} failure modes are to be sorted with respect to the

set C =
{

c1, . . . , cj, . . . , cn
}

of risk dimensions, into ordered K =
{
k1, . . . ,k f , . . . ,kF

}
categories, where k1 B . . . B k f B . . . B kF. The categories are characterized by a set

of P =
{

p f : f = 1, . . . , F
}

central profiles. The central profiles are used to construct the

augmented evaluation matrix
∼
Q =

(∼
q ij

)
∼
m×n

, wherein
∼
m = m + f .

Step 7. Calculate the q-ROF RPN of each failure mode. The RPN of each failure mode
is obtained using the q-ROFCI as defined in Equation (25).

4.1.3. Phase III—Sort the Failure Modes Using the Proposed Methodologies
Method 1—Sorting Using the Euclidean Distance

Step 8. Compute the Euclidean distance between the failure modes and the central
profiles. The Euclidean distance denoted is D

(
ai, p f

)
, as illustrated in Equation (15).

Step 9. Compare the Euclidean distance of each failure mode to the central profiles.
Assign failure modes to predetermined categories using the resulting Euclidean distance.
The following Algorithm 1 assigns ith alternative to f th category.

Algorithm 1: Sorting failure modes via Euclidean distance

Start
for i = 1, . . . , m

for f = 1, . . . , K
if D

(
ai, p f

)
≤ D

(
ai, p f+1

)
< . . . < D(ai, pK)

then ai ∈ k f
end for

end for
End

Method 2—Sorting via Score Function

Step 11. Compute the score function between the failure modes and the central profiles.
The score function is denoted as S(ai), defined by Jana et al. [79].

Step 12. Calculate the absolute difference between the score function of the failure
modes and the central profiles, denoted as T

(
ai, p f

)
=
∣∣∣S(ai)− S

(
p f

)∣∣∣. Then Algorithm 2
assigns ith alternative to f th category.
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Algorithm 2. Sort alternatives via the score function

Start
for i = 1, . . . , m

for f = 1, . . . , K
if T

(
ai, p f

)
≤ T

(
ai, p f+1

)
< . . . < T(ai, pK)

then ai ∈ k f
end for
end for
End

4.2. Application of the Proposed Approach in Evaluating the Risk of Occupational Hazards in
Residential Construction Projects

In the Philippines, the Philippine Contractors Accreditation Board (PCAB) endorses
and issues PCAB licenses to contractors. PCAB licenses signify the company’s capability
and accountability in implementing projects. The license is mandatory in all government
projects but is optional for privately-owned projects subject to the owner’s preference.
Furthermore, the Department of Labor and Employment (DOLE), the Philippine govern-
ment arm overseeing labor matters in the private sector, requires construction projects to
implement a construction safety and health program in place to ensure the protection and
welfare of workers and the general public within and around the vicinity of the construction
sites and promote harmonious employer–employee relationships [96]. The construction
safety and health program is managed by a committee involved in orienting, instructing,
and training workers at the site in view of construction safety and health protocols. In a
construction project, the general contractor must have a full-time accredited safety officer
and an additional safety officer for every ten-heavy equipment on site. Moreover, one
first-aider or safety officer is required for every 50 workers, and a full-time registered nurse
for projects with over 50 but not more than 200 workers. Furthermore, while briefings
(i.e., toolbox meetings) have shown to be effective at preventing fatalities and resulted in
favorable impacts on workers; however, the initiative is not popular in practice [97]. As
stipulated in a local department directive, toolbox and gang meetings are required to be a
part of a Construction Safety and Health Program [98] of a construction project. In 2017,
the DOLE conducted a roadshow with toolbox talks to increase awareness of occupational
safety and health practices among young workers. The targeted roadshow, however, was
only made available to the country’s top five largest construction firms, which are believed
to have safety management mechanisms already in place. Similar activities arranged for
smaller-sized construction firms have not been reported. Despite this agenda, most con-
struction safety and health programs have ill-designed mechanisms to determine the risk
degree of occupational hazards in construction sites. Thus, a rigorous evaluation approach
becomes imperative to inform the design of programs targeted at addressing these hazards.

In carrying out the proposed approach, a focus group discussion identifies some
occupational hazards from previous studies relevant to residential construction projects
mostly implemented by SMEs. As discussed in the literature, construction SMEs are more
exposed to these hazards, amplified by resource constraints and the inability to leverage
economies of scale. Additionally, as construction SMEs comprise 90% of the industry,
highlighting the occupational hazards of their workers is a critical agenda, both for theory
and practice. The focus group consists of fifteen (15) experts with more residential project
experience of more than a year. This small number of experts comprising a group tasked
to elicit judgments is consistent with similar studies in the literature [41,43,52,99]. The
group comprises four contractors, five foremen, two supervisors, and four practicing civil
engineers with extensive academic backgrounds and practical knowledge of occupational
hazards in construction sites. All members have been working in the construction industry
for at least ten years; thus, they are capable of eliciting reliable judgments. Consistent
with other studies, the results of this kind of analysis draw motivation from the concept
of “analytic generalization” by Yin [100]. Unlike statistical generalization, which draws
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insights from the sample and generalizes the population, analytic generalization intends to
support, contest, refine, extend, or elaborate theoretical propositions [100]—in this case—
the assignment of occupational hazards to appropriate risk categories. In addition, a small
group of experts mimics the scenario of a Delphi group, where an increase in the number
of respondents may result in “knowledge redundancy”—any additional member who
has the same level of knowledge and expertise as the rest will have a minimal marginal
contribution to the group decision.

On the other hand, as residential projects constitute a vast scope of work, not to men-
tion other auxiliary services, the focus group decided only to emphasize those hazards that
are inherently present in residential construction sites. Since members of the focus group
are operating in the Philippines, the final list that they generate contains idiosyncrasies
and is dependent on specific conditions prevalent in the Philippine construction industry,
such as predominant manual labor, a small number of skilled works, limited resources
to finance appropriate tools and equipment (including personal protective equipment),
among others. The group consensus results in the generation of a list of 26 occupational
construction hazards found in Table 2. A survey questionnaire was designed to evaluate
these hazards in view of the three risk dimensions of the FMEA, which include the degree
of severity, frequency of occurrence, and probability of detection using the 7-point scale
described in Table 3. The questionnaire was then distributed to the same group of experts,
who were given two weeks to return the completed questionnaire. Clarifications regarding
any aspect of the questionnaire were dealt with promptly.

Table 2. Occupational hazards in a residential construction workplace.

Codes Occupational Hazards Some Accompanying Risks

FM1 Working on a scaffold/stair Fall, scaffold collapse, struck by scaffold

FM2 Working at a height above two meters Fall

FM3 Handling manual non-electric tools (e.g., hammer, saw,
chisel, pliers, shovel) Cuts, bruises, struck by, foreign materials into the eyes

FM4 Using hydraulic and power tools (e.g., cutter, drill,
grinder)

Cuts, bruises, struck by, foreign materials into the eyes,
electrocution, spasm

FM5 Fumes from using hydraulic and power tools
(e.g., cutter, drill, grinder) Nausea, eye irritation, upper respiratory irritation

FM6 Manual excavation works Soil collapse, fall, struck by

FM7 Uneven surfaces on the site Trip, fall, slip

FM8 Cables, dangling wires, cut wood, and scrap metals
scattered around the workplace Trip, fall, slip

FM9 Electrical wiring installation and troubleshooting Electrocution

FM10 Working on ground/lower floors with possible flying
and falling objects Struck by

FM11 Workers stepping on protruding objects (e.g., nails) Trip, fall, slip

FM12 Vehicular traffic on construction sites Struck by

FM13 Working within a ‘danger zone’ (e.g., a possible
collision with equipment) Struck by

FM14 Mechanical/electrical malfunction Electrocution, burns, cuts

FM15 Exposure to the extreme noise level in the workplace Hearing disorder, nausea

FM16 Exposure to hazardous substances (e.g., lacquer/paint
thinner)

Nausea, eye irritation, upper respiratory irritation,
skin irritation, headaches, respiratory problems
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Table 2. Cont.

Codes Occupational Hazards Some Accompanying Risks

FM17
Excessive hand and arm vibrations from vibrating
power tools (e.g., jackhammers, compactors, hand

drills)
Spasm, blister

FM18 Welding/hot work Burns, nausea, eye irritation, upper respiratory
irritation

FM19 Airborne fibers and materials (e.g., asbestos, roofing
insulation, fiberglass) Nausea, eye irritation, upper respiratory irritation

FM20 Inhalation of fine dust from cement, sand, gravel, and
other concrete aggregates Nausea, eye irritation, upper respiratory irritation

FM21 Sun/extreme weather exposure Skin burns, dehydration, heat stroke

FM22 Prolonged and repeated lifting and carrying of heavy
objects heavier than 20 kg

Muscle pains, back pains, back injury, sprain and
strain,

FM23 Snake bites and animal attacks Poison, fever, cuts and bruises, swelling and
inflammation, fatality

FM24 Contact with poisonous plants Skin irritation, headache

FM25 Insect bites Skin irritation, headache, swelling and inflammation,
fatality

FM26 Molds from structural lumber Upper respiratory irritation, eye irritation, Skin
irritation

Table 3. Linguistic evaluation scale.

Linguistic Terms Scores Corresponding q-ROFN

Strongly disagree 1 (0.15,0.9)
Disagree 2 (0.3,0.85)

Somewhat disagree 3 (0.45,0.65)
Neutral 4 (0.5,0.5)

Somewhat agree 5 (0.75,0.4)
Agree 6 (0.8,0.25)

Strongly agree 7 (0.95,0.1)

4.2.1. Phase I—Calculate the Coefficient of Risk Dimensions of FMEA Using q-ROF
Entropy and Cross-Entropy

In this study, a set C of risk dimensions of FMEA (i.e., severity, detection, occurrence),
while a set A = {a1, . . . , ai, . . . , am} of occupational hazards in a residential construction
workplace are determined through a focus group discussion. The focus group discussion
generated a list of 26 occupational hazards in Table 2. A group of E decision-makers was
asked to elicit judgment on the severity, detection, and occurrence of the occupational
hazards. The individual evaluation matrix Xe =

(
xe

ij

)
m×n

is then constructed, wherein

xe
ij represents the eth (e = 1, 2, . . . , E) decision-maker evaluation of ith (i = 1, 2, . . . , m)

occupational hazard to jth (j = 1, 2, . . . , n) risk dimension. A sample of matrix Xe is
presented in Appendix A. The Xe matrices are then transformed into q-ROF evaluation
matrices Qe =

(
qe

ij

)
m×n

, where qe
ij =

(
ue

ij, ve
ij

)
following the linguistic scale featured

in Table 3. The value of q = 5 is defined by the decision-makers. A sample of the
resulting matrix is shown in Appendix B. The aggregate q-ROF decision matrix denoted
as

..
Q =

( ..
qij

)
m×n

, where
..
qij =

( ..
uij,

..
vij
)

m×n, is obtained using the q-ROFWA defined in

Equation (14), wherein ωe

(
∑E

e=1 ωe = 1
)

denotes the weight assigned to eth decision-
maker. The weights assigned to the decision-makers are based on the completeness of
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their responses. The resulting matrix is presented in Table 4. Following Step 3 to Step 5 of
Section 4.1, where p = 1.5, the entropy of each evaluation

..
qij (see Appendix C) presents

the fuzzy densities of severity, detection, and occurrence are 0.3199, 0.1260, and 0.2504,
respectively.

Table 4. Aggregate q-ROF decision matrix.

Occupational Hazards Severity Detection Occurrence

FM1 (0.8479,0.3374) (0.4310,0.7700) (0.7946,0.3670)
FM2 (0.8383,0.2459) (0.4001,0.8382) (0.8066,0.3320)
FM3 (0.6993,0.4554) (0.3819,0.8385) (0.7346,0.3881)
FM4 (0.8072,0.2737) (0.5010,0.8230) (0.7758,0.3560)
FM5 (0.8312,0.2903) (0.5098,0.7813) (0.8214,0.3157)
FM6 (0.7079,0.3998) (0.4186,0.8021) (0.7155,0.4137)
FM7 (0.8121,0.3195) (0.4210,0.7948) (0.8172,0.3007)
FM8 (0.8798,0.2060) (0.3971,0.8459) (0.8992,0.1872)
FM9 (0.7706,0.3341) (0.4001,0.8382) (0.8115,0.3320)

FM10 (0.8744,0.2125) (0.4029,0.8306) (0.7495,0.3758)
FM11 (0.8837,0.1902) (0.3940,0.8537) (0.8738,0.2168)
FM12 (0.7194,0.4017) (0.4713,0.6647) (0.7015,0.4250)
FM13 (0.9071,0.1722) (0.4001,0.8382) (0.7668,0.3626)
FM14 (0.8844,0.1866) (0.4001,0.8382) (0.8606,0.2600)
FM15 (0.8772,0.2328) (0.4468,0.7309) (0.8111,0.3415)
FM16 (0.7489,0.3901) (0.4001,0.8382) (0.8677,0.2509)
FM17 (0.8458,0.2431) (0.4332,0.7630) (0.8006,0.3523)
FM18 (0.8438,0.2427) (0.4029,0.8306) (0.8203,0.3010)
FM19 (0.9066,0.1730) (0.4001,0.8382) (0.8252,0.3132)
FM20 (0.8801,0.2180) (0.4029,0.8306) (0.8239,0.3146)
FM21 (0.8835,0.2014) (0.4001,0.8382) (0.8132,0.3260)
FM22 (0.8791,0.2069) (0.4004,0.8373) (0.8172,0.3234)
FM23 (0.8768,0.2272) (0.3971,0.8459) (0.7257,0.4080)
FM24 (0.8763,0.2314) (0.4162,0.8090) (0.7229,0.4441)
FM25 (0.7137,0.4699) (0.4359,0.7623) (0.7907,0.4099)
FM26 (0.6888,0.4939) (0.4470,0.7301) (0.7899,0.4116)

4.2.2. Phase II—Obtain the RPN of Each Occupational Hazard Using the q-ROF Choquet
Integral

In this study, three pre-defined categories (i.e., “high risk”, “moderate risk”, and “low
risk”) and the central profiles are introduced by the decision-makers. The pre-defined
categories and their corresponding central profiles are featured in Table 5. Using Equation
(23), λ = 1.7868, and following Step 5 to Step 7, the fuzzy measures of the risk dimensions
and the q-ROF RPN are presented in Tables 6 and 7, respectively.

Table 5. The central profiles.

Central Profiles Severity Detection Occurrence

p1 (0.8000,0.2500) (0.8000,0.2500) (0.8000,0.2500)
p2 (0.5000,0.5000) (0.5000,0.5000) (0.5000,0.5000)
p3 (0.3000,0.8500) (0.3000,0.8500) (0.3000,0.8500)

Table 6. Fuzzy measures of the risk dimensions.

Risk Dimensions Fuzzy Measures Risk Dimensions Fuzzy Measure

Severity 0.3199 Severity, Occurrence 0.7135
Detection 0.1260 Detection, Occurrence 0.4327

Occurrence 0.2504 Severity, Detection,
Occurrence 1.0000

Severity, Detection 0.5179
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Table 7. q-ROF RPN values.

Occupational
Hazards q-ROF RPN Occupational

Hazards q-ROF RPN Occupational
Hazards q-ROF RPN

FM1 (0.7282,0.5191) FM11 (0.7947,0.4129) FM21 (0.7517,0.4837)
FM2 (0.7320,0.4996) FM12 (0.6375,0.5235) FM22 (0.7526,0.4836)
FM3 (0.6720,0.5211) FM13 (0.7373,0.4945) FM23 (0.7005,0.5386)
FM4 (0.7091,0.5159) FM14 (0.7848,0.4385) FM24 (0.6999,0.5463)
FM5 (0.7467,0.4835) FM15 (0.7498,0.4696) FM25 (0.7054,0.5216)
FM6 (0.6711,0.4923) FM16 (0.7619,0.4349) FM26 (0.6937,0.5278)
FM7 (0.7714,0.4086) FM17 (0.7316,0.4880) p1 (0.8000,0.2500)
FM8 (0.8468,0.3014) FM18 (0.7433,0.4779) p2 (0.5000,0.5000)
FM9 (0.7439,0.4342) FM19 (0.7691,0.4672) p3 (0.3000,0.8500)
FM10 (0.7113,0.5127) FM20 (0.7575,0.4797)

4.2.3. Phase III—Sort the Occupational Hazards Using the Proposed Methodologies

Following Method 1 of Section 4.1.3, the assignment of occupational hazards is featured
in Figure 3. On the other hand, another assignment of the same hazards based on Method
2 is illustrated in Figure 4.
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Figure 4. Sorting assignments based on Method 2.

The complete computational process involved in this section is provided in the Sup-
plementary Material.

5. Sensitivity and Comparative Analyses

Sensitivity and comparative analyses are implemented to determine the robustness
and efficiency of the proposed methodologies.
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5.1. Sensitivity Analysis

In this section, a sensitivity analysis was conducted to assess the robustness of the
proposed methods. First, the q parameter was allowed to change, where q = 2, . . . , 50.
The percentage that ith occupational hazard is assigned to the f th category is defined

as ρi, f =
∑50

q=2 ht
i, f

49 , hq
i, f ∈ {0, 1}, where hq

i, f = 1 representing that ai is assigned to f at

a parameter value q; otherwise, hq
i, f = 0. Table 8 presents the percentage of frequency

of the assignment of all occupational hazards. It can be observed that for Method 1, 19
occupational hazards (i.e., FM1, FM2, FM4, FM5, FM7, FM8, FM9, FM11, FM14, FM15,
FM16, FM17, FM18, FM19, FM20, FM21, FM22, FM25, FM26) are categorized as “high
risk” at least 70% of the time and seven hazards (FM3, FM6, FM10, FM12, FM13, FM23,
FM24) are categorized as “moderate risk”. At the same time, Method 2, 19 and seven
hazards are classified as “high risk” and “moderate risk”, respectively, as illustrated in
Table 9. Accordingly, a higher value of q translates to a higher hesitancy degree. Hence, the
occupational hazards are likely to be categorized as “high risk” as the value of q increases.
At q = 2, . . . , 50, the proposed methods remain stable.

Table 8. Method 1 relative frequency of the assignment of all occupational hazards at different values
of q.

Occupational
Hazard High Risk Moderate

Risk Low Risk Occupational
Hazard High Risk Moderate

Risk Low Risk

FM1 1.00 0.00 0.00 FM14 1.00 0.00 0.00
FM2 1.00 0.00 0.00 FM15 1.00 0.00 0.00
FM3 0.00 1.00 0.00 FM16 1.00 0.00 0.00
FM4 0.78 0.22 0.00 FM17 1.00 0.00 0.00
FM5 1.00 0.00 0.00 FM18 1.00 0.00 0.00
FM6 0.00 1.00 0.00 FM19 1.00 0.00 0.00
FM7 1.00 0.00 0.00 FM20 1.00 0.00 0.00
FM8 1.00 0.00 0.00 FM21 1.00 0.00 0.00
FM9 1.00 0.00 0.00 FM22 1.00 0.00 0.00

FM10 0.37 0.63 0.00 FM23 0.37 0.63 0.00
FM11 1.00 0.00 0.00 FM24 0.37 0.63 0.00
FM12 0.29 0.71 0.00 FM25 0.76 0.24 0.00
FM13 0.41 0.59 0.00 FM26 0.73 0.27 0.00

Table 9. Method 2 relative frequency of the assignment of all occupational hazards at different values
of q.

Occupational
Hazard High Risk Moderate

Risk Low Risk Occupational
Hazard High Risk Moderate

Risk Low Risk

FM1 0.88 0.12 0.00 FM14 1.00 0.00 0.00
FM2 0.63 0.37 0.00 FM15 1.00 0.00 0.00
FM3 0.00 1.00 0.00 FM16 1.00 0.00 0.00
FM4 0.69 0.31 0.00 FM17 0.88 0.12 0.00
FM5 1.00 0.00 0.00 FM18 0.92 0.08 0.00
FM6 0.00 1.00 0.00 FM19 1.00 0.00 0.00
FM7 1.00 0.00 0.00 FM20 0.98 0.02 0.00
FM8 1.00 0.00 0.00 FM21 0.82 0.18 0.00
FM9 1.00 0.00 0.00 FM22 0.73 0.27 0.00

FM10 0.04 0.96 0.00 FM23 0.02 0.98 0.00
FM11 1.00 0.00 0.00 FM24 0.12 0.88 0.00
FM12 0.29 0.71 0.00 FM25 0.76 0.24 0.00
FM13 0.06 0.94 0.00 FM26 0.73 0.27 0.00
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On the other hand, five score functions (see Table 1) and additional distance measures
proposed by Peng and Liu [101], as described in Equations (26)–(30), were utilized to
evaluate the stability of the proposed methodologies.

D1(M, N) =
1

2|X| ∑x∈X

(∣∣∣uq
M(x)− uq

N(x)
∣∣∣+ ∣∣∣vq

M(x)− vq
N(x)

∣∣∣+ ∣∣∣πq
M(x)− π

q
N(x)

∣∣∣) (26)

D2(M, N) =
1

2|X| ∑x∈X

∣∣∣uq
M(x)− uq

N(x)− vq
M(x)− vq

N(x)
∣∣∣ (27)

D3(M, N) = 1
4|X|

(
∑x∈X

(∣∣∣uq
M(x)− uq

N(x)
∣∣∣+ ∣∣∣vq

M(x)− vq
N(x)

∣∣∣+ ∣∣∣πq
M(x)− π

q
N(x)

∣∣∣)+
∑x∈X

∣∣∣uq
M(x)− uq

N(x)− vq
M(x)− vq

N(x)
∣∣∣) (28)

D4(M, N) =
1
|X| ∑x∈X

(∣∣∣uq
M(x)− uq

N(x)
∣∣∣ ∨ ∣∣∣vq

M(x)− vq
N(x)

∣∣∣) (29)

D4(M, N) =
1
|X| ∑x∈X

∣∣∣uq
M(x)− uq

N(x)
∣∣∣ ∨ ∣∣∣vq

M(x)− vq
N(x)

∣∣∣
1 +

∣∣∣uq
M(x)− uq

N(x)
∣∣∣ ∨ ∣∣∣vq

M(x)− vq
N(x)

∣∣∣ (30)

After obtaining the assignment of the occupational hazards, the similarity ratio metric
Sr proposed by Keshavarz-Ghorabaee et al. [102] is used to compare the results as illustrated
as follows:

Sr =
∑m

i=1 wi(xi, yi)

m
, xi, yi ∈ {high risk, moderate risk, low risk} (31)

where wi(xi, yi) =

{
1 i f xi = yi
0 i f xi 6= yi

and m is the number of occupational hazards, xi is the

category of ith occupational hazard using a particular method, while yi is the category of
ith occupational hazard using the other method. When Sr = 1, then the two methods fully
agree on all assignments. Table 10 illustrates the values of Sr among the score functions,
while Table 11 features the Sr among the distance measures. As observed, the Sr values
among the employed score function are greater than 60%, while the Sr values among the
employed distance measure are greater than 96%. This indicates that the proposed sorting
methods are stable and feasible when applied to other domain problems.

Table 10. Similarity ratio among various score functions in sorting occupational hazards.

Score Function Jana Banerjee Farhadinia Rani Peng

Jana 1.00 0.96 0.96 0.88 0.73
Banerjee - 1.00 0.92 0.85 0.69

Farhadinia - - 1.00 0.92 0.77
Rani - - - 1.00 0.85
Peng - - - - 1.00

Table 11. Similarity ratio among various distance methods in sorting occupational hazards.

Distance Method Euclidean D1 D2 D3 D4 D5

Euclidean 1.00 0.96 0.96 0.96 1.00 1.00
D1 - 1.00 0.92 0.92 0.96 0.96
D2 - - 1.00 1.00 0.96 0.96
D3 - - - 1.00 0.96 0.96
D4 - - - - 1.00 1.00
D5 - - - - - 1.00
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5.2. Comparative Analysis

A proposed methodological approach to categorize occupational hazards is introduced
in this study. Layers of comparative analysis are implemented to assess the approach’s
effectiveness in practical application compared to prior methods. The first comparable
method is the canonical FMEA. An m(i = 1, .., m) number of failure modes of a specific
process or product is evaluated using the three dimensions of FMEA, referred to as risk
dimensions. The risk dimensions are denoted as j = 1, . . . , n. The evaluation rij denotes the
assessment of the ith failure mode with respect to each jthe dimension. These evaluations
are utilized to determine the risk priority number Ri of each failure mode, wherein Ri =

n
∏
j=1

rij. This FMEA process is applied to the domain problem discussed in Section 4. Here,

the failure modes are an occupational hazard in the construction industry. The resulting Ri
values are presented in Table 12.

Table 12. Risk priority numbers using the canonical FMEA.

Occupational Hazards Severity Detection Occurrence Ri

FM1 4.2400 1.9200 4.5200 36.7964
FM2 5.7400 1.6000 5.1200 47.0221
FM3 4.0800 1.7400 4.9400 35.0700
FM4 5.7400 1.6200 5.1800 48.1678
FM5 5.3400 1.9400 5.2000 53.8699
FM6 4.7000 1.7800 4.6600 38.9856
FM7 5.1400 1.9400 5.2600 52.4506
FM8 6.0600 1.4400 6.1000 53.2310
FM9 5.2400 1.6000 5.0400 42.2554
FM10 5.9200 1.7600 5.0000 52.0960
FM11 6.2400 1.2800 5.9400 47.4440
FM12 4.5400 2.7200 4.4800 55.3226
FM13 6.2800 1.6000 5.1600 51.8477
FM14 6.2800 1.6000 5.4800 55.0630
FM15 5.7800 2.2400 4.9600 64.2181
FM16 4.4200 1.6000 5.6400 39.8861
FM17 5.8400 2.0800 4.8200 58.5495
FM18 5.7600 1.7600 5.3200 53.9320
FM19 6.2600 1.6000 5.3200 53.2851
FM20 5.9200 1.7600 5.3000 55.2218
FM21 6.0800 1.6000 5.1400 50.0019
FM22 6.0400 1.6200 5.2600 51.4680
FM23 5.6000 1.4400 4.6600 37.5782
FM24 5.4200 1.7200 4.3400 40.4592
FM25 4.2200 2.0800 4.3000 37.7437
FM26 3.9000 2.2600 4.3000 37.9002

When Ri ≥ τ, then ith occupational hazard is considered “high risk.” The parameter τ
is the 80th percentile of all Ri. Here, τ = 53.9320. This parameter is anchored on the Pareto
principle or the 80/20 rule. Consequently, only six occupational hazards are categorized as
“high risk”, namely, FM12, FM14, FM15, FM17, FM18, and FM20.

The second comparable method is the categorization of occupational hazards through
FlowSort. The integration of FMEA in FlowSort is introduced by Lolli et al. [103]. This
approach follows the canonical FlowSort method, wherein the three risk dimensions
of FMEA are considered the evaluation criteria in the decision matrix. Note that the
failure modes (i.e., occupational hazard) are considered alternatives in the matrix. The
application of the comparable method is demonstrated using the same problem discussed
in Section 4. The ordered category k f where k1 B . . . B k f B . . . B kF is set by the
decision-makers. Here, three categories are defined as k1 = high risk, k2 = moderate risk,
and k3 = low risk. These three ordered categories are characterized by the set central
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profiles where P = {2, 4, 6}. Meanwhile, the preference function F(d) is determined using
the Type 3 criterion wherein,

F(d) =


1 −d ≤ −p*
−d
p*
−p* ≤ −d < 0

0 −d ≥ 0
(32)

where p* ∈
{

pseverity, poccurence, pdetection
}

is determined by the decision-makers. Here,
pseverity = 0.7, poccurence = 0.3, and pdetection = 0.3. Following the methodological steps of
the FlowSort, Table 13 shows the categorization of the failure modes.

Table 13. Assignment results using FlowSort.

Occupational
Hazards Category Occupational

Hazards Category Occupational
Hazards Category

FM1 moderate risk FM10 moderate risk FM19 moderate risk
FM2 moderate risk FM11 moderate risk FM20 moderate risk
FM3 low risk FM12 moderate risk FM21 moderate risk
FM4 moderate risk FM13 moderate risk FM22 moderate risk
FM5 moderate risk FM14 moderate risk FM23 moderate risk
FM6 moderate risk FM15 moderate risk FM24 moderate risk
FM7 moderate risk FM16 low risk FM25 moderate risk
FM8 moderate risk FM17 moderate risk FM26 moderate risk
FM9 moderate risk FM18 moderate risk

To illustrate the comparison of the results from the proposed method and two compara-
ble methods, Table 14 summarizes the category assignments of the occupational hazards. It
is apparent in the results that there is a wide disparity in the categorization of occupational
hazards. However, it should be emphasized that five out of six “high risk” occupational
hazards from FMEA are also categorized as “high risk” using the proposed method. Mean-
while, the six “high risk” occupational hazards by the canonical FMEA are categorized
as “moderate risk” through FlowSort. Hence, it can be noted that the disparity of the
FMEA results to FlowSort is more nuanced than the proposed method. This disparity in the
results may be due to the different inherent properties of the computational framework of
FlowSort and FMEA. Additionally, the high similarity of results of FMEA and the proposed
method can be attributed to the retention of the multiplicative property of FMEA in the
proposed method, which satisfies some theoretical underpinnings.

Table 14. Assignment results from comparable methods.

Occupational Hazards
Categories via Different Methods

Proposed Method FlowSort FMEA

FM1 high risk moderate risk -
FM2 high risk moderate risk -
FM3 moderate risk low risk -
FM4 moderate risk moderate risk -
FM5 high risk moderate risk -
FM6 moderate risk moderate risk -
FM7 high risk moderate risk -
FM8 high risk moderate risk -
FM9 high risk moderate risk -
FM10 high risk moderate risk -
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Table 14. Cont.

Occupational Hazards
Categories via Different Methods

Proposed Method FlowSort FMEA

FM11 high risk moderate risk -
FM12 moderate risk moderate risk high risk
FM13 high risk moderate risk -
FM14 high risk moderate risk high risk
FM15 high risk moderate risk high risk
FM16 high risk low risk -
FM17 high risk moderate risk high risk
FM18 high risk moderate risk high risk
FM19 high risk moderate risk -
FM20 high risk moderate risk high risk
FM21 high risk moderate risk -
FM22 high risk moderate risk -
FM23 mod moderate risk -
FM24 mod moderate risk -
FM25 mod moderate risk -
FM26 mod moderate risk -

6. Results and Discussion

Despite being a crucial contributor to national economies, the construction industry is
considered one of the most hazardous industries, particularly in developing economies,
where SMEs comprise a significant portion of the industry. To assist financially constrained
construction SMEs in managing and allocating resources for worksite safety initiatives,
this work adopts the notion of the FMEA by considering assessing occupational hazards
in terms of their severity, detection probability, and occurrence frequency, rather than
simply in a binary detection perspective, as current literature suggests. Furthermore, it
enriches previous methodological approaches based on FMEA by offering a computational
mechanism that determines risk categories for a set of occupational hazards. With an
actual demonstration in residential construction projects, this study helps project managers
make informed decisions about the nature of occupational hazards and aids in the design
of targeted initiatives that address those hazards. By evaluating hazards based on their
severity, detection, and frequency of occurrence, managers could prioritize which hazards
demand more attention and critical information to allocate resources effectively. In this
section, we analyzed our findings in the previous sections in more detail.

Based on Section 4, crisp scores ranging from 0 to 1 were used to evaluate and rank all
the identified occupational hazards according to individual risk dimensions (i.e., severity,
detection, and frequency) and presented as heatmaps (Table 15). The presented heatmaps
are defined in such a way that the highest value in the dimension is shown in red and
signifies a higher degree of risk. Red-Orange represents a high degree of severity (HS), high
probability of detection (HD), and high possibility of occurrence (HF) in the heat maps.
Furthermore, the integration of the crisp scores of the three dimensions for each hazard was
used to sort the hazards according to three categories, namely low (LR), moderate (MR),
and high (HR) risk. Of the twenty-six (26) identified hazards, eighteen (18) are categorized
as high risk, eight (8) as moderate risk, and zero (0) as low risk.
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Table 15. Heat map of the aggregate crisp scores of the risk dimensions.

Occupational Hazards Severity Detection Occurrence
FM1
FM2
FM3
FM4
FM5
FM6
FM7
FM8
FM9

FM10
FM11
FM12
FM13
FM14
FM15
FM16
FM17
FM18
FM19
FM20
FM21
FM22
FM23
FM24
FM25
FM26

Low risk index:
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Results are clustered according to a high level of risk per dimension (1) (HS-HD-MF);
(HS-LD-HF); (HS-LD-MF); (HS-LD-LF); (2) (LS-LD-LF); (3) (LS-LD-HF). First, exposure to
extreme noise levels in the workplace (FM15) showed HS-HD-MF. This result is consistent
with Yang et al. [104], highlighting how noise pollution is a pervasive stressor and a major
compromise to the health and well-being of construction workers and off-site residents
near the construction site. The negative effect of construction noise lies primarily within the
dimensions of safety behavior. It was found in the work of Ning et al. [105] that the degree
of severity is high as noise associated with residential construction buildings is related
to activities such as electric drills (102 dB noise level), cutting of tiles (90 dB), rebar work
(94–96 dB), grinder (97 dB), handheld power tools (94 dB), use of jackhammer (105 dB),
hammering nails into timber (131 dB), actuated tools into masonry (147 dB), among others,
while permissible noise exposure for an eight hour-work shift is the 80 dB noise level.
Long exposure to noise can cause serious health problems (e.g., hearing loss, tinnitus,
stress-related disorders) that can be irreversible and permanent. Moreover, hazard FM15
has high detection as noise in the construction site is foreseen not only to cause noise within
the vicinity of the worksite but to cause noise disturbance to adjacent structures, which
most likely are residential units. Construction noise during extended work shifts often
causes disputes between adjacent unit owners and construction site heads. In this case,
decision-makers in residential construction SMEs must implement measures and mitigation
strategies to minimize noise levels. Such strategies may include installing sound barriers,
providing hearing protection for workers, and layout optimization as preparation before
the start of construction activities. Meanwhile FM8, FM11, FM13, FM14, and FM22 resulted
to HS-LD-HF. Common among these high-severity hazards is the need for immediate
medical attention when incidents occur. Moreover, these are associated with HF due to
the prolonged presence of these hazards spanning the entire duration of the construction
projects. Due to the limited space in most residential construction sites, workers tend to
pass the danger zone (FM13).
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Similarly, space limitations expose workers to unkept conditions with dangling wires,
scrap metals, cut wood (FM8), and protruding objects (FM11). Trip hazards, falling objects,
and cuts from sharp objects are common results of poor housekeeping practices [106].
Moreover, it is important to note that the identified hazards have a low probability of
detection (LD) brought about by workers’ long exposure to these hazards and thus are
perceived as a normal site condition, making it critical mitigating them a priority. Thus,
construction employers or managers need to allocate resources for housekeeping and
consistent equipment maintenance during the whole duration of the project. Employing
modeling tools that design and layout a digital, physical structure of a project to monitor
and mitigate workplace hazards can be explored as a possible mitigating option. Moreover,
strategies such as putting up clear and comprehensive warning signs, regularly reviewing
work processes, and providing appropriate footwear can prevent or mitigate the negative
impacts of trip hazards.

Moreover, due to limited resources, construction workers in SMEs may not have proper
training and orientation and thus resulting in the lack of knowledge of workers of hazards
in the worksite, consequently showing low detection of some common worksite hazards.
Furthermore, this is intensified by high labor turnover in the construction industry [107],
which negatively affects the performance of the construction business. FM19, FM20, and
FM21, respectively, are identified as HS-LD-MF. Similar to the above HS hazards, FM19 and
FM20 have possible immediate effects that need first aid or medical attention, including
skin irritation and respiratory problems, among others. Meanwhile, the excessive heat
from sun exposure in tropical countries, such as the Philippines, resulted in FM21 being
categorized as HS. Sun exposure is overly present during the start of the construction
project because of limited shaded locations. These three hazards are identified as MF
because workers’ exposure to these hazards does not happen during the project duration.
FM21, FM20, and FM19 occur only at the start of construction, during masonry and concrete
works, and finishing work, respectively. Lastly, for HS, FM23 and FM24 are identified as HS-
LD-LF. Immediate attention to incidents resulting from these hazards becomes imperative.
However, they are identified as LD and LF because these hazards most often occur during
site clearing at the onset of the project. Most construction workers cannot detect poisonous
plants and habitat situations of snakes or other animals, especially those endemic to the
locality. Moreover, hiring specialized personalities to deal with these conditions is not a
common practice, especially for SMEs with limited capacities.

Secondly, vehicular traffic on construction sites (FM12) resulted in the highest probabil-
ity of detection. This may be due to, among the listed hazards, vehicular traffic avoidance
is normally practiced regardless of the conditions. It may be observed that crisp scores for
the probability of detection are relatively lower (highest is 0.45) compared to the degree of
severity and frequency of occurrence (highest at 0.81 and 0.79, respectively). This indicates
that the level of detection of hazards or hazard recognition remains low, as supported by
others in the literature [36]. Lastly, exposure to hazardous substances (e.g., lacquer/paint
thinner) (FM16) is categorized as LS-LD-HF. Lengthy day-long exposure to these substances
is common, thus resulting in being recognized as HF. However, due to a lack of knowledge
of unforeseen health effects that typically occur much later, FM16 is identified as LS and
LD. Eighteen (18) of the twenty-six (26) identified hazards are categorized as high risk. The
heatmaps show that integrating the three domains with pronounced severity and frequency
scores resulted in numerous high-risk hazards. This implies that workers perceive a hazard
more based on the frequency of occurrence and degree of severity of the risk associated
with the hazard and that detection of hazards remains low.
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7. Conclusions and Future Directions

Despite various attempts to enhance construction safety, inadequate identification of
hazards remains a significant and prevalent concern in a construction setting. Failure to
recognize and mitigate these hazards can result in tragic safety incidents that harm the
workers and the construction firm’s reputation. The dilemma is more prevalent in construc-
tion SMEs, given their limited resources, high dependence on manual labor, and insufficient
attention to safety concerns due to the lack of technical workers. To address this concern,
this study presents a novel method for assessing the risk level of an occupational hazard,
which differs from the traditional binary detection approach commonly used in current
methods. Our proposed approach considers multiple dimensions of a hazard, including
its severity, frequency of occurrence, and the likelihood of detection—characteristics em-
bedded in FMEA. However, current FMEA extensions and applications in construction
safety have some computational shortcomings that form the main departure of this work,
particularly in capturing the interdependencies of the risk dimensions and the uncertainty
of judgment elicitations of experts. In particular, this study offers a two-fold contribution
to the literature: (1) a comprehensive evaluation of occupational hazards prominent in
construction SMEs, and (2) the proposed Choquet–FMEA–Sort methods under a q-ROFS
environment.

Results reveal that working on a scaffold/stair, working at a height above two meters,
fumes from using hydraulic and power tools, uneven surfaces, cables, dangling wires, cut
woods, and scrap metals scattered around workplace, electrical wiring installation and
troubleshooting, working on ground/lower floors with possible flying and falling objects,
workers stepping on protruding objects (e.g., nails), working within a ‘danger zone’ (e.g., a
possible collision with equipment), mechanical/electrical malfunction, exposure to the
extreme noise level in the workplace, exposure to hazardous substances (e.g., lacquer/paint
thinner), excessive hand and arm vibrations from vibrating power tools, welding/hot work,
airborne fibers and materials, inhalation of fine dust from cement, sand, gravel, and other
concrete aggregates, sun/extreme weather exposure, and prolonged and repeated lifting
and carrying of heavy objects heavier than 20 kg are categorized as “high risk” while the
remaining eight occupational hazards are categorized as “moderate risk”. With the limited
resources that residential construction SMEs have, decision-makers in the industry should
focus their efforts and resources on mitigating the occupational hazards categorized as
“high risk” since these hazards are more likely to cause severe injuries, difficult to detect,
and have a high frequency of occurrence. By mitigating these hazards, construction SMEs
can enhance the well-being of their workers, reduce the risk of property damage and
financial losses, improve company reputation, increase worker morale and productivity,
and foster a workplace safety culture.

However, despite the contributions to the literature, this study has some limitations,
like any other work. First, the results of the analysis may be confined to the idiosyncrasies of
the case environment. The existing preventive measures, document control protocols, and
some cultural orientations present in managing Philippine residential construction projects
were considered a priori when expert decision-makers evaluated the occupational hazards.
Thus, the resulting categories of occupational hazards may yield differently in other cases,
especially those countries with more rigorous workplace safety regulations. For future
work, the proposed methods may also be applied to more complex construction projects,
such as bridges, buildings, and ports. Second, it may be necessary to conduct a prospective
study to obtain more comprehensive insights by analyzing the findings with more decision-
makers. Third, an in-depth post-analysis that would result in carefully designed preventive
measures grounded on the study results is an interesting future work for practitioners.
Moreover, the novel sorting methods introduced in this study can be applied in sorting
other FMEA-based problems across various domains (e.g., manufacturing, healthcare, and
education). Lastly, an additional comparative analysis may be employed between the
proposed methodologies and various sorting methodologies in the literature.
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Appendix A. Raw Evaluation Scores of eth Decision-Maker

Occupational Hazard Severity Detection Occurrence

FM1 7 1 6
FM2 6 1 5
FM3 4 1 4
FM4 5 1 5
FM5 4 3 4
FM6 4 1 3
FM7 3 3 3
FM8 7 1 7
FM9 4 2 4
FM10 4 2 4
FM11 7 1 7
FM12 3 3 4
FM13 6 1 5
FM14 7 1 7
FM15 5 1 5
FM16 4 1 7
FM17 6 2 5
FM18 4 2 4
FM19 7 1 5
FM20 5 2 5
FM21 5 1 4
FM22 5 2 5
FM23 2 1 3
FM24 1 1 3
FM25 2 2 2
FM26 3 2 2
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Appendix B. q-ROF Evaluation Matrix of eth Decision-Maker

Occupational Hazard Severity Detection Occurrence

FM1 (0.95,0.10) (0.15,0.90) (0.80,0.25)
FM2 (0.80,0.25) (0.15,0.90) (0.75,0.40)
FM3 (0.50,0.50) (0.15,0.90) (0.50,0.50)
FM4 (0.75,0.40) (0.15,0.90) (0.75,0.40)
FM5 (0.50,0.50) (0.45,0.65) (0.50,0.50)
FM6 (0.50,0.50) (0.15,0.90) (0.45,0.65)
FM7 (0.45,0.65) (0.45,0.65) (0.45,0.65)
FM8 (0.95,0.10) (0.15,0.90) (0.95,0.10)
FM9 (0.50,0.50) (0.30,0.85) (0.50,0.50)
FM10 (0.50,0.50) (0.30,0.85) (0.50,0.50)
FM11 (0.95,0.10) (0.15,0.90) (0.95,0.10)
FM12 (0.45,0.65) (0.45,0.65) (0.50,0.50)
FM13 (0.80,0.25) (0.15,0.90) (0.75,0.40)
FM14 (0.95,0.10) (0.15,0.90) (0.95,0.10)
FM15 (0.75,0.40) (0.15,0.90) (0.75,0.40)
FM16 (0.50,0.50) (0.15,0.90) (0.95,0.10)
FM17 (0.80,0.25) (0.30,0.85) (0.75,0.40)
FM18 (0.50,0.50) (0.30,0.85) (0.50,0.50)
FM19 (0.95,0.10) (0.15,0.90) (0.75,0.40)
FM20 (0.75,0.40) (0.30,0.85) (0.75,0.40)
FM21 (0.75,0.40) (0.15,0.90) (0.50,0.50)
FM22 (0.75,0.40) (0.30,0.85) (0.75,0.40)
FM23 (0.30,0.85) (0.15,0.90) (0.45,0.65)
FM24 (0.15,0.90) (0.15,0.90) (0.45,0.65)
FM25 (0.30,0.85) (0.30,0.85) (0.30,0.85)
FM26 (0.45,0.65) (0.30,0.85) (0.30,0.85)

Appendix C. The Entropy Values

Occupational
Hazard

Severity Detection Occurrence
Occupational
Hazard

Severity Detection Occurrence

FM1 0.8037 0.9313 0.8992 FM14 0.6965 0.8299 0.7693
FM2 0.8220 0.8299 0.8809 FM15 0.7204 0.9617 0.8744
FM3 0.9771 0.8277 0.9558 FM16 0.9461 0.8299 0.7495
FM4 0.8781 0.8747 0.9205 FM17 0.8053 0.9378 0.8904
FM5 0.8373 0.9309 0.8562 FM18 0.8098 0.8453 0.8577
FM6 0.9705 0.8933 0.9677 FM19 0.6129 0.8299 0.8493
FM7 0.8718 0.9032 0.8629 FM20 0.7112 0.8453 0.8517
FM8 0.7119 0.8130 0.6427 FM21 0.6996 0.8299 0.8705
FM9 0.9249 0.8299 0.8733 FM22 0.7143 0.8319 0.8638
FM10 0.7291 0.8453 0.9449 FM23 0.7218 0.8130 0.9621
FM11 0.6991 0.7945 0.7307 FM24 0.7233 0.8831 0.9659
FM12 0.9651 0.9881 0.9744 FM25 0.9723 0.9387 0.9073
FM13 0.6106 0.8299 0.9297 FM26 0.9834 0.9622 0.9084
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