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Abstract: On the basis of the test results of nine steel-fiber high-strength concrete corbel specimens
subjected to a vertical load, the influence of the steel fiber content on the shear performance of corbels
was analyzed. The softened strut-and-tie model (SSTM) was used to analyze the shear strength of
steel-fiber high-strength concrete corbels, taking into consideration the shear contribution of steel
fibers. A calculation model for the shear strength of steel-fiber high-strength concrete corbels is
proposed, and a database for 26 steel-fiber high-strength concrete corbels was created by using the
model. The results obtained according to the codes ACI318-19, EC2, CSA A23.3-19 and the softened
strut-and-tie model were compared with the experimental values to verify the rationality of the
model. The findings showed that steel fiber can effectively limit the crack width and improve the
crack morphology. The overall average value of the ratio between the experimental and the predicted
strengths of the model was 1.082, and the variance was 0.004. The values predicted with the proposed
calculation model were closer to the experimental values than those calculated according to the
codes. This study provides a definite mechanical model that can reveal the shear mechanism of steel-
fiber high-strength concrete. It can reasonably predict the shear strength of steel-fiber high-strength
concrete corbels.

Keywords: corbel; steel-fiber high-strength concrete; shear performance; SSTM; shear strength

1. Introduction

Corbels are cantilever structural elements that are used to compensate for beams
in reinforced concrete structures [1,2]. They are commonly used in reinforced concrete
constructions, often utilized for vertical loads and sometimes for horizontal loads. With
a shear-span-to-depth ratio of less than 1, their mechanical performance is similar to that
of deep beams [3]. Those are often used in discontinuity regions (D-regions) of concrete
structures, where the assumption of the simple bending theory may not be applicable [4,5].
On the other hand, steel fiber-reinforced concrete is a new type of composite material
formed by adding steel fiber to a concrete mix, which can play promote toughening,
strengthening and crack resistance [6]. Adding steel fiber to corbels can improve the
shear resistance of a structure, effectively enhancing the ductility and bearing capacity
of its reinforced concrete members [7,8]. The discreteness of steel-fiber materials further
complicates the analysis of corbel forces. Therefore, studying the shear performance of
steel-fiber high-strength concrete corbels is of great significance for practical engineering.

A series of studies have focused on the shear-bearing capacity of steel-fiber concrete
corbels. Fattuhi [9] conducted an analysis of the shear capacity of fiber-reinforced corbels
based on bending and truss models, building upon experimental data. It was concluded
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that the bending model is more accurate than the truss model in predicting the bearing
capacity of fiber-reinforced corbels under bending, and the truss model is suitable for
predicting the bearing capacity of fiber-reinforced corbels undergoing various types of stress.
Ahmet et al. [10] used a support vector machine to forecast the ultimate shear strength
of steel-fiber concrete corbels and compared the prediction results with those obtained
using the model proposed by Fattuhi. Kurtogl et al. [11] utilized the symbolic regression
method to establish a shear-bearing capacity calculation formula for stirrup-reinforced
steel-fiber concrete corbels, based on existing test results. However, the empirical formula
obtained through the regression analysis of experimental data lacks a clear mechanical
model. Campione et al. [12] proposed a truss model that considered steel fibers. Based
on this, Saddam et al. [13] tested 13 steel-fiber concrete corbels, compared and analyzed
the test results with the shear-bearing capacity calculated by the model and found that the
model calculation results were in good agreement with the test results. Gao et al. [14–16]
conducted both experimental research and a theoretical analysis on 22 steel fiber-reinforced
concrete corbels. In their studies, they proposed a calculation model for the normal-section
cracking load, diagonal-section cracking load and shear-bearing capacity of steel-fiber
concrete corbels. Gao et al. [17] tested two reinforced concrete corbels and five reinforced
steel-fiber concrete corbels and used the softening truss theory to calculate the ultimate
bearing capacity of steel-fiber concrete corbels. This model assumes that the internal stress
state is uniform, but the internal stress flow changes greatly under the action of a load.
Therefore, this model assumes a uniform internal stress state, which is not consistent with
reality, as the internal stress flow changes greatly under the action of a load. To address
this deficiency, the strut-and-tie model was adopted by the American ACI318-19 code [18],
the European EC2 code [19] and the Canadian CSA A23.3-19 [20] code for shear-bearing
capacity determination. Nevertheless, the influence of steel fibers on shear capacity is not
considered in these codes. Mustafa et al. [21] proposed a tension–compression bar model
for the determination of the ultimate shear capacity of steel fiber-reinforced concrete corbels
by comprehensively considering the influence of concrete strength, fiber volume, fiber
aspect ratio and the ratio of the main reinforcement to the horizontal stirrup. However,
the model did not consider the softening phenomenon of concrete under compression.
Hwang et al. [22] proposed the softened strut-and-tie model, which not only considers the
softening effect of concrete but also satisfies the equilibrium conditions, constitutive laws
and compatibility conditions and has been widely applied for deep beams, corbels and
beam–column joints.

The aim of this research was to investigate the shear capacity of nine steel-fiber high-
strength concrete corbels under a vertical load. The contribution of the steel fibers to the
shear resistance mechanism of the corbels was determined based on the softened strut-and-
tie model. A calculation model for the shear capacity of steel-fiber high-strength concrete
corbels is proposed. We predicted the shear capacity of 26 steel-fiber high-strength concrete
corbels, including the test specimens and literature data [23], and the prediction results
were compared with the calculation results based on ACI318-19, EC2, CSA A23.3-19 and
SSTM [24] to validate the accuracy and rationality of the proposed model.

2. Experimental
2.1. Specimens Details

A total of 9 steel-fiber high-strength concrete corbel specimens, labeled MC01–MC09,
were used in the experiment. Figure 1 indicates the detailed dimensions and the rein-
forcement of the corbel specimens. The design parameter variables included the shear
span-to-depth ratio λ, the main reinforcement ratio ρs, the stirrup reinforcement ratio ρsh
and the steel fiber content ρf. The detailed design parameters of corbels are shown in
Table 1.
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Figure 1. Specimens’ dimension and reinforcement arrangement: (a) MC01 specimen; (b) MC02
specimen; (c) MC03 specimen; (d) MC04 specimen; (e) MC05 specimen; (f) MC06 specimen; (g) MC07
specimen; (h) MC08 specimen; (i) MC09 specimen.

Table 1. Design parameters of the specimens.

Specimens λ ρs/% ρsh/% ρf/% λf

MC01 0.2 0.55 0.79 1.5 0.64
MC02 0.3 0.55 0.79 1.5 0.64
MC03 0.4 0.55 0.79 1.5 0.64
MC04 0.3 0.75 0.79 1.5 0.64
MC05 0.3 0.98 0.79 1.5 0.64
MC06 0.3 0.55 0.39 1.5 0.64
MC07 0.3 0.55 0.52 1.5 0.64
MC08 0.3 0.55 0.79 0 0
MC09 0.3 0.55 0.79 0.75 0.32
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2.2. Mechanical Properties of the Material

All specimens used were made of commercial concrete with a strength grade of
C60 and were poured directly on site. Additionally, six cube test blocks measuring
150 mm × 150 mm × 300 mm were used for testing the axial compressive strength and the
compressive elastic modulus of steel-fiber high-strength concrete during pouring. Table 2
shows the measured mechanical properties. HRB400- and HPB300-grade rebars were used
for the longitudinal and stirrup reinforcement of the specimens, respectively. The measured
mechanical properties of the different types of rebar are shown in Table 3.

Table 2. Steel-fiber high-strength concrete’s mechanical properties.

ρf/% f cu (MPa) f c (MPa) f t (MPa) Ec (MPa)

0 73.2 55.9 4 38,700
0.75 69.8 51.7 3.3 37,600
1.5 72.6 49.8 3.6 37,200

Table 3. Reinforcement’s mechanical properties.

Type d (mm) f y (MPa) Es (GPa) f u (MPa)

HPB300 10 333.7 195.95 535.8
HRB400 12 425.2 172.6 541.4
HRB400 14 467.8 185.0 582.3
HRB400 16 427.3 192.5 587.7

2.3. Experimental Results and Analysis
2.3.1. Failure Behavior of the Specimens

Figure 2 displays the failure patterns of the steel-fiber high-strength concrete corbel
specimens. When the load was applied and reached 19%~30% of the ultimate load, a
vertical positive crack first appeared at the junction of the upper column of the corbel.
At this stage, both the steel fiber-reinforced concrete and the main reinforcement were
in the elastic working stage. As the load increased to 30%~50% of the ultimate load,
diagonal cracks began to form in the belly of the corbel and continued to extend upward
and downward along the direction of the diagonal strut. A large number of diagonal cracks
appeared and expanded rapidly. In this case, the steel fibers played a role in limiting the
macrocracks by acting as a micro-reinforcement. The tensile stress was mainly borne by the
reinforcement, steel fibers and concrete. When the ultimate load was applied, the diagonal
strut concrete of the corbel was crushed, resulting in corbel failure.
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Table 4 presents the failure results of steel-fiber high-strength concrete corbel speci-
mens, where normal-section cracking load, diagonal-section cracking load and ultimate
load are denoted as VN

cr , VD
cr and Vu, respectively.

Table 4. Experimental results of the specimens.

Number VN
cr/kN VD

cr/kN Vu/kN VN
cr/Vu VD

cr/Vu Failure Mode

MC-01 270 400 879 30.71% 45.50% Diagonal shear
MC-02 220 290 822 26.76% 35.27% Diagonal compression
MC-03 166.5 255 695 23.96% 36.70% Diagonal compression
MC-04 220 355 874 25.17% 40.62% Diagonal compression
MC-05 193 386.5 981.5 19.66% 39.38% Diagonal compression
MC-06 192 234.5 670.5 28.63% 34.97% Diagonal compression
MC-07 164 240 751 21.83% 31.96% Diagonal compression
MC-08 150 331 775 19.35% 42.71% Diagonal compression
MC-09 180 381 767 23.46% 49.67% Diagonal compression

In Table 4, it appears that the failure modes of steel-fiber high-strength concrete corbels
mainly presented the two typical forms of diagonal shear failure and diagonal compression
failure. As the shear span-to-depth ratio increased, the shear-bearing capacity of the corbels
obviously decreased, and the diagonal compression failure gradually transformed into
diagonal shear failure. The failure mode of the specimens did not change when increasing
the steel fiber content, the main reinforcement ratio and the stirrup reinforcement ratio.

2.3.2. Cracking Responses

The crack distribution of the specimens is shown in Figure 3. It can be seen that the
cracks that appeared when the corbel was incorporated into the steel-fiber concrete were
tiny. The reason is that the corbel specimen with steel fibers continued to transmit the
tensile stress even after the appearance of cracks, relying on the bridging effect of the
steel fibers between the cracks. The external manifestation of this phenomenon was that
multiple cracks appeared on the surface of the specimen [25,26]. We further explored the
effect of steel fibers on cracks. As the steel fiber content increased from 0% to 0.75% and
1.5% (Figure 3b,h,i), the crack morphology changed significantly, and the crack area of the
specimen gradually became larger, while the crack width decreased. It showed that the
steel fibers had an obvious strengthening and toughening effect on concrete and could
effectively improve the cracks. In addition, with the same steel fiber content, the fracture
morphology remained basically similar.
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3. Establishment of a Shear Capacity Model

More stirrups are present in the shear members of reinforced concrete; therefore, the
increase of the stirrup ratio has a little effect on the improvement of the shear capacity.
However, the adoption of steel-fiber concrete can modify the concrete and improve the
shear capacity. By replacing some stirrups with steel fibers it is possible to alleviate the
reinforcement density [27]. The above experiments showed that the steel-fiber high-strength
concrete corbel was not cracked, and the compression force was initially borne by the
concrete. As cracks appeared, the ability of the concrete to withstand the compression force
gradually decreased. Due to the bonding force between the concrete and the steel fibers, the
tensile force borne by the steel fibers increased. The enhanced bonding force between the
concrete and the steel fibers could also strengthen the bonding force between the steel-fiber
concrete and the steel bars, which could limit the development of cracks, directly bearing
the tensile force. This led to the design of a strut-and-tie model, as depicted in Figure 4,
comprising a diagonal mechanism and a horizontal mechanism. The diagonal mechanism
involves concrete in the compression zone, and the horizontal mechanism involves a
horizontal tie and two flat struts. The horizontal tie consisted of both stirrups and steel
fibers. Therefore, the strut-and-tie model was obtained. Figure 4 shows the features of the
diagonal and horizontal mechanisms in the softened strut-and-tie model. The diagonal
mechanism involved the concrete in the compression zone, while the horizontal mechanism
involved a horizontal tie and two flat struts. The horizontal tie consisted of the stirrup and
the steel fibers.
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Figure 4. Corbels shear-resisting mechanisms: (a) diagonal mechanism; (b) horizontal mechanisms.

The value of the inclination θ (Figure 4a) between the diagonal strut and the horizontal
axial direction is:

θ= tan−1(
jh0

a
) (1)

where a represents the shear span value, which is defined as the distance to the vertical
load Vcv; h0 denotes the effective depth of the corbel section; jh0 is the lever arm, which is
the main reinforcement of the corbel against the resultant compressive stress of the concrete
compression zone.

The lever arm jd of a singly reinforced rectangular section can be written according to
the linear bending theory, which is expressed as follows:

jh0 = h0 −
kh0

3
(2)

where kh0 represents the depth of the section compression zone; k is a coefficient obtained
from Equation (3):

k =

√
(nρ)2 + 2nρ− nρ (3)

where n represents the elastic modular ratio, that is, n = Es/Ec; Es is the elastic modulus of
steel; Es is the elastic modulus of concrete; ρ is the ratio of the primary tensile reinforcement.

The corbel specimens were cracked, assuming that the direction of the main compres-
sive stress of steel-fiber concrete was consistent with that of the diagonal concrete strut.
The effective concrete diagonal strut area Astr can be expressed as:

Astr = as × b (4)

where as is the steel fiber diagonal strut height, the value of b can be considered as equal to
the width of the corbel, which represents the width of the diagonal strut, and as is calculated
by Equation (5):

as = kh0 (5)

3.1. Equilibrium Conditions

The internal forces of the softened strut-and-tie model are shown in Figure 5. The
resistance force of the vertical shear force can be expressed as:

Vcv = −D sin θ + Fh tan θ (6)
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where D is the compression force in the diagonal strut; Fh is the tension force in the
horizontal ties. Similarly, the horizontal force can be expressed as:

Vch = −D cos θ + Fh (7)
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Figure 5. Forces in the strut-and-tie model.

The steel fibers’ tension is in the horizontal direction of the small reinforcement
incorporated into the horizontal tie, and the stirrups and steel fibers together resist the
tensile force. The tension in the horizontal tie involves both the stirrups and the steel fibers
and can be expressed as:

Fh = Fs,h + Fsf,h
= As,h fs,h + Asf,h fsf

(8)

where Fs,h is the force of the horizontal stirrup tie tension; Fsf,h is the force of the horizontal
steel fiber tie tension; f s,h and f sf are the stirrups and steel fiber tensile strength, respectively.

The expression for an equivalent section area of the horizontal steel fiber tie, Asf,h, is
as follows:

Asf,h = nAsf = ρs,f
bh

sin θ
(9)

Equation (9) indicates that the steel fiber is equivalent to the horizontal distribution
of the reinforcement; ρs,f = ηρf, along the horizontal direction can be considered as the
reinforcement rate, η is the direction coefficient of the steel fiber, and is 0.41 [28]; n is the
number of steel fibers. Asf is the cross-section area of an individual steel fiber.

The vertical shear force is proportionally distributed between the two shear mecha-
nisms [29], and the proportional relationship is as follows:

−D sin θ : Fh tan θ = Rd : Rh (10)

where Rd/Rh is the ratio of the shear force of the corbel resisted by the diagonal and the
horizontal mechanisms, respectively.

By combining (6) and (9), the values of D and Fh can be calculated

D =
−1

sin θ
× Rd

Rh + Rd
×Vcv (11)

Fh =
1

tan θ
× Rh

Rh + Rd
×Vcv (12)
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The softened strut-and-tie model is a statically indefinite model, and Rd and Rh
cannot be calculated directly through the equilibrium equation and should be determined
according to the relative stiffness of the shear mechanism [24], which can be expressed as:

Rd = 1− γh (13)

Rh = γh (14)

γh =
2 tan θ − 1

3
(15)

where γh is the ratio between the horizontal tie and the horizontal shear force in the absence
of a vertical tie.

The total maximum compressive stress caused by the diagonal strut and the flat strut
is σd. When the maximum compressive stress of the core area σd,max reaches the ultimate
strength of concrete and the shear capacity of the corbel, the expression is:

σd,max =
1

Astr

[
D− Fh

cos θ
(1− sin2 θ

2
)

]
(16)

3.2. Constitutive Laws

The compressive stress–strain relationship of cracked steel fiber concrete [30] can be
expressed as:  σd = −ζ fc

′[2(−εd
ζε0

)− (−εd
ζε0

)
2
] −εd

ζε0
≤ 1

σd = −ζ fc
′[1− (−εd/ζε0−1

2/ζ−1 )
2
] −εd

ζε0
>1

(17)

where σd is the average stress in the principal direction of d in concrete; ζ is the steel-fiber
concrete softening coefficient; εd is the average strain in the principal direction of d in
concrete; ε0 is the peak strain in the steel-fiber concrete, which can be obtained by the
following formula:

ε0= 0.002 + 0.001(
fc
′ − 20
80

) (18)

The softening coefficient of steel-fiber high-strength concrete is not the same as that of
ordinary-strength steel-fiber concrete, as reported [31]:

ζ =
5.8√

fc
′
· 1√

1 + 600εr
(19)

Assuming the stress–strain relationship of the steel bars satisfies the elastic–perfectly
plastic model, it can be described by the following equation:{

fh = Esεh εh<εyh
fh = fyh εh ≥ εyh

(20)

where f h and εh are the tensile stress and the strain in the reinforcement, respectively; f yh
and εyh are the yield stress and the strain in the horizontal stirrups, respectively.

The stress–strain relationship of steel fibers is as follows:

fsf = Esfεsf (21)

where Esf is the elastic modulus of the steel fiber; εsf is the strain of the steel fiber.
Due to the high tensile strength of the steel fiber, the steel fiber tends to be pulled

out rather than broken when the corbels are sheared. Therefore, the tensile strength of the
steel fiber cannot be directly utilized when calculating the tensile strength in experimental
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conditions but relies on the maximum bond strength between the steel fiber and the concrete
matrix. f sf should satisfy the following relationship

Asf fsf ≤ λds Aspfτsf,max (22)

where λds is the influencing factor of the steel fiber type, i.e., 0.5, 0.75 and 1.0 for long
and straight, wavy and crooked steel fibers [32]; Aspf is the surface area of the steel fiber
(Aspf = 0.25πlsfdsf, where lsf is the length of the steel fiber, and dsf is the diameter of the steel
fiber); τsf,max is the bond strength coefficient of steel fiber and concrete and is 2.5f c

′ [33].
From Equation (18) we have:

fsf= (
lsf
dsf

)λdsτsf,max (23)

According to the stress–strain relationship between steel and steel fiber, the relation-
ship between tension and strain in the horizontal tie can be obtained by

Fh = As,hEsεh + Asf,h fsf ≤ Fyh (24)

where As,h is the area of the horizontal stirrup tie, and Asf,h is the area of the steel fiber tie.
Fyh is the yield force in the horizontal direction.

3.3. Compatibility Conditions

The two-dimensional membrane element should satisfy the Mohr circle compatibil-
ity condition, which considers the average strains of different coordinate systems. The
coordination equation is

εr + εd = εh + εv (25)

where εr is the principal tensile strain; εd is the principal compressive strain; εv and εh are
the vertical and horizontal strains, respectively.

3.4. Solution Process

The above equilibrium conditions, constitutive laws and compatibility conditions were
used to determine the shear-bearing capacity of the corbel. Figure 6 shows the flowchart of
the solution process, which was divided into five major steps as follows:

1. Based on the known data, θ, ε0, As,h and Asf,h were calculated, and then γh, Rd and
Rh were calculated using Equations (13) to (15).

2. Given a shear Vcv, calculate the forces D and Fh using Equations (9) and (10), and
then calculate σd,max and εh using Equations (16), (23) and (24).

3. Select the value of εd, calculate the concrete softening coefficient ζ using Equation (18),
and then calculate εr using Equation (25) to determine the softening effect of concrete.
When θ ≤ tan−1 (2), εv in Equation (25) should be 0.002, that is, the vertical tie can
transmit the shear force; when θ > tan−1 (2), εv in Equation (25) should be 0, that is,
the horizontal tie transmits the shear force.

4. Equation (17) is used to calculate the allowable compressive stress σd corresponding
to the selected εd. If the calculated absolute value σd,max is less than the absolute value
σd, increase Vcv, from step 2 again and until the absolute value of σd is satisfied; when
it is greater than or equal to the absolute value σd, proceed to the next step.

5. Compare the absolute values of εd and the absolute values of ζε0. If the absolute value
of εd is less than the absolute value of ζε0, select εd again, repeat the calculation from
step 3 until the absolute value of εd is greater than or equal to the absolute value of
ζε0, then end the process.
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To validate the rationality of the calculation model for the shear-bearing capacity
of steel-fiber concrete corbels proposed in this paper, data from a total of 26 steel-fiber
concrete corbels were collected from both tests and the literature [22]. The proposed model
was used to calculate the shear-bearing capacity of the tested specimens and compared
with the various theoretical models, including the ACI-318, EC2, CSA A23.3-19 and the
softened strut-and-tie model. Table 5 represents a comparison between the experimental
shear strengths of all tested specimens and the shear strengths calculated by the various
models, i.e., the ACI code, CSA code EC2 code, and the strut-and-tie model. The means
of the predicted values were 1.611, 1.624 and 1.710, with the variances of 0.072, 0.038 and
0.057, respectively. The codes provided conservative estimates of the load-carrying capacity
because they did not consider the contribution of the steel fibers in the resisting shear.
The mean values calculated by the softened strut-and-tie model and the proposed model
were 1.183 and 1.082, with the variances of 0.007 and 0.004, respectively. In comparison
to the results of the softened strut-and-tie model, the results obtained with the proposed
model were closer to the experimental values. The proposed model results showed a good
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agreement with the experimental results and could reasonably predict the shear-bearing
capacity of steel-fiber high strength-concrete corbels.

Table 5. Comparisons of the experimental and calculation results.

Reference Specimen
Experimental

Values
Vexp/kN

Exp.-to-Predicted Strength Ratio Vexp/V

ACI318-19 EC2 CSA A23.319 SSTM Proposed
Model

Present Study

MC01 879.0 1.926 1.834 1.856 1.080 1.004
MC02 822.0 1.942 1.850 1.970 1.076 1.010
MC03 695.0 1.781 1.696 1.911 1.114 1.051
MC04 874.0 2.065 1.967 2.095 1.092 1.028
MC05 981.5 2.319 2.209 2.352 1.102 1.023
MC06 670.5 1.584 1.509 1.607 1.088 1.044
MC07 751.0 1.774 1.690 1.800 1.068 1.029
MC08 775.0 1.914 1.826 1.942 1.082 1.027
MC09 767.0 1.795 1.710 1.821 1.065 1.057

Fattuhi et al. [23]

1 153.0 1.471 1.457 1.723 1.239 1.172
2 160.0 1.457 1.443 1.768 1.278 1.151
3 91.2 1.378 1.460 1.531 1.389 1.021
4 93.0 1.213 1.417 1.545 1.211 1.039
5 103.0 1.819 1.598 1.513 1.223 1.201
6 95.7 1.368 1.768 1.565 1.191 1.185
7 53.3 1.393 1.442 1.359 1.175 1.140
8 53.1 1.649 1.548 1.769 1.260 1.202
9 152.9 1.310 1.486 1.877 1.258 1.109
10 102.9 1.432 1.436 1.522 1.207 1.091
11 56.0 1.584 1.457 1.684 1.223 1.004
12 92.0 1.512 1.610 1.533 1.290 1.023
13 111.7 1.429 1.630 1.425 1.269 1.133
14 68.3 1.406 1.439 1.405 1.185 1.146
15 67.2 1.388 1.536 1.507 1.227 1.102
16 114.3 1.409 1.607 1.497 1.188 1.082
18 119.0 1.563 1.605 1.895 1.165 1.055

Mean
Variance

1.611 1.624 1.710 1.183 1.082
0.072 0.038 0.057 0.007 0.004

4. Conclusions

According to the force characteristics of steel-fiber high-strength concrete corbels, a
calculation model of the shear capacity of reinforced-steel fiber high-strength concrete
corbels was established. The model was used to calculate the shear capacity of 26 steel-fiber
high-strength concrete corbels, and the results were analyzed and compared to values of
shear capacity calculated according to the codes and the softened strut-and-tie model. The
analysis verified the rationality and accuracy of the proposed model. The main conclusions
of this research can be summarized as follows:

• Experimental studies showed that the addition of steel fibers did not change the failure
pattern of the corbels, but delayed the formation of shear cracks and effectively limited
the expansion of cracks due to the bridging effect of the fibers.

• In the analysis of the shear capacity of steel-fiber concrete corbels, the randomly
distributed steel fibers in the concrete could be equivalent to a horizontal reinforcement
according to their mechanical characteristics; their contribution to the shear capacity
of the corbels could be clarified.

• Compared with the values obtained according to the various codes and the softened
strut-and-tie model, the shear capacity value predicted with the model proposed
in this paper was closer to the experimental results, indicating a higher prediction
accuracy of our model compared to previous ones. It can be used to calculate the
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shear capacity of steel-fiber high-strength concrete corbels. Therefore, it can reasonably
provide theoretical references for the design of high-strength concrete corbels.
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Abbreviations

λ shear span-to-depth ratio, dimensionless Rd
ratio of the shear force of the corbel resisted by the diagonal
mechanism, dimensionless

ρs longitudinal reinforcement ratio, dimensionless Rh
ratio of the shear force of the corbel resisted by the horizontal
mechanism, dimensionless

ρsh stirrup reinforcement ratio, dimensionless ρf steel fiber volume fraction, dimensionless
f cu cube compressive strength of concrete, MPa λf characteristic parameters of steel fiber, dimensionless

f c prism compressive strength of concrete, MPa ρs,h
steel fiber along the horizontal direction can be considered
as the reinforcement rate, dimensionless

f t splitting tensile strength of concrete, MPa Astr cross-sectional area of the concrete compression strut, mm2

Ec elastic modulus of concrete, MPa Asf cross-sectional area of a single steel fiber, mm2

h0 effective depth of the corbel, mm λds influencing factor of steel fiber type
f y specified yield strength for the reinforcement, MPa Aspf surface area of steel fiber, mm2

f u ultimate strength for the reinforcement, MPa τsf,max bond strength coefficient of steel fiber and concrete, dimensionless
Es modulus of elasticity of the reinforcement, MPa lsf length of the steel fiber, mm
VN

cr cracking load of the normal section, kN dsf diameter of the steel fiber, mm
VD

cr diagonal cracking load, kN f sf tensile strength of the steel fiber, mm
Vu ultimate load, kN Esf elastic modulus of the steel fiber, MPa
f h tensile stress of the reinforcement, kN εyh strain of horizontal stirrups
εsf strain of the steel fiber Asf,h equivalent section area of the horizontal steel fiber tie, mm2

θ value of the angle between the diagonal strut and the horizontal axial direction Vcv vertical shear force, kN
ρ ratio of primary tensile reinforcement, dimensionless As,h area of the horizontal stirrup tie, mm2

D force of the compression in the diagonal strut, kN f c
′ compression strength of concrete, kN

Fh force of the tension in the horizontal ties, kN Fsf,h force of steel fiber tie tension
γh ratio of horizontal tie to horizontal shear force without vertical tie, dimensionless σd,max maximum compressive stress
b width of the specimen section, mm σd average principal stress of concrete in the d-direction

h depth of the specimen, mm ζ
softening coefficient of steel-fiber high-strength
concrete, dimensionless

ε0 peak strain of steel-fiber concrete εd average principal stresses in the d direction
as depth of the steel fiber diagonal strut εr average principal stresses in the r direction
a shear span, mm εh average normal strains in the h direction
n modular ratio of elasticity, MPa εv average normal strains in the v direction
k coefficient Fs,h force of the horizontal stirrup tie tension, kN

Vcv horizontal shear force, kN ρs,f
along the horizontal direction can be considered as the
reinforcement rate
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