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Abstract: Recently, metaheuristic algorithms have been recognized as applicable techniques for solv-
ing various computational complexities in energy problems. In this work, a powerful metaheuristic
technique called the water cycle algorithm (WCA) is assessed for analyzing and predicting two annual
parameters, namely thermal energy demand (TDA) and weighted average discomfort degree-hours
(DDA), for a residential building. For this purpose, a double-target multi-layer perceptron (2TMLP)
model is created to establish the connections between the TDA and DDA with the geometry and
architecture of the building. These connections are then processed and optimized by the WCA using
80% of the data. Next, the applicability of the model is examined using the residual 20%. According
to the results, the goodness-of-fit for the TDA and DDA was 98.67% and 99.74%, respectively, in terms
of the Pearson correlation index. Moreover, a comparison between WCA-2TMLP and other hybrid
models revealed that this model enjoys the highest accuracy of prediction. However, the shuffled
complex evolution (SCE) optimizer has a better convergence rate. Hence, the final mathematical
equation of the SCE-2TMLP is derived for directly predicting the TDA and DDA without the need
of using programming environments. Altogether, this study may shed light on the applications
of artificial intelligence for optimizing building energy performance and related components (e.g.,
heating, ventilation, and air conditioning systems) in new construction projects.

Keywords: energy sustainability; building energy performance; thermal load; artificial neural net-
works; metaheuristic algorithms

1. Introduction

After the industrial revolution and the increase in the number of cities along with their
populations, providing new approaches to meet the energy requirements of citizens is an
important issue for researchers [1–3]. Based on a previous estimation, the population of
cities will increase up to five billion by 2030. The residential sector is responsible for 27% of
global energy consumption [4]. In addition, for the US and the European Union, the heating
and air conditioning equipment consume 48% and 65% of total energy consumption in the
buildings, respectively. Hence, estimating the exact loads of heating and cooling systems
is an essential task in terms of energy conservation and environmental protection [5].
In this regard, many methods of prediction are suggested, but the prediction of electric
energy consumption by previous prediction methods is difficult [6]. Machine learning-
based models can understand and remake complicated non-linear patterns to map the
relationship among many distinct engineering-based parameters and the related effective
elements [7,8].

In order to improve the accuracy of predictor models in energy systems, many scholars
have suggested different ML methods. Bui et al. [9] utilized an artificial neural network
(ANN) expert system improved via the use of an electromagnetism-based firefly algorithm
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(EFA) to forecast the energy consumption in buildings. They determined that the EFA-
ANN approach can be very effective in early designs of energy-efficient buildings. Amber
et al. [10] utilized multiple regression (MR), genetic programming (GP), ANN, deep neural
network (DNN), and support vector machine (SVM) approaches for estimating the electric-
ity consumption of buildings, and found that ANN provided a mean absolute percentage
error equal to 6% and acted better than other techniques. Ma et al. [11] suggested a method
based on the SVM in China, and the SVM method was shown to have good accuracy
for estimating the building energy consumption, with an r2 of more than 0.991. Zhang
et al. [12] utilized the support vector regression (SVR) method for the mentioned prediction
tasks and stated that the accuracy of this method is highly based on household behavior
variability. Olu-Ajayi et al. [13] utilized many different ML techniques, including ANN,
gradient boosting (GB), DNN, RF, stacking, K-nearest neighbor (KNN), SVM, decision
tree (DT), and linear regression. They showed that DT presented the best outcome, with
a 1.2 s training time. Banik et al. [14] also utilized the RF and extreme gradient boosting
(XGBoost) ensemble and stated that the precision of this method was 15–29%. They also
found that the machine learning approaches can be very impressive for forecasting the
energy consumption of buildings.

Previous simple ML methods could suffer from disadvantages such as low precision
and a high calculation time, so researchers have suggested new ML-based approaches
to address these limitations [15–17]. As an alternative to the aforementioned methods,
many scholars have suggested new ML-based predictive approaches to estimate building
energy consumption. Fayaz and Kim [18] suggested a new methodology to forecast
energy consumption based on deep extreme learning (DELM) and demonstrated that its
performance is considerably better than ANN for different time periods. Khan et al. [19]
used both long short-term memory (LSTM) and the Kalman filter (KF) and provided a new
predictive model, and they proved the effectiveness this method compared to previous
simple ML approaches. The LSTM is also considered in [20]. Khan et al. [21], in a different
study, proposed a new hybrid network model considering a dilated convolutional neural
network (DCNN) together with bidirectional long short-term memory (BiLSTM), and they
claimed that this method provided better performance compared to other approaches.
The testing time of this method was determined to be 0.005 s, which was dramatically
less than that of the CNN-LSTM method, equal to 0.07. Khan et al. [22] then introduced
a new predictive model to forecast short-term electric consumption. In this approach,
two deep learning models, including LSTM and gated recurrent unit (GRU), were used,
and they proved the superior performance of this method by obtaining the lowest mean
absolute percentage error, close to 4. Chen et al. [23] utilized a framework by integrating
building information modeling (BIM) with LSSVM and the non-dominated sorting genetic
algorithm-II. They have shown that the LSSVM successfully predicted building energy
consumption with a root mean square error of 0.0273. Moon et al. [24] have suggested a
two-stage building-level STLF model called RABOLA for enabling practical learning in the
case of the unseen data, and appropriate results were obtained. Phyo and Jeenanunta [25]
proposed the bagging ensemble method, including the ML model along with LR and SVR
methods, for forecasting tasks, and they found that this method enhanced the accuracy in
different forecasting fields.

Another hybridization approach is the use of metaheuristic algorithms along with the
ML of interest [26,27]. Utilizing this strategy has led to valuable developments of hybrid
predictive models serving in the field of energy-related analysis [28,29]. As a matter of fact,
proper usage of a particular method, especially newly developed ones, entails continuous
enhancements and verification of competency. In the case of metaheuristic-based predictive
models, the family of these algorithms is regularly growing, and it is important to keep the
models updated with the latest designs. With this logic in mind, in this work, a powerful
optimizer called the water cycle algorithm (WCA) is applied to energy performance analysis
through simultaneous prediction of annual thermal energy demand (TDA) and annual
weighted average discomfort degree-hours (DDA). For this purpose, the algorithm should
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be coupled with a framework that supports dual-prediction. A double-target MLP (2TMLP)
plays the role of this framework. As such, the proposed model is named WCA-2TMLP
hereafter. Many studies have previously confirmed the suitable optimization competency
of WCA when incorporated with ANN techniques for various purposes [30,31], especially
building energy assessment [32].

Furthermore, three comparative benchmarks that are considered to validate the per-
formance of the WCA are: shuffled complex evolution (SCE), the heap-based optimizer
(HBO), and the salp swarm algorithm (SSA). After evaluating the efficiency parameters,
the models are ranked, and the most promising core is formulized to be a mathematical
prediction equation.

2. Materials and Methods
2.1. Data Provision

The dataset of this study was provided from previous literature [33], wherein the
authors used a transient system simulation tool (TRNSYS) [34] to model a residential
building by considering several parameters (geometrical, orientation, and thermo-physical).
The simulated case is a residential ground floor + first floor (GFFF) house with an area of
140 m2 and a height of 3 m, and the building is divided into a total of 13 thermal zones.
The floors have different plans, and each is designated to four people. In the reference
paper [33], the simulation conditions and building characteristics are fully presented.
Interested readers are recommended to refer to [33] for further details.

This simulation resulted in constructing a dataset with 35 samples. The outputs of
this dataset were TDA and DDA, whose values were listed versus eleven characteristics of
the buildings, including: transmission coefficient of the external walls (UM), transmission
coefficient of the roof (UT), transmission coefficient of the floor (UP), solar radiation absorp-
tion coefficient of the exterior walls (αM), solar radiation absorption coefficient of the roof
(αT), linear coefficient of thermal bridges (Pt), air change rate (ACH), shading coefficient
of north-facing windows (Scw-N), shading coefficient of south-facing windows (Scw-S),
shading coefficient of east-facing windows (Scw-E), and glazing (Glz). To calculate the
TDA, the thermal loads (i.e., the heating and cooling loads) were summed and divided by
the total conditioned area of the building, while the DDA was simply the representative of
the annual weighted average of degree-hours when the occupants are not comfortable (i.e.,
times that they are supposed to be in more comfort).

Figure 1a–k show the values of each input parameter in the form of column charts.
According to these charts, except Glz, all other factors had a similar behavior, i.e., increasing
values at first and then almost constant. Figure 1l,m depict the values of the target parame-
ters TDA and DDA, respectively. Moreover, the relationship between these two parameters
is presented in Figure 1n. It can be seen from these three charts that the trends of TDA and
DDA did not follow a meaningful correlation, and the TDA was more compatible with the
input trends.

The explicit records of the 35 samples used here can be found as the supplementary
material of the reference paper [33]. Table 1 presents the correlation between the input
parameters with TDA and DDA. These values confirm the earlier analysis as the correlation
values corresponding to TDA were much larger and indicate a direct proportionality, while
those corresponding to DDA were around 30% lower and indicate an adverse proportion-
ality for UM, UT, UP, αM, αT, Pt, ACH, Scw-N, Scw-S, and Scw-E. Not surprisingly, the
behavior of Glz was in contrast to the other inputs, due to the correlation values of −0.83
and 0.47 obtained in correspondence with TDA and DDA, respectively.
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Table 1. Correlation factors showing the proportionality of the parameters.

UM UT UP αM αT Pt ACH Scw-N Scw-S Scw-E Glz TDA DDA

TDA 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 −0.83 1.00 −0.26

DDA −0.61 −0.61 −0.61 −0.61 −0.61 −0.61 −0.61 −0.61 −0.61 −0.61 0.47 −0.26 1.00

2.2. Overview of WCA

The WCA is a potent optimization technique that is inspired by the water cycle
process [35]. As is known, this process begins by raining. The raindrops are divided into
three types according to their fitness values: (i) the best-fitted one is treated as the sea, (ii) a
number of others with good fitness values are considered as rivers, and (iii) the remaining
individuals are named streams.

The optimization using the WCA can be expressed in three major stages. In the
initialization, a random population is created based on the equation:

Total population =



Sea
River1
River2

...
StreamKsr+1

StreamKsr+2
...

StreamKpop


=


x1,1 x1,2 . . . x1,K
x2,1 x2,2 . . . x2,K

...
...

...
...

xKpop ,1 xKpop ,2 . . . xKpop ,K

, (1)

where Kpop is the number of members, and K symbolizes the number of design dimensions.
In the beginning, Kpop streams are generated, and Ksr of competent individuals are chosen
as rivers and the sea (only one sea exists). Consequently, the number of streams is calculated
as follows:

Kstreams = Kpop − Ksr, (2)

The amount of water that is transformed to the rivers or the sea is a function of the flow
magnitude. The number of streams designated to the rivers is expressed by the equation:

NSk = round

{∣∣∣∣∣ f (Riverk)

∑Ksr
k=1 f (Riverk)

∣∣∣∣∣× KStreams

}
, k = 1, 2, . . . , Ksr, (3)

where f is the evaluation function of the WCA.
The second stage is dedicated to flow and exchanges. The streams are created by

raindrops, and then the streams create new rivers. The rivers all flow toward the sea, which
is represented by the optimal solution. Based on Equation (4), a stream discharges its water
in the river along the lines that link them together:

X ∈ (0, C× d) C > 1, (4)

where d is the current distance between the stream and the river, and C is a value varying
in [1, 2].

Once C > 1, the streams/rivers can flow toward the rivers/sea from different directions.
The positions of these individuals are updated accordingly:

X j+1
stream= X j

stream+rand× C ×
(

X j
River − X j

Stream

)
, (5)

X j+1
River= X j

River+rand× C ×
(

XSea − X j
River

)
, (6)
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In an exchange process, the position of the new stream/river (if it is more promising
than the existing one) replaces the position of the river/sea.

A measure to help the WCA avoid a premature convergence is the rainfall process. It
is considered as a solution to the local optima. The algorithm first checks if the stream or
river is sufficiently close to the optimal solution (i.e., the sea) to perform the raining. Hence,
considering eps as a very small constant, the below conditions are defined:

If
∣∣∣Xsea − X j

River

∣∣∣ < eps j = 1, 2, . . . , Ksr, (7)

During the rainfall process, new streams are generated in various places bounded
within the upper and lower boundaries (Ub and Lb), as follows:

Xnew
Stream = Lb + rand (Ub − Lb), (8)

The same selection process is executed to denominate new individuals [36,37].

2.3. Benchmark Strategies

Metaheuristic schemes are mostly inspired by what is happening in nature [38–40].
Physical phenomena, electrical changes, and the herding behavior of animals are potential
subjects for designing a metaheuristic algorithm. This paper used three benchmark opti-
mizers along with WCA, namely the SCE, HBO, and SSA. To avoid lengthening the paper,
only a brief description of these models is presented, and mathematical details are referred
to via references.

The SCE is a population-based optimization technique designed by Duan et al. [41] at
The University of Arizona in 1993. This algorithm, basically, is a combination of a genetic
algorithm, the Nelder–Mead (downhill simplex) method, complex shuffling, and controlled
random search [42]. Implementation of the SCE consists of several parameters, including
generating random samples over the space, ranking the solutions based on their goodness,
partitioning the complexes, evolving the complexes, shuffling the complexes, and lastly,
checking for the terminating measures [43]. The SCE technique is well-detailed in the
previous literature [43,44].

HBO was designed by Askari et al. [45]. The basis of this algorithm is job descriptions,
titles, and responsibilities of the employees within an organization. In this technique, the
process begins with splitting the task among parties by taking advantage of a so-called
strategy, “CHR: corporate rank hierarchy”. Subsequent phases of the HBO are interactions
with the immediate boss, colleagues’ interactions, and self-contributions of the employees.
Additionally, the population is updated using the roulette wheel technique [46].

The idea of the salp swarm algorithm is obtained from the foraging behavior of these
animals [47]. As a member of the Salpidae family, the salps live in the oceans in groups
called chains. In the SSA, each search agent represents a possible solution that can be
categorized into two groups: the followers and the leader. The leaders are responsible for
guiding the rest of the chain toward food sources. It is worth noting that an advantage
of the SSA is that it benefits several stochastic operators, resulting in avoiding becoming
permanently trapped by local minima [48].

More mathematical details about the algorithms used here can be found in earlier
studies, such as [49,50] for the SCE, [51,52] for the HBO, and [53,54] for the SSA.

Similar to the WCA, the main contribution of the SCE, HBO, and SSA lies in optimizing
the 2TMLP for predicting the intended energy parameters [55]. In this process, when each
algorithm is synthesized with 2TMLP, it is responsible for optimizing the 2TMLP internal
variables (i.e., weights and biases) that non-linearly connect both TDA and DDA to the
input factors (i.e., UM, UT, UP, αM, αT, Pt, ACH, Scw-N, Scw-S, Scw-E, and Glz). The
optimization process will be explained in detail in the following sections.
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2.4. Data Division

Dividing the dataset into two groups is a common task in machine learning stud-
ies [56,57]. Here, one group was introduced into the model for mathematically exploring
the patterns of the TDA and DDA with reference to the behavior of the input parameters.
Since these data are dedicated to training the models, they compose the major portion of
the dataset. For this study, out of the 35 samples, 28 samples were used as the training
data. The second group was used afterward for evaluating the goodness of the acquired
knowledge when it is applied to new conditions. These are called testing data, and here
contained the remaining seven samples. Note that in this step, a random division was
considered to allow the training and testing datasets to have samples from throughout the
original dataset.

2.5. Goodness-of-Fit Equations

The judgement of robustness of the predictive models requires exact accuracy calcula-
tions reflected by a number of statistical indices. This section introduces the accuracy criteria
used for evaluating the goodness-of-fit for the results of each model. Equations (9) and (10)
define two broadly used error representatives, namely root mean square error (RMSE) and
mean absolute error (MAE). The RMSE is calculated by: (i) finding the difference between
the real and predicted target values (i.e., TVireal and TVipredict , respectively) for each pair,
(ii) squaring this error, (iii) averaging the values for the whole dataset (S samples), and
(iv) taking the square root of the averaged value. As for MAE, it simply calculates the error
and averages it for the whole dataset.

RMSE =

√√√√ 1
S

S

∑
i=1

[(TVireal − TVipredict)]

2

(9)

MAE =
1
S

S

∑
i=1

∣∣∣TVireal − TVipredict

∣∣∣ (10)

The Pearson correlation coefficient (CR) is the third accuracy criterion which repre-
sents the percentage agreement between reality and the network predictions. According to
Equation (11), the CR describes the ratio between the covariance and the standard devia-
tions calculated for real and predicted values. The CR value of 0% means no agreement
and 100% corresponds to an ideal prediction.

CR =

S
∑

i=1
(TVipredict − TVpredict)(TVireal − TVreal)√

S
∑

i=1
(TVipredict − TVpredict)

2

√
S
∑

i=1
(TVireal − TVreal)

2
× 100 (11)

3. Results and Discussion

This work evaluates the proficiency of several metaheuristic algorithms that hybridize
a 2TMLP for energy performance prediction in residential buildings. To present the results,
this section is divided into several parts, as follows.

3.1. Hybrid Creation

Generally, to create a hybrid of the neural network and the metaheuristic technique,
the training algorithm of the ANN should be replaced with the metaheuristic algorithm.
The outcomes are hybrid models named SCE-2TMLP, HBO-2TMLP, SSA-2TMLP, and WCA-
2TMLP. The architecture of the hybrid model (i.e., the number of variables) depends on the
2TMLP. In this work, the structure of this network was (11, 9, 2), representing 11 neurons
in the input layer, 9 neurons in the middle layer, and 2 neurons in the output layer. The
calculations were as follows: (i) the 11 neurons in the layer received the values of UM, UT,
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UP, αM, αT, Pt, ACH, Scw-N, Scw-S, Scw-E, and Glz, (ii) using 11 × 9 = 99 weights and
9 biases, the neurons in the middle layer performed the first level of calculations and sent
the results to the output layer, and (iii) using 9 × 2 = 18 weights and 2 biases, the neurons
in the output layer calculated the TDA and DDA.

Next, the equations governing these calculations in the 2TMLP were expressed as
the problem function of the SCE, HBO, SSA, and WCA. Thus, each algorithm attempts to
iteratively optimize the problem so that it attains an optimal training for the 2TMLP.

3.2. Training 2TMLP Using the Metaheuristic Algorithm

As explained, training using the metaheuristic algorithm is iterative. The number of
iterations is determined based on the behavior of the algorithm. This study considered
1000 iterations for all 4 models. During each iteration of the optimization, the metaheuristic
algorithm explored the training data and tuned the mentioned 128 weights and biases
accordingly. The 2TMLP was then reconstructed using the tuned weights and biases and
performed one prediction for all training data. To investigate the quality of the results, a
cost function was required in this step. The RMSE was calculated for each iteration. Since a
double-target network was being trained here, an average of the RMSEs calculated for TDA
and DDA was considered as the cost function.

Figure 2 shows the rate of training, wherein the RMSE was generally reduced over
1000 iterations. It means that the metaheuristic algorithms were able to improve the initial
solution. The behavior of all four algorithms was comparable as they reduced the RMSE
quite differently from each other.
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Figure 2. Averaged cost functions obtained for optimizing 2TMLP using (a) SCE, (b) HBO, (c) SSA,
and (d) WCA.
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Table 2 expresses the initial and final values of the cost function obtained for each
model. It can be seen that all algorithms significantly reduced the error of training. The
SCE, HBO, and SSA started with a value between 50 and 60, while the initial value of WCA
was around 32. Considering the final values, the SCE, SSA, and WCA ended up between
0 and 10, while this value was nearly 28 for the HBO. The lowest optimization error was
eventually captured by the WCA algorithm, which was approximately 3.36.

Table 2. Initial and final values of the cost function for each model.

Cost Function SCE-2TMLP HBO-2TMLP SSA-2TMLP WCA-2TMLP

Initial 56.3373759727784 53.0278785825291 52.8183542220224 31.9380917181655

Final 8.83468212953907 27.8041304186964 6.72926499469168 3.35913787449231

3.3. Training Assessment

Figure 3a illustrates the training results for the TDA. This chart shows how the
target values were hit by the predictions of the four models. The graphical interpretations
indicated a satisfying goodness-of-fit for all models as the general patterns (i.e., significant
ups and downs) were well-followed. However, a noticeable distinction could be seen
between the HBO-2TMLP and the three other models. There were some overestimations
and underestimations by the line of HBO-2TMLP that were more accurately modeled by
SCE-2TMLP, SSA-2TMLP, and WCA-2TMLP.

Figure 3b shows the distribution of errors in the form of a scatter chart. This chart also
confirmed the lower accuracy of HBO-2TMLP as its points were more scattered compared
to the other three models.

The RMSE values calculated for the SCE-2TMLP, HBO-2TMLP, SSA-2TMLP, and
WCA-2TMLP were 2.66, 9.28, 2.94, and 0.81, respectively. In addition, the MAEs were 3.01,
12.71, 3.68, and 1.17. These error results, along with the CRs of 99.40%, 88.43%, 99.05%,
and 99.90%, indicate a reliable prediction for all models and show the superiority of the
WCA-2TMLP.

Figure 4a illustrates the training results for the DDA. The prediction results were quite
promising because both small and large fluctuations were nicely recognized and followed
by all models. However, similar to the DDA results, there were some weaknesses that were
more tangible for the HBO-2TMLP relative to the other algorithms.

Figure 4b supports the aforementioned claims, owing to the tolerable rate of the
scattered errors. Likewise, the points corresponding to HBO-2TMLP were less gathered
around the ideal line, i.e., error = 0.

The RMSE values calculated for the SCE-2TMLP, HBO-2TMLP, SSA-2TMLP, and WCA-
2TMLP were 14.65, 42.89, 9.77, and 5.54, respectively. In addition, the MAEs were 9.84,
29.69, 6.42, and 3.63. These error results, along with the CRs of 98.92%, 89.45%, 99.45%,
and 99.82%, indicate a reliable prediction for all models and show the superiority of the
WCA-2TMLP.

3.4. Testing Assessment

The results of the testing phase were similarly evaluated. According to the obtained
RMSEs of 9.14, 14.66, 10.51, and 7.39, as well as the MAEs of 6.83, 11.70, 7.17, and 4.12, it can
be deduced that all models could predict the TDA with excellent accuracy. Figure 5 shows
the correlation between the real and predicted TDA values. The CR values demonstrated
97.33%, 90.88%, 95.55%, and 98.67% agreement for the results. However, similar to the
previous phase, the WCA-2TMLP achieved the most accurate results in this step.
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(c) SSA-2TMLP, and (d) WCA-2TMLP.

As for the DDA, the RMSE values were 91.52, 68.74, 90.15, and 96.10, associated with
the MAEs of 44.01, 51.89, 41.25, and 40.07. The correlations of the DDA testing results are
shown in Figure 6. Referring to the CR values of 99.60%, 93.82%, 99.47%, and 99.74%,
the products of all models were in good harmony with the real values. In this phase, the
WCA-2TMLP, despite achieving the smallest MAE and the largest CR, obtained the largest
RMSE. However, based on the better performance in terms of two indices (out of three),
the superiority of the WCA-2TMLP was evident here, too.
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3.5. Comparison

Tables 3–5 present the values of the RMSE, MAE, and CR, respectively, calculated
for training and testing both the TDA and DDA. From the overall comparison, it was
found that the WCA-2TMLP had the largest accuracy in most stages. More clearly, for
the TDA analysis (in both phases), the order of the algorithms from strongest to weakest
was: (1) WCA-2TMLP, (2) SCE-2TMLP, (3) SSA-2TMLP, and (4) HBO-2TMLP. However,
the outcome was different for the DDA analysis. While the training RMSE demonstrated
the lowest error for WCA-2TMLP and the highest for HBO-2TMLP, the ranking was
adverse in the testing phase. In both phases, the SSA-2TMLP captured the second position,
followed by SCE-2TMLP. However, the MAE consistently suggested the following ranking:
(1) WCA-2TMLP, (2) SSA-2TMLP, (3) SCE-2TMLP, and (4) HBO-2TMLP. As for the CR,
the WCA-2TMLP and HBO-2TMLP were the strongest and the weakest predictor in both
phases, respectively, while the SSA-2TMLP and SCE-2TMLP shared the second and third
positions interchangeably in the training and testing phases.

Table 3. The results of the RMSE calculation.

Target Hybrid Model Training Testing

TDA

SCE-2TMLP 3.01 9.14

HBO-2TMLP 12.71 14.66

SSA-2TMLP 3.68 10.51

WCA-2TMLP 1.17 7.39

DDA

SCE-2TMLP 14.65 91.52

HBO-2TMLP 42.89 68.74

SSA-2TMLP 9.77 90.15

WCA-2TMLP 5.54 96.10
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Table 4. The results of the MAE calculation.

Target Hybrid Model Training Testing

TDA

SCE-2TMLP 2.66 6.83

HBO-2TMLP 9.28 11.70

SSA-2TMLP 2.94 7.17

WCA-2TMLP 0.81 4.12

DDA

SCE-2TMLP 9.84 44.01

HBO-2TMLP 29.69 51.89

SSA-2TMLP 6.42 41.25

WCA-2TMLP 3.63 40.07

Table 5. The results of the CR calculation.

Target Hybrid Model Training Testing

TDA

SCE-2TMLP 99.40 97.33

HBO-2TMLP 88.43 90.88

SSA-2TMLP 99.05 95.55

WCA-2TMLP 99.90 98.67

DDA

SCE-2TMLP 98.92 99.60

HBO-2TMLP 89.45 93.82

SSA-2TMLP 99.45 99.47

WCA-2TMLP 99.82 99.74

In summary, in terms of accuracy, the WCA was introduced as the most effective
metaheuristic algorithm in this study. The SSA and SCE provided reliable solutions and
are recommended for practical applications as well, and the results of HBO do not make
it preferable. Considering the time of optimization, the implementation of SCE, HBO,
SSA, and WCA required about 782, 79,717, 8507, and 60,281 s. Hence, utilizing the WCA
was more time-consuming relative to the SSA and the SCE. Due to the sufficient accuracy
of the SCE, as well as the shortest time of optimization achieved, it can be suitable for
time-sensitive cases, along with WCA.

3.6. Discussion

Studying the buildings comprises a wide range of domains, from safety measures [58]
and external designs [59] to structural [60] and energy performance analysis [61]. Recently,
the development of smart cities has affected construction- and energy-related policies
in the construction sector [62,63]. Following the previous efforts of energy engineers in
forecasting energy performance of residential building using intelligent approaches, this
work presented novel ANN-based models for this purpose.

Referring to the literature, it was pointed out that the combination of ANN and
WCA has provided optimized solutions for various intricate engineering simulations, such
as spatial analysis of environmental phenomena (e.g., groundwater potential [64]). This
algorithm has also provided effective solutions for energy simulations (e.g., electrical power
output of power plants [31]). In comparative studies, a reason for the superiority of the
WCA has been its muti-directional optimization strategy, as well as its multi-rain process
that protects the solution against local minima [37].

In the application of metaheuristic algorithms, population size is one of the most
prominent hyperparameters. In this work, the selection of population size for all algorithms
was performed by trial-and-error. The population sizes used were 10, 50, 100, 200, 300, 400,
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and 500. It was discovered that 10, 300, 400, and 500 fit the best for the SCE, HBO, SSA, and
WCA, respectively.

Earlier literature demonstrates that the findings of this research are in harmony with
previous studies that have addressed the applicability of metaheuristic techniques in the
field of energy performance analysis. In a broad comparative study by Lin and Wang [32],
the evident superiority of the WCA was reported for predicting the heating and cooling
loads of residential buildings using a public dataset provided by Tsanas and Xifara [65].
The benchmark algorithms were the equilibrium optimizer (EO), the multi-verse optimizer
(MVO), the multi-tracker optimization algorithm (MTOA), electromagnetic field optimiza-
tion (EFO), and the slime mold algorithm (SMA). Concerning the present dataset, the
methodology offered in this work outperformed some previous models. For instance, in
adaptive neuro-fuzzy inference system (ANFIS) optimization, carried out by Alkhazaleh
et al. [66] for the TDA prediction using EO and Harris hawks optimization (HHO), the
best model was ANFIS-400-EO, which achieved a training MAE = 1.87, while in this work
the lowest MAE was 0.81. As for testing, the lowest MAE of the cited study was 5.74,
obtained by ANFIS-100-HHO, while this study reduced it to 4.12 using WCA-2TMLP.
Hence, significant improvements can be detected.

The size of the dataset used in this study was relatively small (i.e., 35 samples).
However, referring to the results, it was shown that the models were able to obtain a very
reliable understanding of the building energy behavior using 28 samples, and they could
accurately extrapolate the knowledge to the remaining 7 samples. This dataset has also
been reported to be suitable for developing metaheuristic-based hybrids in similar previous
studies [66,67]. However, it would be interesting for the future studies to investigate the
sensitivity of prediction accuracy on the size of the dataset. Creating similar datasets is
highly suggested to cross-validate the methodologies presented so far.

The dataset used here was bounded to taking 11 influential parameters into account.
Hence, another noticeable suggestion about the dataset could be extending the dataset
through considering further building characteristics and design parameters that can di-
rectly/indirectly affect the energy performance (e.g., window-to-wall ratio, U-value of
walls/windows, unplanned air exchange between the building and environment, etc.).
Once provided, the dataset may be subjected to a feature selection process in order to
maintain the most contributive parameters and discard the negligible ones. In doing so,
not only would a more realistic assessment be achieved, but also the methodology would
be optimized by reducing the dimensions of the problem.

3.7. TDA and DDA Formula

With reference to the suitable results presented by the SCE-2TMLP, the governing
equations organized by the SCE algorithm are provided as a predictive formula for si-
multaneous estimation of the TDA and DDA. Based on the architecture of the 2TMLP
(i.e., 11 input neurons, 9 hidden neurons with Tansig activation, and 2 output neurons
with Purelin activation function), the procedure of calculating the TDA and DDA requires
producing 9 outputs from the middle layer. As expressed by Equations (12) and (13), as well
as Table 6, each of these outputs (represented by O1, O2, . . . , O9) is a non-linear function of
the input parameters (i.e., UM, UT, UP, αM, αT, Pt, ACH, Scw-N, Scw-S, Scw-E, and Glz).

Oi =
2

1 + exp (U)
− 1 (12)

where,

U = −2× (Wi1 ×UM + Wi2 ×UT + Wi3 ×UP + Wi4 × αM + Wi5 × αT + Wi6 × Pt + Wi7 × ACH + Wi8 × Scw
−N + Wi9 × Scw − S + Wi10 × Scw − E + Wi11 × Glz + bi),

(13)

from which, the weights, Wi1, Wi2, . . . , Wi11, as well as the biases, bi, are presented in
Table 3.
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Table 6. The solution (weights and biases) of the 2TMLP.

i Wi1 Wi2 Wi3 Wi4 Wi5 Wi6 Wi7 Wi8 Wi9 Wi10 Wi11 bi

1 −0.807 0.811 0.594 0.456 −0.807 −0.157 0.113 −0.344 0.473 −0.146 −0.019 1.710

2 0.543 −0.497 0.186 −0.725 0.190 0.535 −0.055 −0.082 −0.823 0.836 0.335 −1.282

3 1.134 0.136 0.157 −0.148 −0.700 −0.524 0.338 0.307 −0.080 0.630 −0.441 −0.855

4 0.384 −0.464 −0.503 −0.104 0.875 −0.582 −0.061 −0.526 −0.601 −0.721 −0.173 −0.427

5 0.775 0.251 −0.195 0.900 0.241 −0.403 −0.546 0.416 0.844 0.012 −0.080 0.000

6 0.181 0.141 0.636 0.099 0.812 −0.528 −0.568 −0.713 0.159 0.286 −0.761 0.427

7 0.863 0.778 0.214 0.441 −0.309 0.656 −0.377 −0.375 −0.025 0.540 −0.480 0.855

8 0.316 −0.790 −0.014 −0.516 0.716 0.542 0.426 −0.640 −0.281 −0.675 0.006 1.282

9 0.823 0.689 0.596 −0.305 −0.702 −0.274 −0.011 −0.163 0.233 0.136 0.810 1.710

Once O1, O2, . . . , O9 are calculated, Equations (14) and (15) yield the TDA and DDA,
respectively. The reason for the linear calculations in these two equations lies in the Purelin
function, which is described as f (x) = x.

TDA = −0.198 × O1 − 0.874 × O2 + 0.940 × O3 + 0.315 × O4 + 0.422 × O5 + 0.666 × O6 − 0.307 × O7 −
0.517 × O8 − 0.852 × O9 − 0.193,

(14)

DDA = 0.961 × O1 − 0.979 × O2 − 0.964 × O3 − 0.523 × O4 − 0.644 × O5 + 0.862 × O6 + 0.612 × O7 +
0.370 × O8 + 0.051 × O9 + 0.638

(15)

4. Conclusions

Based on the previous recommendations regarding the use of intelligent models for
energy performance assessments, this study was dedicated to introducing and evaluating
a new methodology based on artificial intelligence for energy performance analysis in
residential buildings. The water cycle algorithm effectively enabled a double-target MLP
neural network to predict the annual thermal energy demand and annual weighted average
discomfort degree-hours in residential buildings. It was the first finding that reflected
the competency of metaheuristic–neural configurations for this purpose. Based on the
accuracy evaluations reported from RMSE, MAE, and CR indices, the proposed WCA model
could not only fulfill the task with great accuracy, but it also performed more accurately in
comparison with shuffled complex evolution, the heap-based optimizer, and the salp swarm
algorithm. The findings of this work asserted the suitability of metaheuristic algorithms
for attaining optimal weights and biases for the 2TMLP, and thereby, for handling the
simultaneous estimation of energy-related parameters by analyzing the geometry and
architecture of the building. From a practical aspect, the outcomes are interesting to
energy management experts working on sustainable development of smart buildings. This
work also provided some suggestions for future efforts for improving the data usage
and strategies.
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Nomenclature
ANN Artificial neural network
ANFIS Adaptive neuro-fuzzy inference system
WCA Water cycle algorithm
2TMLP Double-target multi-layer perceptron
SCE Shuffled complex evolution
EFA Electromagnetism-based firefly algorithm
MR Multiple regression
GP Genetic programming
DNN Deep neural network
SVM Support vector machine
SVR Support vector regression
GB Gradient boosting
KNN K-nearest neighbor
DT Decision tree
XGBoost Extreme gradient boosting
DELM Deep extreme learning
LSTM Long short-term memory
KF Kalman filter
DCNN Convolutional neural network
BiLSTM Bidirectional long short-term memory
GRU Gated recurrent unit
BIM Building information modeling
HBO Heap-based optimizer
SSA Salp swarm algorithm
EO Equilibrium optimizer
MVO Multi-verse optimizer
MTOA Multi-tracker optimization algorithm
EFO Electromagnetic field optimization
SMA Slime mold algorithm
HHO Harris hawks optimization
UM Transmission coefficient of the external walls
UT Transmission coefficient of the roof
UP Transmission coefficient of the floor
αM Solar radiation absorption coefficient of the exterior walls
αT Solar radiation absorption coefficient of the roof
Pt Linear coefficient of thermal bridges
ACH Air change rate
Scw-N Shading coefficient of north-facing windows
Scw-S Shading coefficient of south-facing windows
Scw-E Shading coefficient of east-facing windows
Glz Glazing
MAE Mean absolute error
RMSE Root mean square error
CR Pearson correlation index
DDA Weighted average discomfort degree-hours
TDA Thermal energy demand
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