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Abstract: Defects are essential indicators to gauge the structural integrity and safety of reinforced
concrete bridges. Non-destructive inspection has been pervasively explored over the last three
decades to localize and characterize surface and subsurface anomalies in reinforced concrete bridges.
In addition, different fuzzy set theory-based, computer vision and artificial intelligence algorithms
were leveraged to analyze the data garnered from non-destructive evaluation techniques. In light of
the foregoing, this research paper presents a mixed review method that encompasses both bibliometric
and systematic analyses of the state-of-the-art work pertinent to the assessment of reinforced concrete
bridge defects using non-destructive techniques (CBD_NDT). In this context, this study reviews the
literature of journal articles and book chapters indexed in Scopus and Web of Science databases from
1991 to the end of September 2022. To this end, 505 core peer-reviewed journal articles and book
chapters are compiled for evaluation after conducting forward and backward snowballing alongside
removing irrelevant papers. This research study then exploits both VOSVIEWER and Bibiometrix
R Package for the purpose of network visualization and scientometric mapping of the appended
research studies. Thereafter, this paper carries out a multifaceted systematic review analysis of the
identified literature covering tackled bridge defects, used non-destructive techniques, data processing
methods, public datasets, key findings and future research directions. The present study is expected to
assist practitioners and policymakers to conceive and synthesize existing research and development
bodies, and future trends in the domain of the assessment of bridge defects using non-destructive
techniques. It can also aid in raising awareness of the importance of defect management in bridge
maintenance systems.

Keywords: defects; reinforced concrete bridges; non-destructive inspection; mixed review; bibliometric
and systematic analysis; Bibiometrix R package

1. Introduction

Bridges are cited as one of the prominent elements of infrastructure networks that are
necessary for the public welfare, economic growth and social wellbeing of countries [1,2]. In
this regard, they must be preserved within acceptable limits of functionality, serviceability,
safety and sustainability [3,4]. In recent years, it is reported that there is a notable increase
in the number of structurally deficient bridges as a consequence of severe environmental
conditions, limited available funds, untimely maintenance schedules and increases in traffic
volumes [5–9]. This state of affairs impelled researchers and bridge managers to develop op-
timum programs for bridge maintenance. Condition assessment is a paramount perquisite
of bridge maintenance strategies, whereas visual inspection is the dominant routine practice
to monitor the structural condition of bridges [10,11]. However, the latter is criticized for
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its subjective, error-prone, laborious, unsafe and time-consuming nature [12–14]. Over
The past three decades, non-destructive evaluation has emerged, evolved and been estab-
lished and recognized as the forefront research interest in the field of bridge maintenance
management [15]. Many non-destructive techniques are available in the literature and
they can be clustered into seven main categories, namely electromagnetic-based (ground
penetrating radar), electrochemical-based (half-cell potential, linear polarization resistance),
magnetic-based (magnetic flux leakage, induced magnetic field), thermal-based (infrared
thermography), acoustic-based (impact echo, ultrasonic pulse velocity), optical-based
(digital photogrammetry, laser scanning) and sensors-based (acoustic emission, optical
fiber) [16–18]. In this context, the use of multi-sensor non-destructive evaluation equips
transportation agencies with an efficacious tool for rapid, informed, methodical, cost-
effective and consistent in situ assessment of bridges. Hence, their timely monitoring and
evaluation is anticipated to assist in optimizing available resources for bridge inspection
and prioritizing maintenance budgets through the identification of the most deficient zones
of bridges, which can eventually aid in boosting the serviceability, integrity and safety of
bridges. The processing and analysis of garnered raw data from non-destructive techniques
is essential for automating, systematizing and ameliorating the detection, classification and
evaluation of potential deterioration zones in bridges.

There are several reported data analysis methods such as computer vision, deep
learning, machine learning, feature selection, unsupervised learning, meta-heuristics, multi-
criteria decision-making, stochastic modeling, etc. Reinforced concrete bridges are refer-
enced as the most common type of structures in transportation networks [19,20]. Their
damage types include surface and subsurface defects such as corrosion, delamination,
surface cracks, deformation, spalling, scaling, efflorescence, erosion, voids, moisture, etc.
In light of the foregoing, this literature review study aims to unravel, consolidate, visualize
and dissect state-of-the-art research papers pertinent to the analysis of reinforced concrete
bridge defects using non-destructive techniques. The remainder of this article is arranged
in the following manner. Section 2 demonstrates the developed research methodology for
retrieving and scrutinizing previous literature studies. Section 3 renders a bibliometric
analysis of relevant research papers over the time frame between 1990 and 2022, including
countries’ co-authorship, institutions’ co-authorship, journals’ co-citation, core journals,
publishers’ productivity, published documents and contributing authors. Section 4 en-
compasses a systematic review analysis of previous research endeavors. In that vein, it
expounds on the frequency distribution of tackled concrete defects, used non-destructive
techniques and employed artificial intelligence models. It also explicates the applicability
rate of each non-destructive technique across each bridge defect. It thereafter categorizes
and extensively overviews previous research studies according to the studied defects,
enumerating the implemented NDTs, data interpretation methods, bridge element and
testing type. Finally, it sheds light on the available public datasets and used performance
evaluation indicators. Section 5 draws the paramount conclusions and future research
directions arising from this literature review study. The complete list of used abbreviations
and their descriptions are elucidated in Abbreviations.

2. Research Methodology

This research is designated for reviewing, categorizing, mapping and dissecting re-
ported research articles and book chapters pertaining to the analysis of concrete bridge
defects using non-destructive techniques. The time frame of this research study extends
from 1990 to the end of September 2022. Figure 1 explicates the developed research method-
ology schema for pertinent literature in the CBD_NDT domain. This study capitalizes on
retrieving papers from two different literature databases, Web of Science and Scopus. Two
Boolean query strings are formulated to carry out the literature search. In this regard, the
used query string in the Web of Science database and Scopus database are depicted in
Figures 2 and 3, respectively.
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As a result, the conducted literature search resulted in the identification of 537 and
669 papers from Scopus and Web of Science databases, respectively. The next step involves
screening the merged database by removing duplicate and out-of-scope studies. In this
regard, the irrelevant studies were determined by reviewing their titles, abstracts and full
text. This results in the presence of 491 papers that are composed of 486 articles alongside
4 book chapters. The next step encompasses complementing forward with backward snow-
ball search methods to track missing publications pertinent to the scope of this research
study. This is addressed by reviewing the citations of the papers and reported references
used for their writing [21,22]. In this context, Google Scholar was utilized to capture ci-
tations associated with each paper. The forward and backward search methods induced
14 papers. Hence, the appended database encompasses 505 papers of 500 journal articles
and 5 book chapters. A bibliometric/scientometric analysis (version 4.0.1) is fulfilled using
the Bibliometrix R package and VOSviewer software (version 1.6.19) [23]. In this respect,
thesaurus files for appended bibliography were created for data cleansing and truncation
of duplicate elements. The prominent elements of the conduced scientometric analysis
encompassed countries’ collaboration, journals’ co-citation, institutions’ collaboration, pro-
lific publishers, core journals, published documents, authors’ productivity and paramount
authors in the domain. In addition, the systematic review analysis reviews and synthesizes
the published papers in relation to investigated defects, utilized NDTs, deployed data
processing techniques, bridge element, testing type and available public datasets.

3. Scientometric Analysis

This section renders the results of the conducted scientometric analysis of related
research publications in the CBD_NDT domain.

3.1. Publication Trend

Figure 4 presents a graphical representation of the yearly CBD_NDT-related pub-
lications from 1991 to 2022. Overall, it can be conceived that the CBD_NDT has been
in an upward trend with an average annual growth of 31.5%. According to the varia-
tions in the number of published articles, the publication period is partitioned into three
main phases. The publication growth is low in the exploration period from 1991 to 2001,
whereas the number of annual publications doesn’t exceed five papers. The publication
rate then gained momentum in the steady development period between 2002 and 2014.
In this period, the number of annually published papers fluctuated between 5 and 12.
The publication trend then dramatically increased in the rapid development period from
2015 onwards. In this regard, the number of academic publications soared, surging to 61
papers in 2021. It is worth mentioning that 2020 and 2021 are collectively responsible for
24.15% of the total number of publications in CBD_NDT research. In this period, scholars
carried out extensively more exploration and research in the CBD_NDT domain. The
publication regression line can be expressed using a fourth-order polynomial function of
AP = −2.3915E− 4Y4 + 1.9242Y3 − 5.8055E+ 3Y2 + 7.7846E+ 6Y− 3.9143E+ 9; R2 = 91.3%,
where AP is the annual number of publications and Y is the publication year. Figure 5
depicts the distribution of average article citations per year in the CBD_NDT domain. It can
be observed that a notable increase is sustained from 2016 onward in addition to a spike in
the year 2003. As a consequence, the research output in the CBD_NDT domain is envisaged
to continuously increase in the next few years.

3.2. Countries Co-Authorship Analysis

A countries’ co-authorship network is created to visualize the collaboration relation-
ship and its strength between research groups of different countries (see Figure 6). In
this regard, the bibliometric analysis of countries is carried out by undertaking minimum
thresholds of one document and zero citations per country, which results in 46 countries
and 12 colored clusters. The size of nodes marks the production degree of a country in
terms of the number of co-authored documents [24,25]. The line between two countries
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manifests the co-operation degree between them, whilst thicker lines represent a significant
occurrence of co-authorship between two countries [26,27]. In addition, countries present
in the same cluster tend to tackle the same research trends in the field of CBD_NDT. In
addition, the proximity of two countries envisages their relatedness with regard to their
co-citation link [28,29]. It is observed that the United States of America’s collaboration
with Japan stands out with a link strength of 21. This is followed by its partnership with
South Korea and Canada with a link strength of 12. The conducted analysis also showed
that a significant co-authorship relationship is maintained between scholars from China
and Canada. It is also evident that scholars from Canada and Egypt work together in this
research field, which is demonstrated by a link strength of 8.
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Table 1 lists a quantitative description of the leading countries in CBD_NDT according
to the number of documents, and the number and average normalized number of citations.
The conducted analysis reveals that the United States of America, China, Canada, South Ko-
rea and Japan are the most productive countries with 211 (41.78%), 88 (17.42%), 66 (13.07%),
41 (8.12%) and 25 (4.95%) journal articles, respectively. This implies that CBD_NDT is
progressing faster in developed high-income countries. It can be also observed that the mea-
sured total link strength of these countries is high, which signifies the presence of a large
number of journal articles in which authors of these countries collaborated with authors
from other countries. With regards to the total citations, scholars from the United States
of America, Canada, China, South Korea and the United Kingdom lead other countries.
The papers of the aforementioned countries received 5299, 1365, 1120, 713 and 462 citation
counts, respectively. It can be also observed that although there are some countries that
published fewer journal articles, they received overall more citations. For instance, China
produced 88 journal articles with 1120 citations, while Canada published 66 journal arti-
cles with 1365 citations. Chile, Singapore, Tunisia, Sweden and Switzerland are the most
influential five countries based on average normalized citations with corresponding scores
of 3.14, 2.45, 2.39, 2.37 and 2.02, respectively. It should also be noted that the average
publication year of China, South Korea, Chile, Singapore and Sweden was between 2017
and 2020, which implies that scholars from these countries are active in research areas
pertinent to CBD_NDT in the last few years.
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Table 1. Quantitative summary of active countries in the field of CBD_NDT with regards to publica-
tion count, total citations and average normalized citations.

Rank Country Number of
Documents

Total
Citations

Normalized
Citations

Average
Publication

Year

Average
Citations

Average
Normalized

Citations

Total Link
Strength

Publication count

1 United States
of America 211 5299 220.92 2013.37 25.11 1.05 68

2 China 88 1120 90.36 2019.45 12.73 1.03 38

3 Canada 66 1365 62.55 2015.40 20.68 0.95 47

4 South Korea 41 713 42.24 2017.34 17.39 1.03 24

5 Japan 25 367 19.34 2014.74 14.68 1.05 13

Total citations

1 United States
of America 211 5299 220.92 2013.37 25.11 1.05 68

2 Canada 66 1365 62.55 2015.40 20.68 0.95 47

3 China 88 1120 90.36 2019.45 12.73 1.03 38

4 South Korea 41 713 42.24 2017.34 17.39 1.03 24

5 United Kingdom 16 462 23.59 2012.25 28.88 1.47 17

Average normalized citations

1 Chile 4 97 12.57 2020.25 24.25 3.14 3

2 Singapore 2 65 4.89 2020.5 32.5 2.45 1

3 Tunisia 1 21 2.39 2005 21 2.39 1

4 Sweden 3 71 7.12 2017 23.67 2.37 1

5 Switzerland 2 120 4.04 2009.5 60 2.02 3

3.3. Institutions Co-Authorship Analysis

Figure 7 presents a visualization of the institutions’ co-authorship network, in which
a minimum threshold of one document is specified for inclusion. It is evident that Rutgers
University and Concordia University lie at the center of collaboration. In this respect,
Rutgers University sustains a notable co-authorship relationship with the Federal Highway
Administration, the University of Texas at El Paso and Dong-a University with a link
strength of 3. Furthermore, strong cooperation is observed between the three geographically
distant institutions of Hong Kong Polytechnic University, Concordia University and Cairo
University which is demonstrated in the form of a link strength of 7 between any two of
them. In addition, a significant collaboration is viewed between the two geographically
proximate institutions of Concordia University and Western University (link strength = 7).

Table 2 shows a quantitative summary of active institutions in the field of CBD_NDT.
It is found that the most prolific and collaborative institutions are Rutgers University, Con-
cordia University, Hong Kong Polytechnic University, the Federal Highway Administration
and Cairo University. This is demonstrated by their large number of published documents
and total link strength. In this regard, they were able to publish 23 (4.55%), 18 (3.56%), 14
(2.77%), 10 (1.98%) and 8 (1.58%) journal articles, respectively. The distribution of published
documents shows that the United States of America is at the forefront, leading other coun-
tries in the research field of CBD_NDT. Furthermore, the conducted analysis shows that
the leading five institutions according to the number of citations are Rutgers University
(730), Concordia University (392), Clarkson University (339), Utah State University (339)
and the University of Nevada, Reno (246). Looking at the average normalized citations, it
is revealed that the most prominent institutions comprise Clarkson University (4.63), Utah
State University (4.63), University of Nevada (4.38), Sungkyunkwan University (2.63) and
the University of Texas at Austin (2.57).



Buildings 2023, 13, 800 8 of 49

Buildings 2023, 13, x FOR PEER REVIEW 8 of 52 
 

3.3. Institutions Co-Authorship Analysis  
Figure 7 presents a visualization of the institutions’ co-authorship network, in which 

a minimum threshold of one document is specified for inclusion. It is evident that Rutgers 
University and Concordia University lie at the center of collaboration. In this respect, Rut-
gers University sustains a notable co-authorship relationship with the Federal Highway 
Administration, the University of Texas at El Paso and Dong-a University with a link 
strength of 3. Furthermore, strong cooperation is observed between the three geograph-
ically distant institutions of Hong Kong Polytechnic University, Concordia University and 
Cairo University which is demonstrated in the form of a link strength of 7 between any 
two of them. In addition, a significant collaboration is viewed between the two geograph-
ically proximate institutions of Concordia University and Western University (link 
strength = 7).  

 
Figure 7. Co-authorship network of institutions in the research on CBD_NDT. 

Table 2 shows a quantitative summary of active institutions in the field of CBD_NDT. 
It is found that the most prolific and collaborative institutions are Rutgers University, 
Concordia University, Hong Kong Polytechnic University, the Federal Highway Admin-
istration and Cairo University. This is demonstrated by their large number of published 
documents and total link strength. In this regard, they were able to publish 23 (4.55%), 18 
(3.56%), 14 (2.77%), 10 (1.98%) and 8 (1.58%) journal articles, respectively. The distribution 
of published documents shows that the United States of America is at the forefront, lead-
ing other countries in the research field of CBD_NDT. Furthermore, the conducted analy-
sis shows that the leading five institutions according to the number of citations are Rutgers 
University (730), Concordia University (392), Clarkson University (339), Utah State Uni-
versity (339) and the University of Nevada, Reno (246). Looking at the average normalized 
citations, it is revealed that the most prominent institutions comprise Clarkson University 
(4.63), Utah State University (4.63), University of Nevada (4.38), Sungkyunkwan Univer-
sity (2.63) and the University of Texas at Austin (2.57). 

Figure 7. Co-authorship network of institutions in the research on CBD_NDT.

Table 2. Quantitative summary of active institutions in the field of CBD_NDT with respect to
publication count, total citations and average normalized citations.

Rank Country Number of
Documents

Total
Citations

Normalized
Citations

Average
Publication

Year

Average
Citations

Average
Normalized

Citations

Total Link
Strength

Publication count

1 Rutgers University 23 730 32.86 2014.83 31.74 1.43 34

2 Concordia
University 18 392 16.54 2017.94 21.78 0.92 24

3
Hong Kong
Polytechnic
University

14 106 6.3 2019.85 7.57 0.45 26

4 Federal Highway
Administration 10 231 9.19 2016 23.1 0.92 20

5 Cairo University 8 37 3.13 2020.38 4.63 0.39 14

Total citations

1 Rutgers University 23 730 32.86 2014.83 31.74 1.43 34

2 Concordia
University 18 392 16.54 2017.94 21.78 0.92 24

3 Clarkson
University 3 339 13.9 2018.33 113 4.63 4

4 Utah State
University 3 339 13.9 2018.33 113 4.63 4

5 University of
Nevada, Reno 2 246 8.76 2016.5 123 4.38 3

Average normalized citations

1 Clarkson
University 3 339 13.9 2018.33 113 4.63 4

2 Utah State
University 3 339 13.9 2018.33 113 4.63 4

3 University of
Nevada, Reno 2 246 8.76 2016.5 123 4.38 3

4 Sungkyunkwan
University 2 7 5.26 2021.5 3.5 2.63 3

5 University of Texas
at Austin 3 137 7.70 2015.67 45.67 2.57 7
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3.4. Journals Co-Citation Analysis

Journal co-citation analysis is an effective tool for understanding the overarching
composition of a designated research field and shedding light on possible and core avenues
for publication [30,31]. Figure 8 shows a structured visualization of the journals’ co-
citation network. The minimum number of citations of a certain source is set to 20, which
results in the induction of 76 journals. The most significant co-citation relationship was
spotted between Computer-Aided Civil and Infrastructure Engineering, and Automation
in Construction with a total link strength of 1177, which implies that they share similarities
in their research themes and interests. A notable intensity of co-citation is also seen between
Construction and Building Materials and NDT & E International with a total link strength
of 765. The journals are partitioned into four main clusters, in which the journals that
belong to the same cluster have higher odds to feature in the references list. The first
cluster focuses on civil infrastructure systems alongside computer vision technologies,
and it includes 29 items such as Automation in Construction, Computer-Aided Civil and
Infrastructure Engineering, Machine Vision and Applications, Neurocomputing, sensors,
etc. The second cluster is related to journals of transportation networks in addition to
non-destructive evaluation and it comprises 27 items such as the Journal of Transportation
Engineering, NDT & E International, Transportation Research Record, the Journal of
Bridge Engineering, Non-destructive Testing, Research in Nondestructive Evaluation,
etc. The third cluster encompasses 10 journals such as the Journal of Structural Mechanics,
Engineering Structures, Journal of Structural Engineering, Smart Materials and Structures,
and others. The fourth cluster tackles journals focusing on materials and it involves 10 items
such as Cement and Concrete Composites, Construction and Building Materials, Corrosion
Science, Magazine of Concrete Research and Others.
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Table 3 summarizes the contribution of influential journals on the research on CBD_NDT
using the five input variables of the number of documents, total citations, normalized
citations, average publication year, average normalized citations and total link strength. It
is found that Construction and Building Materials (30 documents), Transportation Research
Record (20 documents), NDT & E International (17 documents), Automation in Construc-
tion (14 documents) and Sensors (12 documents) occupy the top five positions according
to the number of publications. From the perspective of total citations, Construction and
Building Materials is cited the most, followed by NDT & E International and then the
Journal of Computing in Civil Engineering in the third rank. In this context, the total
citations of Construction and Buildings, NDT & E International, the Journal of Computing
in Civil Engineering, Automation in Construction and Sensors are 1036, 841, 702, 657 and
338, respectively. With regards to average normalized citations, it is noted that the most
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productive and cited journal may not have the highest average normalized citations. In this
regard, IEEE Transactions on Automation Science and Engineering (5.09), Computer-Aided
Civil and Infrastructure Engineering (2.79), Structural Health Monitoring (2.78), Cement
and Concrete Composites (2.52) and Automation in Construction (2.28) are placed in the
top five ranks based on their average normalized citations.

Table 3. Quantitative summary of active journals in the field of CBD_NDT with respect to publication
count, total citations and average normalized citations.

Rank Country Number of
Documents

Total
Citations

Normalized
Citations

Average
Publication

Year

Average
Citations

Average
Normalized

Citations

Total Link
Strength

Publication count

1 Construction and
Building Materials 30 1036 44.36 2016.37 34.53 1.48 189

2 NDT & E
International 20 841 21.05 2013.85 42.05 1.05 150

3 Transportation
Research Record 17 215 10.05 2013.44 12.65 0.59 101

4 Automation in
Construction 14 657 31.95 2018.00 46.93 2.28 124

5 Sensors 12 338 16.04 2018.75 28.17 1.34 66

Total citations

1 Construction and
Building Materials 30 1036 44.36 2016.37 34.53 1.48 189

2 NDT & E
International 20 841 21.05 2013.85 42.05 1.05 150

3
Journal of

Computing in Civil
Engineering

9 702 14.36 2015.78 78 1.6 74

4 Automation in
Construction 14 657 31.95 2018 46.93 2.28 124

5 Sensors 12 338 16.04 2018.75 28.17 1.34 66

Average normalized citations

1

IEEE Transactions
on Automation

Science and
Engineering

2 248 10.18 2013.5 124 5.09 19

2

Computer-Aided
Civil and

Infrastructure
Engineering

7 279 19.54 2020 39.86 2.79 29

3 Structural Health
Monitoring 5 159 13.88 2020.4 31.8 2.78 17

4
Cement and

Concrete
Composites

3 175 7.56 2008.67 58.33 2.52 6

5 Automation in
Construction 14 657 31.95 2018 46.93 2.28 124

3.5. Core Journals Analysis

Bradford’s law is one of the fundamental methods in bibliometrics to identify the core
journals in a designated subject over a specified period of time [32,33]. Under this law,
relevant journals are categorized into three zones such that number of journals in each zone
is proportional to 1:n:n2, where n denotes the number of journals. According to this law,
the entire collection of articles is partitioned into three groups of an approximately equal
number of articles [34,35]. The core journals based on Bradford’s law are given in Figure 9.
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As a result, Zone 1 of core journals is found to comprise nine journals with 170 articles, and
these journals account for 4.94% of the number of journals in this study. The identified
core sources are Construction and Building Materials, Transportation Research Record,
NDT & E International, Automation in Construction, the Journal of Bridge Engineering,
the Journal of Performance of Constructed Facilities, ACI Materials Journal, Structure and
Infrastructure Engineering and Sensors. Moreover, Zone 2 contains 33 journals (18.13% of
the total journals) with 169 articles, while Zone 3 encompasses 140 journals with 166 articles,
which covers 76.92% of the total journals in the CBD_NDT research.
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3.6. Categorization Based on Publisher

This sort of categorization aims at drawing the attention of readers to the notable
publishers in the topic of CBD_NDT. Table 4 encapsulates the contribution of the top
20 active publishers on the topic of CBD_NDT. There are another 34 publishers with less
than three publications. It can be observed that the 505 acquired journal articles were
produced by different publishers. As shown, Elsevier Ltd. Is the leading publisher in
CBD_NDT with 130 journal articles, which accounts for 25.74% of the total published
papers. This is followed by ASCE, Springer, MDPI and SAGE Publishing Ltd., which
represent 12.87%, 9.31%, 7.92% and 7.33% of all published articles, respectively. Other
publishers in the top 10 list comprise John Wiley & Sons Ltd., Taylor & Francis, American
Concrete Institute, IEEE and Hindawi Limited. The higher number of record counts for
Elsevier Ltd. is ascribed to its large number of journals designated to smart performance
assessment of infrastructure systems such as Construction and Building Materials, NDT &
E International and Automation in Construction.

3.7. Keyword Co-Occurrence Analysis

Keyword co-occurrence analysis stands as an efficacious tool in bibliometric studies
to grasp the body of knowledge of a designated research domain and pinpoint its trends,
hot spots and frontiers [36,37]. The keywords’ co-occurrence network is elucidated in
Figure 10, and it describes the relationships between the defined author keywords, and
how often they appear together. The minimum number of occurrences of a keyword is
specified as four, and thus 66 keywords and 3 colored clusters were retrieved. The green
cluster has a primary focus on corrosion and delamination assessment using nondestruc-
tive techniques. It is led by some keywords such as “nondestructive testing”, “ground
penetrating radar”, “corrosion”, “delamination”, “infrared thermography”, “impact echo”,
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“electrical resistivity”, “half-cell potential”, “surface waves” and “K-means clustering”. To
this end, it can be seen that K-means clustering is the most commonly adopted algorithm
in corrosion and delamination assessment. The red cluster is composed of 27 keywords,
and it covers the research areas of surface defects detection and assessment using computer
vision technologies. Its most notable keywords include “cracks”, “crack detection”, “crack
segmentation”, “crack extraction”, “computer vision”, “image processing”, “machine learn-
ing”, “deep learning”, “transfer learning”, “neural network”, “support vector machine”,
“wavelet transform” and “unmanned aerial vehicle”. The blue cluster concentrates on the
use of structural health monitoring and digital image correlation measurements, and it
includes some author keywords such as “structural health monitoring”, “health monitoring
and assessment”, “digital image correlation” and “acoustic emission”.

Table 4. Categorization of journal articles according to the publisher.

Rank Publisher Record Count Corresponding Percentage

1 Elsevier Ltd. 130 25.74%
2 ASCE 65 12.87%
3 Springer 47 9.31%
4 MDPI 40 7.92%
5 SAGE Publishing Ltd. 37 7.33%
6 John Wiley & Sons Ltd. 33 6.53%
7 Taylor & Francis 25 4.95%
8 American Concrete Institute 16 3.17%
9 IEEE 12 2.38%
10 Hindawi Limited 10 1.98%
11 Technology center 9 1.78%
12 Canadian Science Publishing 7 1.39%
13 British Institute of Non-Destructive Testing 4 0.79%
14 Emerald Publishing Limited 4 0.79%
15 National Association of Corrosion Engineers 4 0.79%
16 American Society for Nondestructive Testing 4 0.79%
17 Environmental and Engineering Geophysical Society 3 0.59%
18 Trans Tech Publications Ltd. 3 0.59%
19 American Society for Testing and Materials 3 0.59%
20 IOP Publishing 3 0.59%

The conducted key word co-occurrence analysis points out that ground penetrating
radar and half-cell potential were largely used for corrosion assessment. This is exemplified
in the form of a link strength equals to 11 between corrosion and ground penetrating radar
besides a link strength of 6 between corrosion and half-cell potential. In addition, a high link
strength is observed between delamination and the nondestructive techniques of infrared
thermography (17) and impact echo (11). It is also noticed that digital photogrammetry and
embedded sensors are exploited more than Lidar in surface cracks assessment. Deep learn-
ing is found to be utilized than machine learning in in surface cracks analysis, and artificial
neural network and support vector machines are shown to be the most implemented ma-
chine learning algorithms. Figure 11 illustrates analysis of author keywords’ co-occurrence
with time information. The generated overlay visualization map indicates that most of
the research before 2014 was primarily focusing on corrosion, and then attention became
more directed towards delamination from 2016 to 2018. In the recent few years (after 2019),
the use of deep leaning in structural defects assessment and structural health monitoring
emerged as notable research topic that require significant awareness and exploration.
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Table 5 summarizes the quantitative detailed information about the paramount key-
words in the research on CBD_NDT. It reports the top 40 keywords based on their occur-
rences. It was found that the most frequently used keywords are “nondestructive testing”
(109), “ground penetrating radar” (73), “concrete” (70), “concrete bridge decks” (70), “con-
crete bridges” (59), “corrosion” (52), “delamination” (50), “bridge inspection” (40), “infrared
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thermography” (40) and “deep learning” (39). This demonstrates that ground penetrating
radar and infrared thermography cameras are the most periodically utilized nondestructive
evaluation techniques in bridge inspection. In addition, the bridge deck is found to be the
most investigated bridge component. Furthermore, corrosion and delamination are identi-
fied as the most studied bridge defects in terms of either detection or severity evaluation.
Deep learning is determined as the most widely used artificial intelligence sub-field in
bridge inspection whether through transfer learning-based networks or networks trained
from scratch. It was also noticed that the author keywords of “ground penetrating radar”
(39), “infrared thermography” (27) and “impact echo” (23) are accompanied by the highest
total link strength. This manifests that these NDTs were heavily leveraged in the literature
to complement other nondestructive techniques to analyze bridge defects.

Table 5. Quantitative summary of the main keywords in the field of CBD_NDT.

Keyword Occurrences Average Publication Year Total Link Strength

Nondestructive testing 109 2014.86 297

Ground penetrating radar 73 2014.07 192

Concrete 70 2012.67 219

Concrete bridge decks 70 2014.28 197

Concrete bridges 59 2015.63 165

Corrosion 52 2013.75 126

Delamination 50 2017.06 156

Bridge inspection 40 2016.79 112

Infrared thermography 39 2016.63 106

Deep learning 34 2020.36 85

Crack detection 30 2018.47 72

Impact echo 27 2015.59 98

Image processing 23 2016.61 57

Reinforced concrete 23 2017.61 47

Cracks 21 2013.52 52

Structural health monitoring 20 2019.53 47

Convolutional neural network 17 2020.06 45

Computer vision 16 2019.07 37

Condition assessment 15 2019 53

Concrete structures 13 2017.08 28

Damage detection 12 2017 24

Deterioration 12 2013.09 53

Durability 12 2015.36 28

Electrical resistivity 12 2015.58 42

Infrastructure monitoring 12 2014. 31

Machine learning 12 2019.67 37

Unmanned aerial vehicle 12 2019.67 25

Half-cell potential 11 2013.55 34

Defect detection 10 2018.2 19

Surface waves 10 2011.9 35
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Table 5. Cont.

Keyword Occurrences Average Publication Year Total Link Strength

Visual inspection 10 2018.22 28

Infrastructure 9 2016.38 30

Semantic segmentation 9 2020.75 23

Bridge maintenance 8 2011.25 30

Damage assessment 8 2016.13 21

Acoustic emission 7 2013.71 12

Bridge condition assessment 7 2014 18

Data fusion 7 2017.29 22

Defects 7 2013 23

Lidar 7 2018.86 19

3.8. Document Analysis

Table 6 elucidates a summary of the highly cited articles pertaining to CBD_NDT
research. It is worth mentioning that articles are sorted based on their total citations during
the specified study period. The article entitled “Analysis of Edge-Detection Techniques
for Crack Identification in Bridges” is ranked first with 418 citations and 3.58 normalized
citations. It reports the implementation of four edge detection algorithms for identifying
surface cracks in bridges, namely, fast Haar transform, fast Fourier transform, Canny and
Sobel. The authors suggested that fast Haar rendered significantly better detection accura-
cies than the other edge detection algorithms. It was also revealed that the article entitled
“Application of infrared thermography to the non-destructive testing of concrete and ma-
sonry bridges” is ranked second with 266 citations and 2.27 normalized citations. this study
relied on visual analysis of infrared thermograms to localize potential delamination spots
in the bridge deck and abutment.

Table 6. Summary of the most influential articles in CBD_NDT research.

Rank Reference Title Publication Year Total Citations Normalized
Citations Key Findings

1 [38]
Analysis of Edge-Detection

Techniques for Crack
Identification in Bridges

2003 419 3.58

Fast Haar transform is more
efficient in edge detection of

surface cracks than fast Fourier
transform, Sobel and Canny

2 [39]

Application of infrared
thermography to the

non-destructive testing of
concrete and

masonry bridges

2003 266 2.27

A temperature range of
0.2–0.3 ◦C differentiates

delaminated from
non-delaminated regions

3 [40]

Comparison of deep
convolutional neural
networks and edge

detectors for image-based
crack detection in concrete

2018 246 10.35

AlexNet Deep convolutional
neural network yielded better

detection accuracies and shorter
testing time than edge detectors

4 [41] Automated Crack Detection
on Concrete Bridges 2016 197 7.83

Spatially tuned robust
multifeatured classifier created
accurate crack density maps of

bridge decks

5 [42]
Image-based retrieval of

concrete crack properties for
bridge inspection

2014 181 6.66
Artificial neural network is
a practical tool to analyze

surface cracks in concrete beams
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Table 6. Cont.

Rank Reference Title Publication Year Total Citations Normalized
Citations Key Findings

6 [43]
Improved Image Analysis

for Evaluating
Concrete Damage

2006 141 2.74

Bayesian decision theory
coupled with receiver operating

characteristics analysis could
locate surface cracks in

bridge components

7 [44]

Remote sensing of concrete
bridge decks using

unmanned aerial vehicle
infrared thermography

2017 109 3.59

Image-based analysis of infrared
thermograms can render

delamination maps of reinforced
concrete bridges

8 [45]
Macrocell corrosion of steel
in concrete—implications
for corrosion monitoring

2002 108 3.69

Active/passive model-macrocell
can be used in accordance with
the measurements of half-cell

potential and linear polarization
resistance can be used for

corrosion monitoring

9 [46]

Applications of ground
penetrating radar (GPR) in

bridge deck monitoring
and assessment

2013 106 2.88

Ground penetrating radar
surveys are useful in

localization of reinforcement,
estimation of concrete cover and

moisture detection

10 [47]

The impact-echo response of
concrete plates containing
delaminations: numerical,

experimental and
field studies

1993 95 1.42 Impact echo can detect shallow
corrosion-induced delamination

The article entitled “Comparison of deep convolutional neural networks and edge
detectors for image-based crack detection in concrete” is in the third ranking and it was
cited 246 times and accompanied by 10.35 normalized citations. The authors analyzed the
AlexNet deep convolutional neural network and six edge detection algorithms to detect
surface cracks. These algorithms comprised Butterworth, Gaussian, Laplacian of Gaussian,
Sobel, Prewitt and Roberts. It was evinced that AlexNet was able to detect cracks with
better accuracies and shorting testing times than the edge detection algorithms. The article
entitled “Automated Crack Detection on Concrete Bridges” obtained 197 citation counts
and 7.83 normalized citations. In this, a crack density map for the bridge mosaic was created
using a spatially tuned robust multi-feature (STRUM) classifier. Their model consisted of
a line segment detector, spatially tuned feature selection and a machine learning classifier.
The article with the title “Image-based retrieval of concrete crack properties for bridge
inspection” is the fifth-ranked. In this, an experimental setup was designed to correlate
crack depth and width. In addition, an artificial neural network with one hidden layer and
ten hidden neurons was trained to forecast the depth of crack images.

3.9. Authors’ Productivity

Lokta’s law is one of the paramount laws in bibliometric studies used to characterize
authors’ productivity in any designated field [48,49]. According to this law, 60% of authors
will publish only one research article on a certain subject, 15% of authors will publish two
articles and 6.6% of authors will publish three articles [50,51]. The frequency distribution of
scientific productivity in CBD_NDT research is depicted in Figure 12. The dashed lines and
solid lines elucidate the theoretical and observed frequency distributions, respectively of
authors’ productivity in CBD_NDT research. It can be seen that 74% of authors published
one journal article, 14% of authors published two journal articles, and 5.8% of authors
published three journal articles. This implies the presence of many occasional authors in
CBD_NDT research. This can be elicited from the intertwining between surface defects
analysis with the computer science field, which creates transient collaboration groups
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between scholars of civil engineering and computer science, whereas this area is not
regarded as the core research domain of the latter.
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3.10. Analysis of Most Impactful Authors

The contributions of authors are analyzed based on their h-index, m-index, g-index
and total citations. H-index is a commonly-used metric in bibliometric studies to gauge
author/journal research output. It is defined as the maximum value h, where a given
scholar/journal published at least h journals that received at least h citation counts [52,53].
Furthermore, the indicator g-index is expressed as the largest unique number that the
top g articles that obtained together at least g2 citations in a given set of articles sorted
in descending order according to their citation counts [54,55]. The indicator m-index is
a variant of h-index and it is equal to the h-index divided by the number of years elapsed
between the author’s first and last publication [56,57]. Table 7 reports the most influential
authors based on their h-index, m-index and total citation counts. According to h-index,
the top ten scholars are GUCUNSKI N (13), WASHER G (10), AZARI H (8), ZAYED T (8),
ABUDAYYEH O (7), DINH K (7), MOSELHI O (7), LI G (7), YEHIA S (7) and KEE S (7).
The values of the g-index reveal that GUCUNSKI N (24), AZARI H (14), ZAYED T (13),
WASHER G (12) and DINH K (12) are the top five ranked authors. With regards to m-index,
DORAFSHAN S (1), DALLA R F (1) and NEHDI M (0.86) are the top three most influential
authors. In terms of citation count, GUCUNSKI N (823) is the most cited author, followed
by ABUDAYYEH O (720) and LA H (571).

Table 7. Most influential authors in CBD_NDT research.

Author h-Index g-Index m-Index Total Citations

GUCUNSKI N 13 24 0.72 823

WASHER G 10 12 0.48 287

AZARI H 8 14 0.67 196

ZAYED T 8 13 0.8 203

ABUDAYYEH O 7 8 0.33 720

DINH K 7 12 0.78 174

MOSELHI O 7 10 0.7 288

LI G 7 9 0.58 206

YEHIA S 7 8 0.39 327
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Table 7. Cont.

Author h-Index g-Index m-Index Total Citations

KEE S 7 8 0.58 324

KIM J 6 10 0.75 120

DORAFSHAN S 6 6 1 426

NEHDI M 6 6 0.86 209

LA H 5 5 0.56 571

BASILY B 4 4 0.44 506

DANA K 3 3 0.39 490

DALLA R F 3 3 1 38

LIM R 2 2 0.25 441

PARVARDEH H 2 2 0.25 441

PRASANNA P 2 2 0.25 441

ABDEL-QADER L 1 1 0.05 419

4. Systematic Review Analysis

This section delineates the results of a systematic review analysis of the relevant
literature in the CBD_NDT domain.

4.1. Distribution of Defects and NDTs

Figure 13 depicts a visualization of the tackled defects in the CBD_NDT domain.
The “Others” category comprises the defects of bulge, erosion, deflection, pitting and
pop-out. It was found that delamination (29.83%), surface cracks (28.26%), corrosion
(19.33%), voids (7.98%) and spalling (5.04%) are the five most investigated defects in the
research field of CBD_NDT. Furthermore, surface defects are also found to account for
a considerable portion of 35.5% of the pool of studied defects in this literature review
study. Several NDTs were exploited in the literature to detect and characterize surface and
subsurface defects. The used NDTs in the research field of CBD_NDT are shown in Figure 14.
Among the identified NDTs in this literature review study, are digital photogrammetry
(DP), ground penetrating radar (GPR), impact echo (IE), infrared thermography (IRT),
half-cell potential (HCP), electrical resistivity (ER), chain drag (CD), ultrasonic surface
waves (USW), laser scanning (SI) and linear polarization resistance (LPR). The category
“AE + OF” includes acoustic emission and optical fiber sensors. In addition, reported
studies used NDTs like hammer sounding (HS), ultrasonic testing (UT), ultrasonic pulse
echo (UPE), Electrochemical impedance spectroscopy (EIS), magnetic-based test (MB),
satellite imaging (SI), sound testing (ST), ultrasonic pulse velocity (UPV) and impulse
response (IR). The “Others” category includes the NDTs of 3D neutron tomography, 3D X-
ray tomography, acoustic scanning, acousto-ultrasonic, ball chain impact source, ultrasonic
linear array, chloride content, electromagnetic resonance, Tafel plot, displacement sensors,
reinforced concrete tomography, microwave method, time domain reflectometry and eddy
heat imaging (EHI). The magnetic-based NDTs comprise magnetic flux leakage (MFL),
induced magnetic field (IMF), infrastructure corrosion assessment method, magnetic force
induced vibration evaluation, micro-magnetic sensor and squid magnetometer. In addition,
the category “AE + OF” include acoustic emission and optical fiber sensors. It was seen
that digital photogrammetry (24.05%), ground penetrating radar (17.05%), impact echo
(13.45%), infrared thermography (12.31%) and half-cell potential (8.52%) are the most
five utilized NDTs in the literature. In addition, it was observed that electrical resistivity,
chain drag, ultrasonic surface waves, laser scanning (terrestrial or unmanned aerial vehicle
(UAV)) and linear polarization resistance were utilized by 4.92%, 2.46%, 2.46%, 2.08% and
1.89%, respectively. Overall, it was derived that electromagnetic, electrochemical, magnetic,
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thermal, acoustic, optical and sensors constitute 17.99%, 16.67%, 1.7%, 12.31%, 22.92%,
26.7% and 1.7%, respectively. Tables 8 and 9 list some of the tackled research papers in this
study elucidating their studied defects and used NDTs.
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Table 8. Description of some of the studies in the research domain of CBD_NDT.

Reference NDTs
Defect

Corrosion Delamination Surface Cracks Concrete Quality Moisture Voids Honeycombing Debonding Scaling

[58] SST, USW, IE, UT, IR, GPR, ER, HCP and IRT X X X X X X

[59] IRT and GPR X X

[60] ER, IE, USW and DP X X X X

[61] ER, IE, USW and DP X X X X

[62] ER, GPR and IE X X

[63] GPR X

[64] GPR X X X X X

[65] GPR X X

[66] GPR, ER, IE and USW X X X

[67] LS X

[68] IE and IRT X

[69] HCP, IE, GPR and CD X X

[70] GPR X

[71] GPR and IRT X

Table 9. Description of some of the studies in the research domain of CBD_NDT (Cont’d).

Reference NDTs
Defect

Corrosion Delamination Surface Cracks Deformation Pop-Out Voids Efflorescence Spalling Scaling

[72] SI X

[73] DP X X X X

[74] DP X

[75] 3D neutron tomography and 3DX-ray tomography X

[76] IRT X

[77] DP X X

[78] DP X X X

[79] GPR X

[80] GPR, IE, CD and IRT X X

[81] DP X

[82] GPR X

[83] IRT, GPR and UPE X

[84] IRT X

[85] DP X X X
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Tables 10–12 explicate literature review matrices of concrete bridge defects against
used NDTs. It can be conceived that DP is the most utilized NDT to assess cracking
(17.48%), spalling (3.78%) and scaling (1.26%). It is reported that the detection of thin cracks
is a particularly sophisticated task and they become difficult to distinguish, most notably in
low contrast, nonuniform and noisy textures alongside various lighting conditions [86,87].
Moreover, the use of deep learning algorithms in surface defects is time-consuming since
it needs large datasets for their training and annotation [88,89]. In addition, HCP is the
most implemented NDT to evaluate corrosion at 6.74%. However, it is highly challenging
in a global-level assessment of an entire bridge element. Additionally, its measurements
are influenced by the presence of moisture and chloride in concrete [16,90]. Moreover, it
is observed that GPR is the second most used NDT for corrosion analysis (6.3%). Yet, the
interpretation of GPR signals is complicated by factors such as rebar spacing, location of
girders and columns, moisture ingress and pavement thickness [91,92]. ER (3.78%) and
LPR (1.73%) are found to be the third and fourth most used NDTs to examine concrete
corrosion. However, ER and HCP cannot be used to appraise corrosion in concrete bridge
decks with asphalt overlay [90,93]. In addition, the use of HCP, ER and LPR requires
diverting traffic [90]. IRT (9.76%), IE (8.19%) and GPR (4.41%) are the three most specialized
NDTs to deal with concrete delamination. In the same vein, CD and HS were leveraged
to detect delamination in 1.88% and 0.63% of studies, respectively. Nevertheless, they are
laborious, tedious, subjective and vulnerable to traffic noise [69,94]. Voids in concrete are
primarily detected by IE (3.31%), GPR (2.2%) and IRT (1.42%). Nevertheless, IE is sensitive
to boundary conditions [16,95]. Furthermore, GPR is noticed to be the forefront NDT to
find moisture with 1.26%. DP (0.63%), SI (0.47%) and LS (0.31%) are noted to be the most
constantly used NDT for deformation recognition in bridge elements. Concrete quality
is principally evaluated using USW (1.42%) and GPR (1.26%). It can be also seen that
GPR (0.63%), IRT (0.63%) and UT (0.47%) are the most effective NDTs to detect debonding
damage. Nonetheless, the results of IRT are affected by ambient environmental conditions,
it is unable to detect the depth of anomalies and encounters difficulties in finding deep
subsurface defects [16,90,96].

Table 10. Literature review matrix of concrete bridge defects and some used NDTs.

Defects
NDTs

HCP LPR IE GPR USW CD UPV ST TDR IR DP SM EIS

Corrosion 6.74% 1.72% 0.31% 6.27% 0.16% 0.00% 0.00% 0.16% 0.16% 0.31% 0.00% 0.00% 0.47%
Delamination 0.16% 0.00% 8.15% 4.39% 0.47% 1.88% 0.00% 0.31% 0.00% 9.72% 0.00% 0.00% 0.00%

Void 0.16% 0.00% 3.29% 2.19% 0.31% 0.00% 0.31% 0.47% 0.00% 1.41% 0.00% 0.00% 0.00%
Cracks 0.00% 0.00% 0.78% 0.94% 0.00% 0.00% 0.16% 0.00% 0.00% 0.31% 17.40% 0.00% 0.00%

Debonding 0.16% 0.00% 0.16% 0.63% 0.16% 0.00% 0.00% 0.16% 0.00% 0.63% 0.00% 0.00% 0.00%
Deformation 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.63% 0.00% 0.00%

Rupture 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.16% 0.00%
Honeycombing 0.16% 0.00% 0.47% 0.16% 0.16% 0.00% 0.00% 0.16% 0.00% 0.16% 0.16% 0.00% 0.00%

Moisture 0.00% 0.00% 0.00% 1.25% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Erosion 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.31% 0.00% 0.00%
Spalling 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 3.76% 0.00% 0.00%

Det/Quality 0.00% 0.00% 0.00% 1.25% 1.41% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Scaling 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 1.25% 0.00% 0.00%

Efflorescence 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.94% 0.00% 0.00%
Pop-out 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.16% 0.00% 0.00%
Rebar

exposure 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.31% 0.00% 0.00%

Floating 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.16% 0.00% 0.00% 0.00%
Bulge 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.16% 0.00% 0.00%
Pitting 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.16% 0.00% 0.00%

Deflection 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.16% 0.00% 0.00%
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Table 11. Literature review matrix of concrete bridge defects and other used NDTs.

Defects
NDTs

ER RCT CC TF AU AE + OF HS UT MW MFL ERM LS UPE

Corrosion 3.76% 0.16% 0.16% 0.16% 0.00% 0.16% 0.00% 0.16% 0.00% 0.31% 0.00% 0.00% 0.00%
Delamination 0.16% 0.00% 0.00% 0.00% 0.16% 0.31% 0.63% 0.31% 0.00% 0.00% 0.00% 0.00% 0.47%

Void 0.16% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.31% 0.00% 0.00% 0.00% 0.00% 0.31%
Cracks 0.00% 0.00% 0.00% 0.00% 0.00% 0.78% 0.00% 0.00% 0.00% 0.00% 0.00% 0.78% 0.16%

Debonding 0.16% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.47% 0.16% 0.00% 0.00% 0.00% 0.00%
Deformation 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.31% 0.00%

Rupture 0.00% 0.00% 0.00% 0.00% 0.00% 0.16% 0.00% 0.00% 0.00% 0.16% 0.16% 0.00% 0.00%
Honeycombing 0.16% 0.16% 0.00% 0.00% 0.00% 0.00% 0.00% 0.16% 0.00% 0.00% 0.00% 0.00% 0.00%

Moisture 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Erosion 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Spalling 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.47% 0.00%

Det/Quality 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Scaling 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.16% 0.00%

Efflorescence 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Pop-out 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Rebar

exposure 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Floating 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Bulge 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Pitting 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Deflection 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.16% 0.00%

Table 12. Literature review matrix of concrete bridge defects and other used NDTs (Continued).

Defects
NDTs

ULA IML MMS 3DN 3DX IR SI BCIS AS EHI iCAMM M5 AIDD

Corrosion 0.00% 0.16% 0.16% 0.16% 0.16% 0.16% 0.00% 0.00% 0.00% 0.16% 0.16% 0.16% 0.00%
Delamination 0.16% 0.00% 0.00% 0.00% 0.00% 0.31% 0.00% 0.16% 0.16% 0.00% 0.00% 0.00% 0.31%

Void 0.00% 0.00% 0.00% 0.00% 0.00% 0.16% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Cracks 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Debonding 0.00% 0.00% 0.00% 0.00% 0.00% 0.16% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Deformation 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.47% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Rupture 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Honeycombing 0.00% 0.00% 0.00% 0.00% 0.00% 0.16% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Moisture 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Erosion 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Spalling 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Det/Quality 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Scaling 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Efflorescence 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Pop-out 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Rebar

exposure 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Floating 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Bulge 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Pitting 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Deflection 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

4.2. Corrosion Detection and Diagnosis

This section attempts to exemplify some of the references that used non-destructive
testing for corrosion detection and diagnosis. Some of the references devoted to corrosion
detection and evaluation are shown in Table 13. A vast portion of the studies used ground
penetrating radar for the evaluation of rebar corrosion. Some researchers relied on visual
examination of waveforms or radargrams to interpret the GPR surveys [97–99]. Further
studies created K-means clustering-based corrosion maps by analyzing the reflection ampli-
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tudes of reinforcement [100–105]. On the same note, Ata et al. [106] compared the clustering
algorithms of expectation maximization, K-means and X-means using the Davies–Bouldin
index and Dunn index for identifying the optimum threshold values of GPR reflection am-
plitudes. Mohammed Abdelkader et al. [107] created a standardized amplitude scale using
a compilation of clustering, meta-heuristic optimization and multi-criteria decision-making
algorithms. Martino et al. [108] leveraged receiver operating characteristic (ROC) curves to
find the optimum threshold that establishes the appropriate correlation between half-cell
potential measurements and ground penetrating radar amplitudes. Alsharqawi et al. [79]
deployed a chi-squared test to determine the best distribution of threshold values after
applying K-means clustering to multiple bridge decks. Monte Carlo simulation was then
implemented to generate designated probability distributions of threshold values.

Other research efforts were devoted to the depth correction of GPR signals.
Barnes et al. [109] carried out depth correction by fitting the 90th percentile amplitude
value using linear regression analysis. In this regard, the two-way travel times are par-
titioned into bins of 0.5 ns, and the 90th percentile amplitude values are computed and
fitted. Romero et al. [110] reviewed three depth correction methods for GPR data: the first
finds the best-fit slope between two-way travel time and amplitude values, the second
uses maximum reflection amplitudes of rebar, and the third utilizes the 90th percentile
amplitudes. Dinh et al. [111] obtained normalized depth-corrected amplitudes by incor-
porating the attenuations elicited from geometric loss, dielectric loss and conductive loss.
Several other studies primarily focused on looking at the problem of corrosion severity
evaluation. Rahman et al. [112] adopted the Viola–Jones classifier to localize the hyperbolic
reflections of reinforcement. Entropy values were computed for the intensity arrangements
of detected regions and segmented into four deterioration zones using K-means clustering.
Liu et al. [113] coupled H-Alpha polarization decomposition with reverse time migration
algorithms for appraising early-stage corrosion. In this context, H-alpha decomposition
was utilized for scattering classification and the creation of reconstructed color-coded GPR
images. Dinh et al. [114] utilized the synthetic aperture focusing technique (SAFT) to visual-
ize rebar locations and corroded areas. In addition, interpolation functions were elaborated
for the reconstruction of 3D images from depth-corrected radargrams. Moselhi et al. [59]
conducted pixel-level fusion using discrete Wavelet Transform (DWT) for GPR and IRT
images. Histogram equalization and threshold segmentation were then applied to extract
deterioration features present in the images. Ma et al. [115] detected peaks of rebar hy-
perbolas using the sum of square difference (SSD) with adaptive entropy thresholding.
In addition, the GPR signal-to-noise ratio was utilized to examine the clarity of detected
hyperbolas and subsequently assess the corrosion severities of rebar. Mohamadi et al. [116]
suggested a fusion between multiple NDTs (HCP, ER, GPR and IE) for the detection of
corrosion and delamination. In this regard, DWT was used to capture features of waveform
signals. Machine learning classifiers of support vector machines (SVM), artificial neural
network (ANN), decision tree (DT) and logistic regression (LR), were implemented for the
feature-level fusion of measurements from NDTs.

A large number of research works utilized measurements from HCP, LPR and ER to as-
sess the corrosion activity of rebar. Elsener [117] interpreted corrosion potential by looking
at the gradients between passive and active areas. It was indicated that a drop in the poten-
tial to −0.6 V implies the presence of chloride-induced corrosion. Qian et al. [118] assessed
the corrosion condition of reinforcement using measurements from concrete resistivity, half-
cell potential and electrical resistivity. It was evinced that −450 mV (90% probability of cor-
rosion) is a proper threshold value to interpret corrosion. In a latter study, Kim et al. [119]
studied concrete quality and corrosion activity using P-wave transmission testing and
half-cell potential, respectively. In this regard, potential values of −200 mV, −350 mV
and −500 mV were set as thresholds for the rating system of corrosion risk. Soleymani
and Ismail [120] evaluated corrosion activity using NDTs of LPR, HCP, Tafel plot (TP) and
chloride content. The threshold values of 0.2 and 1 µA were used to differentiate between
passive, moderate and active states of corrosion. It was deduced that the four NDTs agreed
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on 24% of the entire specimen. Furthermore, LPR and TP overestimated corrosion activ-
ity more than HCP and chloride content. Bourreau et al. [121] utilized HCP and ER for
corrosion diagnosis on bridge piers. Threshold values of 50 KΩ and 100 KΩ were used
to separate areas with negligible, moderate and high corrosion risks. Kamde et al. [122]
employed LPR, HCP and EIS to measure corrosion states of fusion-bonded epoxy (FBE)
coated steel rebar. Results demonstrated that LPR and HCP failed to detect early stages of
corrosion in FBE-coated steel reinforcement.

A fourth branch of research efforts was designated for the multi-modal non-destructive
evaluation of bridge defects. Pailes et al. [123] used the multimodal NDTs of GPR, HCP,
ER, IE and HS to analyze the corrosion and delamination of bridge decks. Potential values
of −350 mv and −200 mv were used to depict a 90% probability of active and passive
corrosion, respectively. It was also highlighted that high correlation levels were exhib-
ited between the pairs (HCP, ER), (ER, HS) and (HS, GPR). Gucunski et al. [124] created
an autonomous system for bridge non-destructive evaluation called “RABIT”. It encom-
passes four NDTs, namely, ER, GPR, IE and USW, to assess corrosion, delamination and
concrete quality. A condition index was thereafter calculated for each NDT based on
weighted averaging of the deterioration areas in each condition state. Gucunski et al. [125]
investigated five NDTs, namely, IE, GPR, HCP, USW and ER, for evaluating the delami-
nation, corrosion and concrete quality of bridge decks. A weighted condition index was
constructed for IE, GPR, HCP and ER, and a combined condition curve was subsequently
created from their blending. Furthermore, significant agreements were experienced be-
tween the pairs (ER, HCP), (ER, GPR) and (HCP, GPR). Kilic and Caner [126] performed
non-destructive evaluation using augmented reality technology, visual inspection, GPR,
IRT, laser distance sensors and a telescopic camera. Robison et al. [80] evaluated bridge
decks with and without asphalt overlays using CD, IE, IRT and GPR. Reasonable levels
of correlation were sustained between CD, IE, IRT and GPR. Their approach aimed to
investigate cracks, voids, moisture, delamination and corrosion.

A fifth group of research studies contains the less frequently utilized NDTs.
Frigerio et al. [127] applied reinforced concrete tomography (RCT) with gamma rays for
corrosion and honeycombing detection. In this context, defects were detected and discrimi-
nated by analyzing the gammagraphy of the designated bridge element. Fernandes et al. [128]
adopted induced magnetic field and magnetic flux leakage tests to identify hidden cor-
rosion in prestressing strands. Corrosion was determined by observing the shape and
size of the variations of the magnetic flux patterns. It was concluded that both IMF and
MFL were able to provide satisfactory detection results with a slight advantage for MFL.
Zhao and Xiong [129] used electrochemical impedance spectroscopy to measure corrosion
in the bridge deck. The analysis of variance (ANOVA) test was applied to investigate
the implication of temperature on the impedance performance of concrete slab, and they
suggested that temperature could influence the impedance performance and expedite the
corrosion process. Zhu et al. [130] presented a piece of equipment that utilized EHI for the
detection and quantification of corrosion. Through an ANOVA test, it was proved that there
was a correlation between surface temperature and cover thickness and rebar diameter as
well as between surface temperature and corrosion amount. Oh et al. [131] implemented
a magnetic flux detection method for corrosion detection in tendons of prestressed concrete
bridges. Kernel principal component analysis was adopted to remove intrinsic noises in
MFL data. Thereafter, corrosion was obtained from a damage index that was retrieved
from the denoised signals of a search coil and a Chattock coil. Mosharafi et al. [132] utilized
a passive magnetic-based NDT called “iCAMM” for the corrosion assessment of bridge
decks. In this context, gradient values and standard deviation of gradient values were
exploited to process the raw magnetic data.
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Table 13. Summary of some of the research studies devoted to corrosion assessment.

Reference Publication Year Non-Destructive
Technique

Data Processing
Technique Testing Type Element Type

[112] 2022 Ground penetrating radar Viola–Jones +
K-means clustering Field Deck

[113] 2022 Ground penetrating radar
H-alpha polarization

decomposition + reverse
time migration

Laboratory Slab

[106] 2021 Ground penetrating radar
Expectation

maximization, X-means
and K-means clustering

Field Deck

[131] 2020 Magnetic flux leakage Kernel principal
component analysis Laboratory External tendon

[79] 2020 Ground penetrating radar
Chi-squared test +

K-means clustering +
Monte Carlo simulation

Field Deck

[116] 2020
Half-cell potential, ground

penetrating radar and
electrical resistivity

DWT + ML (SVM, ANN,
DT and LR) Laboratory Slab

[114] 2019 Ground penetrating radar SAFT and interpolation
algorithms Field Deck

[115] 2018 Ground penetrating radar SSD with adaptive
thresholding Field Deck

[59] 2017 Ground penetrating radar Pixel-level image fusion
using DWT Field Deck

[105] 2016 Ground penetrating radar Fuzzy set theory +
K-means clustering Field Deck

[108] 2014 Ground penetrating radar
and half-cell potential ROC curves Field Deck

[99] 2013 Ground penetrating radar Visual investigation
of radargrams Field Deck

4.3. Diagnosis and Assessment of Delamination

Table 14 lists some of the reported state of art models for the detection and assessment
of delamination. The first group of studies discussed herein used CD/HS in their inspec-
tion. In their study, Henderson et al. [133] employed high-pass filtering and mechanical
soundproofing to eradicate traffic noise from the recorded signals of a chain drag. In addi-
tion, a linear prediction coefficient was used to depict spectrograms of chain drag signals.
Scott et al. [134] compared the NDTs of CD, IE and GPR in an investigation of delaminated
bridge decks. The results demonstrated that IE and CD produced results compatible with
the taken cores with a slight advantage to IE due to the subjective and inconsistent nature of
CD. Conversely, GPR wasn’t able to properly find delamination features. Yehia et al. [135]
evaluated the use of GPR and CD in the inspection of decks with anomalies of delami-
nation, voids and cracks. The coring results of two decks manifested that CD and GPR
could identify 23% and 77% of the deteriorated areas, respectively. Oh et al. [94] analyzed
the utilization of CD, air-coupled IE and IRT in the detection of delaminated areas. They
managed to detect most of the near-surface delamination, which aligned with the drilled
cores. Additionally, they urged the use of IE and IRT based on a point-based system that
tackled the physical, economical and logistic features of each NDT. Guthrie et al. [136]
reviewed the use of air-coupled IE and CD in mapping delaminated areas. They pointed
out that similar delamination maps were obtained by CD and IE demonstrated in the form
of a variation of 3 percentage points between them.
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The second set of research endeavors was primarily devoted to the use of GPR in
delamination inspection. Shamsudin et al. [137] utilized GPR and VI for the detection and
quantification of air-filled and water-filled delaminated areas in concrete decks. It was
shown that VI was incapable of finding early delamination. In addition, the differences in
delaminated areas between the two techniques varied from 2.3% to 32.6%. Clem et al. [138]
pointed out that GPR could detect shallow delamination based on laboratory experiments
for concrete specimens. The authors of [64] studied the influences of concrete mixes,
concrete maturity and temperature on the capability of GPR to detect delamination, cracks,
voids, corrosion, honeycombing and missing rebar. It was derived that delamination was
successfully detected by GPR with an accuracy surpassing 91%. In another study, Dinh
and Gucunski [139] investigated the factors implicating the capability of GPR to detect
delaminated areas. They indicated that delamination thickness, depth and closeness to
rebar highly influence the detectability of delamination by GPR. Yehia et al. [140] explored
the applicability of IRT, IE and GPR in the detection of flaws like cracks and delamination.
It was shown that GPR yielded high accuracies in the detection of voids and delamination,
but failed to find surface cracks. Moreover, IRT could identify voids and delamination when
they are shallow and large. In addition, IE managed to identify the three types of flaws with
high efficiency. Sultan and Washer [141] scrutinized the applicability of GPR to identify
corrosion-induced and non-corrosion delamination using ROC curves. It was interpreted
that the area under the curve (AUC) lay between 0.475 and 0.672, which implied that GPR
is not a preferable NDT to detect delamination even in bridges with a high chloride activity.

A third group of research studies principally focused on acoustic techniques in their
inspection. Zhang et al. [142] proposed an automatic impact-based delamination detection
(AIDD) system to find delamination between concrete slab and repair patches. In this
regard, modified ICA was for noise suppression, and mel frequency cepstral coefficients
were utilized as dominant input features. Moreover, a radial basis function network of
20 hidden neurons with a spread value of 10 was implemented for delamination detec-
tion. Hendricks et al. [143] utilized a high-speed acoustic impact-echo sound system for
delamination localization. The acoustic responses were then fed into a CNN model to be
trained and facilitate the automated detection of delamination based on spectrograms. In
a study presented by Sengupta et al. [144], a multi-class SVM model with a Gaussian kernel
function was used for the automated characterization of IE signals into condition ratings.
Ref. [145] compared the performances of 1D-CNN, 1D recurrent neural network using
bidirectional LSTM units, AlexNet, ResNet and GoogleNet for automated classification
of IE spectrograms into defected and sound regions. It was indicated that 1D-CNN could
outperform other models attaining accuracies of 0.95 and 0.7 for healthy and defected
regions, respectively. Ref. [146] employed 1D-CNN and AlexNet (full training and transfer
learning) on IE signals to discriminate between defected, sound and de-boned areas. In
this context, 1D-CNN sustained the best prediction performance reaching 0.68 and 0.58 for
cement overlay and asphalt overlay specimens, respectively.

The fourth collection of papers based their delamination inspection on IRT. It was
observed that some research endeavors capitalized on the manual analysis of thermal
images for delamination localization [39,147–149]. Omar and Nehdi [44] investigated the
use of unmanned aerial vehicle infrared thermography for the assessment of subsurface de-
lamination. They applied histogram equalization to enhance the contrast of thermal images
and distribute their intensities. Thereafter, K-means clustering was utilized to cluster the
temperature values of pixels into three clusters, namely warning, monitoring and sound.
Sultan and Washer [150] exploited ROC curves to specify the optimum threshold valuer
of thermal contrast, which differentiates sound from delaminated regions. In this regard,
impact echo and coring were used for ground-truth labeling of pixels. Omar et al. [151]
utilized an IRT camera mounted on a car for the detection of delamination. A mosaicked
thermogram for the whole bridge deck was created based on temperature thresholds that
were defined using K-means clustering. Cheng et al. [152] carried out pixel-level segmen-
tation using an encoder-decoder deep learning architecture that encompassed DenseNet
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with densely connected atrous pyramid pooling (DenseASPP). A sliding window detector
algorithm was introduced to apply the pixel-level detection model to the entirety of the
bridge deck. Cheng et al. [153] presented edge detection-based LSM for detecting the edges
of subsurface delamination. In this context, a temperature gradient map was constructed
based on a modified edge detector that comprised the use of the Sobel kernel function
and anisotropic flux function. Pozzer et al. [154] established multiple regression analysis
functions to interpret the most important influencers of concrete surface temperature. They
inferred that the most influential factors comprised inspection time, solar radiation, ambient
temperature and atmospheric pressure.

4.4. Detection of Voids

Table 15 reports some of the conducted research studies for void detection. The authors
of [155] detected the presence of voids under concrete decks through the visual examination
of GPR radargrams. The authors of [156] conducted an investigation using ultrasonic
tomography to find voids in tendon ducts of post-tensioned bridge beams. In this regard,
they can be localized by monitoring the time-of-flight of ultrasonic pulses. Iyer et al. [157]
investigated the presence of voids by studying 2D ultrasonic C-scan images. In this regard,
flaw gates were applied to retrieve the A-line signals, and transform them into C-scan
images. Tinkey and Olson [158] obtained a three-dimensional visualization of IE scanning
for the localization of grouting discontinuities like voids. Belli et al. [159] studied the
discrepancies in the response amplitudes of A-scans between defective and healthy bridge
decks. In this context, voids can be determined by subtracting the response amplitude of
healthy decks from the response amplitudes of defective decks with voids. Oh et al. [160]
utilized LSTM to train processed IE data while considering the distance between measured
and hit points, the depth of the ducts and the thickness of the slab. Lee et al. [161] used
a CNN autoencoder to detect voids based on captured IE signal data. Moreover, continuous
wavelet transform (CWT) was utilized to convert the IE signals to scalogram images.
Oh et al. [162] implemented LSTM to analyze the time series characteristics of IE signals,
and a feed-forward neural network (FFNN) was adopted to characterize the frequency
spectrum of the IE signals. A multiplication operation was then performed to consolidate
the feature vectors from the outputs of LSTM and FFNN, which was further studied to
detect the presence of voids. Pedram et al. [163] carried out an investigation using IRT of
slabs with simulated voids. Maximum thermal contrast was utilized to understand the
relationship between temperature variations and the depth of the voids. Then, multivariate
linear regression functions were proposed to predict the maximum thermal contrast with
void depth and initial temperature set as explanatory variables.

A second collection of research studies were dedicated to the detection of other defects
alongside voids like debonding, delamination, corrosion and cracks. Gassman et al. [164]
carried out an investigation of precast and reinforced concrete slab using IE. In this context,
Fast Fourier Transform (FFT) was applied to analyze the resonant peaks of P-waves, which
are then used to characterize delamination and voids in slabs. Yehia et al. [140] evaluated
the application of IRT, IE and GPR in the detection of surface cracks, delamination and
voids. In this regard, designated anomalies were monitored through the examination of
frequency responses, radargrams and thermograms. Abdel-Qader et al. [165] deployed IRT
for the detection of voids and delamination in concrete slabs. A modified seeded region
growing algorithm and dilation morphological operation were applied to segment the
thermal images into defected and non-defected regions. Abdel-Qader et al. [166] utilized
GPR for the detection of voids and delamination. In this context, three deconvolution
algorithms consisting of SVD, independent component analysis (ICA) and subset selection
were applied and reviewed for diminishing the overlap between reflections and improving
the estimation of round-trip travel times. Coleman and Schindler [167] compared the use of
IE, GPR and IRT in the detection of voids, delamination and corrosion. It was revealed that
GPR wasn’t able to identify voids and delamination. In addition, IE succeeded in finding
shallow and deep delamination alongside shallow voids but failed to detect deep voids.
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Table 14. Review of some of the research studies on delamination detection and assessment.

Reference Publication Year Non-Destructive
Technique Data Processing Technique Element Type Testing Type

[144] 2021 IE SVM Deck Field

[154] 2020 IRT Multiple regression analysis Slab Laboratory

[153] 2020 IRT Temperature gradient-based
level set method (TLSM) Deck Field + laboratory

[152] 2020 IRT
Encode-decoder deep
learning architecture

(DenseNet + DenseASPP)
Slab Field + laboratory

[143] 2020 IE CNN Deck Field

[168] 2018 Ball-chain
impact source

Short-time
Fourier transform Deck Field

[151] 2018 IRT K-means clustering Deck Field

[141] 2018 GPR ROC curves Deck Field

[44] 2017 IRT Histogram equalization +
K-means clustering Deck Field

[150] 2017 IRT Thermal contrast threshold
+ ROC curves Deck Field

[149] 2013 IRT Manual examination
of thermograms Deck Field

[142] 2012 AIDD
Modified ICA +

Mel-frequency spectral
coefficients + RBFN

Deck Field + laboratory

[39] 2003 IRT Manual examination
of thermograms

Deck and
abutment Field

4.5. Detection of Moisture, Debonding, Deformation and Rupture

Some researchers counted on the visual analysis of waveforms/radargrams of GPR
data for the investigation of moisture ingress in concrete [46,98,169–172]. Ref. [63] de-
veloped a three-layered FFNN for the automated detection of moisture ingress based on
GPR surveys. In this regard, the input signals of GPR were processed using a sliding
window, 64 samples in size, with a step of one sample between two consecutive windows.
(Kilic et al. [173]) deployed the techniques of split-spectrum processing and order-statistic
filtering to enhance the signal-to-noise ratio of GPR signals, which can lead to better de-
tection of moisture ingress. Earlier studies examined debonding of the overlay through
visual investigation of GPR radargrams or IRT thermograms [148,174]. Rhim et al. [175]
investigated debonding between concrete and fiber-reinforced plastic using microwave and
ultrasonic methods. The inspection was performed using a horn antenna with a frequency
bandwidth and center frequency of 10 GHz and 15 GHz, respectively. Hing and Halabe [71]
inspected air-filled and water-filled debonding using 1.5 GHz ground-coupled GPR and
IRT. They concluded that IRT and GPR are beneficial in finding air-filled and water-filled
debonding, respectively. Ghosh and Karbhari [176] used IRT to pinpoint interlaminar
debonding inside fiber-reinforced polymer composite or interface debonding between
concrete and composite. Processed two-dimensional thermal profiles were compared
against baseline thermal profiles to quantitively find debonding. Crawford [177] studied
the bonding condition of carbon fiber-reinforced polymer laminates using impact echo. In
this context, a significant correlation was sustained between signal frequency and bonding
condition, whereas the peak frequencies of bonded and de-bonded areas were 3.26 and
2.88 kHz, respectively.
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Table 15. Review of some of the research studies on void detection.

Reference Publication Year Non-Destructive
Technique

Data Processing
Technique Element Type Testing Type

[161] 2022 Impact echo CNN auto encoder + CWT Duct Laboratory

[163] 2022
Infrared

thermography
camera

Maximum thermal
contrast + multivariate

linear regression
Slab Laboratory

[162] 2022 Impact echo Heterogenous neural
network Duct Laboratory

[160] 2020 Impact echo LSTM + FFNN Duct Laboratory

[159] 2008 Ground
penetrating radar

Nelder-Mead
unconstrained nonlinear

optimization
Deck Laboratory

[98] 2008 Ground
penetrating radar

Visual examination
of radargrams Deck Field

[158] 2007 Impact echo Analysis of reflection of
pulses from voids

Ducts in
posttensioned girder Field

[157] 2003 Ultrasonic C-scan
imaging

Analysis of patterns in
C-scan images

Post-tensioned
tendons Laboratory

[156] 2001 Ultrasonic
tomography

Analysis of time of flight
of ultrasonic pulses

Grouted ducts in
post-tensioned

beams
Laboratory

[155] 1996 Ground
penetrating radar

Visual examination
of radargrams Deck Field

A third group of studies aimed to study deformation location and trends in bridges.
The authors of [178] applied digital photogrammetry for deformation measurement in
bridge columns. In this context, edge lines of columns were identified using the Robert
threshold method. In addition, the odd-numbered and even-numbered horizontal lines
of images were studied separately to ameliorate the calculation process of deformation.
Hoppe et al. [179] implemented InSAR technology for long-term monitoring of deforma-
tion. They exploited the SqueeSAR algorithm to process the data obtained from the
TerraSAR-X radar satellite. Wang et al. [72] applied Persistent Scatterer Pairs InSAR (PSP-
InSAR) technology to deformation detection and the analysis of piers. In this regard,
a three-dimensional deformation model was created using the Green spline interpola-
tion algorithm. The most unfavorable condition method and temporal deformation data
were used to identify the time and location of the deformation. Schlögl et al. [180] ana-
lyzed deformation trends in beams using interferometric synthetic aperture radar (InSAR),
vehicle-mounted mobile laser scanning (MLS) and airborne laser scanning (ALS). It was
pointed out that InSAR suits the long-term observation of deformation while ALS rendered
more flexibility than MLS. The fourth group of research studies deals with rupture and
corrosion in tendons. Krause et al. [181] utilized four-channel SQUID (superconducting
quantum interference device) system for the detection of rupture in steel tendon. Signals of
stirrups were repressed through: (1) best-fitting stirrups signals, and subtracting them from
the measured signals, and (2) analyzing remnant field traces after amending the magneti-
zation direction of the stirrups. Youn et al. [182] carried out an inspection using acoustic
emission sensors to find corrosion-induced breaks in wires in grouted post-tensioned
beams. In this regard, breaks were identified through the examination of dissipated energy
and the arrival time of sound waves.
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4.6. Surface Defects Detection and Classification

This section addresses research studies on the semantic detection of surface defects.
Through systematically reviewing the literature, it is noted that most previous research was
directed toward surface cracks. Tables 16 and 17 record some selected research studies for
the detection of surface cracks based on digital photogrammetry. The detection of surface
defects has been a notable research area in bridge maintenance management. Unsupervised
segmentation and edge detection algorithms have been actively utilized to detect surface
cracks before 2020. In this respect, some of the developed models deliberated and urged
some highly-acknowledged edge detection techniques like the fast Haar transform [38],
Sobel operator [183] and Laplacian of Gaussian operator [184]. Other relevant studies
adopted some improvements to unsupervised segmentation techniques like the modified C-
V algorithm [185,186], entropy meta-heuristic algorithm [187], 2D maximum entropy [188],
fuzzy logic [189] and two-dimensional amplitude and phase estimation [190].

Another set of studies leveraged machine learning, which has achieved great suc-
cess in surface defects detection since the embryonic stages of bridge maintenance man-
agement. One early approach was the use of principal component analysis to analyze
cracks in bridge decks. In this model, local detection was carried out, whereas each im-
age was partitioned into several blocks and each block was then processed individually.
Other studies used supervised machine learning to detect crack patches. In the study by
Adhikari et al. [42], a segmentation model was proposed based on finding crack connectiv-
ity, and then a skeleton image was created for crack segments to retrieve their descriptors
of length and width. An artificial neural network was then proposed to predict the depth of
the crack given its width. Prasanna et al. [41] investigated the prediction performances of
support vector machines, Adaboost and random forest models fed by scale-space, intensity-
based and gradient-based features. Lei et al. [191] introduced a crack central point method
to characterize the features of crack fragments. Support vector machines and sequential
minimal optimization were integrated for rapid crack inspection. Principal component
analysis and integral projection were employed for optimal diagnosis of crack features.
Then, an integrated model of support vector machines, enhanced salp swam algorithm
(ESSA) and Dempster–Shafer (D–S) fusion algorithm was used to enhance crack detection
accuracies. Jia and Huang [192] identified some hand-crafted geometric features like crack
area, distribution density, projection vector and Euler number. A back-propagation artifi-
cial network was then implemented to distinguish between longitudinal, transverse and
reflective cracks.

Deep learning has been pervasively applied to address crack detection problems since
the year 2018. Some studies used the AlexNet architecture to find crack patches [40,193].
Sharma et al. [194] conducted a comparative study between the application of pre-trained
deep networks of AlexNet, GoogleNet and ResNet-18 and deduced that GoogleNet and
ResNet-15 had better accuracies. Another branch of studies utilized the region convolu-
tional neural network (R-CNN) family such as R-CNN [195], faster R-CNN [196] and mask
R-CNN [197]. Zheng et al. [198] reviewed the prediction performances of fully convolu-
tional networks, R-CNN and the richer fully convolutional neural network (RFCN). It was
suggested that RFCN could render fewer prediction errors and a more robust performance
than the other deep learning topologies. A third branch of studies utilized the You Only
Look Once (YOLO) family in crack detection. Zhang et al. [199] proposed an improved
YOLO network for performing crack detection (CR-YOLO). Their approach was based on
tuning the architecture of CSPDarkNet53, and an attention model was used to increase the
focus on crack details. Yu et al. [200] built a crack detection and quantification model using
the YOLO V5 network. A radio filter was exploited to eliminate speckle noises and a mask
filter was implemented to eradicate handwritten markings. Kun et al. [201] designed a deep
bridge crack classification network (DBCC-net) by employing YOLOX as the backbone
architecture of the object detector and then pruning. Deng et al. [202] developed a YOLO
V2-based model for bounding box-level detection of cracks and differentiation of them
from handwriting scripts. Stochastic gradient descent with momentum algorithm was
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exploited for end-to-end training of the YOLO V2 network. Jiang et al. [203] used YOLO V4
as a first stage for the creation of coarse region details of crack patches. In the second stage,
a deep learning-based network with a hybrid dilated convolutional block (HDCB-net) was
presented for pixel-level crack detection.

A fourth group of research efforts leveraged the ResNet family of networks for car-
rying out crack detection. Kim et al. [204] adopted ResNet-18 for crack localization and
characterization in bridge piers. Li et al. [205] created a crack identification model based
on the ResNeXt framework and a post-processing module. It was inspired by Inception
and Visual Geometry Group (VGG) networks, and the input dataset is divided into smaller
batches and each previous batch is appended as the initial batch in the next iteration. The
fifth branch of studies is designated for research efforts using VGG networks. Xu et al. [206]
created a VGG-16-based network “CDFFHNet” for semantic segmentation of crack pixels.
In that study, multiscale supervised learning and holistically nested network are utilized
to merge the prediction results of different scales. Ye et al. [207] assessed the diagnostic
performance generated from three deep neural networks consisting of a VGG-based fully
convolutional network (FCN), Deeplab V3 and a pruned crack recognition network (PCR-
Net). It was shown that the VGG-based FCN and PCR-Net could attain superior accuracies
and lower computational time.

The final group of studies encompasses diverse sets of deep neural networks.
Chu et al. [208] developed a multi-scale fusion network with an attenuation mechanism
(Tiny-Crack-Net) for the segmentation of tiny cracks. In this model, a dual attention module
and modified residual network were included to model the local characteristic of cracks and
separate them from the background. Zheng et al. [209] built a lightweight deep-learning
network based on the SegNet network and bottleneck depth separable convolution with
residuals. A Root Mean Squared prop algorithm was implemented for learning the network,
and cross-entropy was used as the loss training function. Zhang et al. [210] developed
a crack detection approach by combining a one-dimensional convolutional neural network
(1D-CNN) and a long-short-term memory network (LSTM). The images were pre-processed
before training by converting them to the frequency domain using a fast Fourier trans-
form to reduce the computational time. Qiao et al. [211] presented an improved U-net for
crack identification. They incorporated Atrous Spatial Pyramid Pooling and improved
inception modules to boost the efficiency of multi-feature fusion. Bae et al. [212] devised
an end-to-end deep super-resolution crack network called “SrcNet”. In this network,
a deep learning-based super-resolution technique is employed to circumvent the issues of
resolution and blurring.

Chen [213] introduced a convolution neural network-based transfer learning frame-
work for conducting box-level localization and the extraction of cracks. In this model,
a migration learning technique was exploited to address the large size of the training
dataset and alleviate overfitting and local minima issues. Flah et al. [214] integrated
a convolutional neural network and Otsu thresholding to detect and quantify cracks. Di-
lation and erosion morphological operations were undertaken to remove noise from the
images. Li et al. [215] presented a pixel-level crack segmentation model by coupling
a convolutional neural network (CNN) with naïve Bayes (NB). After segmentation, skele-
tonization was performed to find the width of crack fragments. Zhu and Song [216]
developed a weakly supervised network for pixel-level crack segmentation. It comprised
CNN, K-means clustering (KMC) and an autoencoder, and network training was done
using a stochastic gradient descent algorithm. Ni et al. [217] proposed a generative adver-
sarial network-(GAN) based strategy for crack detection in bridge piers. In it, a GAN-based
distance was presented to calculate the morphological differences between manual and
predicted labels. In addition, fault tolerance indices were introduced to measure the level of
morphological similarity. Tang et al. [218] Measured crack width using backbone double-
scale features. U-net was used for crack segmentation, and the backbone refining algorithm
used eight neighborhood pixels for morphological processing. In the same vein, another
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set of studies used other types of non-destructive evaluation techniques like laser scanner
surveys [219–221], acoustic emission sensors [222–224] and ultrasonic pulse velocity [225].

Limited research work addressed other surface defects like spalling and scaling.
Table 18 lists some of the research studies on the detection and quantification of spalling
and scaling defects. Kasireddy and Akinci [226] introduced a point-cloud-based model
for spall defect detection. In it, the Eigen entropy measure was used to find the optimal
neighborhood size of K-nearest neighbors (KNN). Thereafter, the features of surface vari-
ation (SV), normal vector (NV) and curvature variation (CV) were extracted to be fitted
to probability distribution functions. Al-Sabbag et al. [227] created an extended reality
(XR) system to interactively detect and measure the size of spalling. In it, a feature back-
propagating refinement scheme (F-BRS) was used to distinguish the damaged regions.
Moreover, a ray-casting algorithm was implemented for projection from 2D image to 3D
real-world coordinates. Mohammed Abdelakder et al. [228] proposed an integrated model
for segmentation and severity prediction of scaling in reinforced concrete decks. In it,
an invasive weed optimizer (IWO) was coupled with Kapur entropy and Renyi’s entropy
functions for detecting spalling pixels. Discrete wavelet transform and singular value
decomposition (SVD) were blended to build a feature map of spalling pixels. Elman neural
network and invasive weed optimization were merged to predict automatically area of
spalling in images.

With regards to scaling assessment, Mohammed Abdelkader et al. [74] blended
a cross-entropy (CE) function and grey wolf optimizer (GWO) for differentiating scaling
pixels from the background. Then, ENN and GWO were hybridized for automated measure-
ment of scaling area based on the input feature vector of SVD and DWT. Adhikari et al. [229]
presented an image-based approach to predict scaling depth. The selected geometric fea-
tures comprised depth, area, perimeter, major axis length, minor axis length, aspect ratio
and gray value. Then, a back-propagation artificial neural network was fed with the pre-
defined extracted features for evaluating scaling depth, and it was able to outperform
naïve Bayes- and bagged decision tree (BDT)-based methods. Mizoguchi et al. [67] assessed
scaling depth in concrete piers using long-distance terrestrial laser scanning. In their model,
a customized region growing algorithm with an interactive selection of seed points and use
of primitive surfaces for quantitative evaluation of scaling depth from a 3D laser scanned
point cloud. In addition, they managed to monitor secular variations in scaling depth using
iterative closest point (ICP) and feature sampling (FS) algorithms.

Table 16. Summary of some of the research studies for detection of surface cracks using
digital photogrammetry.

Reference Publication Year Data Processing Technique Detection Type Testing Type Element Type

[208] 2022 Tiny-Crack-Net Pixel level Field Deck

[199] 2022 CR-YOLO network (YOLO for
bridge crack detection) Pixel level Field Column

[206] 2022
Convolution–deconvolution feature

fusion with holistically nested
networks (CDFFHNet)

Pixel level Field Deck

[209] 2021
SegNet + bottleneck

depth-separable convolution
with residuals

Pixel level Field Deck

[203] 2021
YOLO V4 + deep learning-based

network with hybrid dilated
convolutional block (HDCB)

Pixel level Field Deck

[188] 2021 Image blocking + 2D maximum
entropy segmentation Pixel level Lab Beam
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Table 16. Cont.

Reference Publication Year Data Processing Technique Detection Type Testing Type Element Type

[230] 2021

Feature extraction (integral project +
principal component analysis) +

crack detection (SVM + ESSA
(D-S) fusion)

Pixel level Field Pier and girder

[211] 2021 Improved UNet convolutional
neural network Pixel level Field Girder

[210] 2021 1D-CNN-LSTM Pixel level Field Deck

[212] 2021 SrcNet Pixel level Field Pier

Table 17. Summary of some of the research studies for detection of surface cracks using digital
photogrammetry (Cont’d).

Reference Publication Year Data Processing Technique Detection Type Testing Type Element Type

[213] 2021 Transfer learning-based CNN Bounding box
level Field Substructure

[194] 2020 AlexNet, GoogleNet and ResNet-18 Image level Field Deck

[192] 2020

Geometric features (area, projection
vector, distribution density and
Euler number) + projection and

wavelet denoising + ANN

Pixel level Field Substructure

[214] 2020 Otsu + morphological operations
+ CNN Pixel level Field Beam, girder,

pier and cap

[191] 2020 Crack central point method +
support vector machines Pixel level Field Superstructure

[197] 2020 Mask R-CNN Pixel level Field Column and
deck

[215] 2020 NB-FCN Pixel level Field Substructure

[216] 2020 FCN + KMC Pixel level Field Deck

[184] 2019

Edge detection;
spatial domain (Roberts, Prewitt,

Sobel, Laplacian of Gaussian),
frequency domain (Butterworth,

Gaussian)

Pixel level Field Deck

[195] 2018
Region with convolutional neural

network (R-CNN) with
transfer learning

Bounding box
level Field Rail

Table 18. Summary of some of the research studies for detection of spalling and scaling.

Reference Publication
Year

Non-Destructive
Technique

Types of
Surface Defect

Data Processing
Technique

Detection
Type Element Type Testing Type

[226] 2022 UAV Laser
scanner Spalling

Entropy-based
approach + KNN +
FS (SV + NV + CV)

— Deck, pier and
abutment Field

[227] 2022 Digital
photogrammetry Spalling XRIV + f-BRS +

ray-casting Pixel level Abutment Field

[228] 2021 Digital
photogrammetry Spalling

Segmentation (KE +
RE + IWO) +

detection (SVD +
DWT + ENN

+ IWO)

Pixel level Deck Field



Buildings 2023, 13, 800 34 of 49

Table 18. Cont.

Reference Publication
Year

Non-Destructive
Technique

Types of
Surface Defect

Data Processing
Technique

Detection
Type Element Type Testing Type

[74] 2021 Digital
photogrammetry Scaling

Segmentation (CE +
GWO) +detection

(SVD + DWT +
ENN + GWO)

Pixel level Deck Field

[229] 2014 Digital
photogrammetry Scaling

Geometric features
+ ML (BPNN,

NB, BDT)
Image level Deck Field

[67] 2013 Terrestrial laser
scanning Scaling Region growing +

ICP+ FS — Pier Field

4.7. Classification of Surface Defects

This section reviews research studies devoted to the recognition of surface defects
in different bridge components. Tables 19 and 20 summarize some of the state-of-the-
art studies devoted to the classification of surface defects in reinforced concrete bridges,
indicating their data processing technique, detection type, component analysis and testing
type. A few of the reported studies relied on the use of machine learning to categorize the
type of defect. For instance, Mohammed Abdelkader et al. [231] presented an integrated
machine-learning model for the classification of surface defects in bridge decks into cracks,
spalling and scaling. Singular value decomposition was used to capture the intrinsic
features of surface defects, and then an Elman neural network (ENN) and invasive weed
optimization were integrated to characterize the type of surface defect. In addition, Kabir
and Rivard [232] used a grey level co-occurrence matrix (GLCM) to map the texture
features of the image. A maximum likelihood classifier (MLC) and un-supervised K-means
clustering were applied to classify cracks, spalling, erosion and corrosion. In another
study, Kabir et al. [233] combined Haar’s discrete wavelet transform and grey level co-
occurrence matrix for texture analysis of surface damage. A multi-layer perceptron was
then implemented to classify the damage into cracking, corrosion and spalling.

Another branch of studies exploited semantic thresholding for pixel-level classification
of surface anomalies such as mean shift segmentation [234], Otsu, skeletonization and
morphological operations [235] and thresholding and morphological operations [236]. In
recent years, deep learning has soared as a solution for tackling complex problems of
surface defect recognition. In this context, some research studies utilized the Inception
V3 network [85,237], improved YOLO V3 [78], AdaNet [77], improved VGG-16 [238],
modified ResNet-50 [239], GoogleNet [240], and MobileNet V2 [241]. Other relevant
research studies exploited some of the highly acknowledged deep learning architectures
such as VGG-16 [242], transformer networks [73], UNet + Efficientb0 backbone [243] and
AlexNet [244].

4.8. Distribution of Artificial Intelligence Models and Evaluation Metrics

Figure 15 shows the distribution of the used artificial intelligence models with two
or more occurrences in the domain of CBD_NDT. It can be seen that the trained-from-
scratch CNN, VGG16 [245] and AlexNet [246] are the most utilized artificial intelligence
networks. The increase in the use of some pre-trained networks like GoogleNet [247],
ResNet-50 [248] and Unet [249] in recent years was also noted. Furthermore, the Elman
neural network and ANN were the most implemented machine learning models. Figure 16
provides a visualization for the distribution of detection types of surface defects. It is found
that most of the reported research studies counted on pixel-level detection (74.36%) of
surface defects followed by patch-level detection (14.1%) and then bounding box-level
detection (11.54%).
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Table 19. Summary of some of the research studies on the classification of bridge surface defects.

Reference Publication
Year

Types of Surface
Defects Data Processing Technique Detection Type Testing

Type Element Type

[244] 2022
Cracks, spalling,

honeycomb, bulge and
background

AlexNet, GoogleNet
and ResNet Pixel level Field

Substructure
superstructure

and deck

[73] 2022
Cracks, efflorescence,

general, no defect,
scaling and spalling

Transformer encoder +
MLP head Image level Field Deck
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Table 19. Cont.

Reference Publication
Year

Types of Surface
Defects Data Processing Technique Detection Type Testing

Type Element Type

[243] 2022 Cracks and spalling

Segmentation (Unet, LinkNet,
FPN and PSPNet) +

classification backbone
(Efficientnetb0, Densenet121

and Inceptionv3)

Bounding box
level Field Substructure

[239] 2021
Cracks, erosion,

honeycomb, scaling and
spalling

Modified ResNet-50 + ANN Bounding box
level Field

Deck, cap beams,
pier, footing
and parapet

[231] 2021 Cracks, spalling and
scaling SVD + ENN + IWO Image level Field Deck

[242] 2021

Cracks, spalling, scaling,
exposed reinforcement,

rust staining and
background

Inception V3, ResNet-50
and VGG-16 Pixel level Field Deck

[240] 2021 Cracks and
delamination

AlexNet, SqueezeNet,
ShuffleNet, ResNet-18,
GoogleNet, ResNet-50,

MobileNet-V2 and
NasNet-mobile

Image level Field Deck and pier

[78] 2020 Cracks, pop-out, scaling
and rebar exposure Improved YOLOv3 network Bounding

box-level Field Deck and column

Table 20. Summary of some of the research studies on the classification of bridge surface
defects (Cont’d).

Reference Publication
Year

Types of Surface
Defects

Data
Processing
Technique

Detection Type Testing Type Element Type

[238] 2020

Background, cracks,
corner rupturing,

edge/corner exfoliation,
skeleton exposure

and repairs

Improved
VGG16
network

Image level Field Deck

[77] 2020 Background, cracks
and spalling AdaNet Pixel-level Field Deck

[237] 2019
Cracks, efflorescence,

scaling, spalling, general
defect and no defects

Inception V3
network Image-level Field Deck and column

[85] 2018 Cracks, spalling and
efflorescence

Inception V3
network

Bounding
box-level Field Deck, pier, column

and abutment

[232] 2007 Cracks, spalling, erosion
and corrosion

GLCM + MLC +
KMC Pixel-level Field +

laboratory Deck

The distribution of performance evaluation metrics used in the CBD_NDT domain
is illustrated in Figure 17. Overall accuracy (pixel or classification) is the most used
performance indicator in the literature, accounting for 37.5% of the total number of times
performance metrics were utilized. Precision, recall and F1-score come next, constituting
15%, 13.75% and 13.13%, respectively. In addition, intersection over union, specificity,
Kappa coefficient, mean average precision, mean squared error and peak signal-to-noise
ratio were featured by 6.88%, 2.5%, 1.88%, 1.25%, 1.25% and 1.25%, respectively. The
lesser-used indicators were grouped in the “Others” category, and included area under the
curve, balanced accuracy, error rate, mean absolute error, Matthew’s correlation coefficient,
negative predictive value, structural similarity index measure, Dice similarity coefficient
and frequency-weighted intersection over union.
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4.9. Public Datasets

There are a few large-scale annotated datasets for surface defect detection and clas-
sification in the literature. These open-source datasets are essential for benchmarking
state of art deep learning and machine learning models. In this regard, crack images
constitute the dominant fraction of publicly available datasets. SDNET2018 is a patch-wise
annotated dataset for the binary classification of surface cracks in bridge decks, walls and
pavement [193]. Its bridge deck dataset comprises 2025 and 11,595 crack and non-crack
images, respectively. The size of images is 256 × 256 with RGB channels, such that each
image is labeled either “cracked” or “non-cracked”. Xu et al. [250] created a bridge crack
detection dataset that encompasses image patches of size 512 × 512 pixels. The collected
image dataset is composed of 4058 and 2011 crack and background images, respectively.
These patches were further cropped to 224 × 224-pixel resolution and then flipped for aug-
mentation purposes. Zoubir et al. [251] introduced an image dataset of cracks in decks and
piers with captured images 224 × 224 pixels in size in RGB format. The acquired dataset
was composed of 1304 and 5634 crack and non-crack images, respectively. In addition, the
non-crack images contain details such as construction joints, stains and markings.

Li et al. [252] established a bridge crack dataset of 2000 images 1024 × 1024 pixels
in size. They were cropped to 32,000 images 256×256 pixels in size in order to diminish
the computational effort. The appended dataset consisted of 12,000 crack images and
19,500 non-cracked images, while 500 images were suspended for not contacting appro-
priate crack fragments. Hüthwohl et al. [237] presented a multi-target dataset for the
classification of bridge defects. Its multi-label setting included defects annotated as cracks
(789), efflorescence (311), general defect (264), no defect (452), spalling (427) and scaling
(168). The subdirectories of the dataset included patches for exposed reinforcement (223),
non-exposed reinforcement (203), rust staining (355) and no rust staining (415) which can be
used for automated detection of corrosion and exposed reinforcement. CODEBRIM is an-
other image dataset for the multi-label classification of bridge defects [253]. It contains five
classes of defects, namely, crack (2507), spallation (1898), efflorescence (833), exposed bars
(1507) and corrosion stain (1559). SDNET2021 is a new annotated dataset that was collected
using ground penetrating radar, infrared thermography camera and impact echo [254]. It
encompasses more than 663,102 labeled GPR signals, 4,580,680 labeled pixels of IRT and
1936 labeled impact echo signals.
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5. Conclusions and Future Research Prospects

This literature review study carried out a scientometric and systematic analysis for
state-of-the-art research pertinent to the assessment of reinforced concrete bridge defects
using non-destructive techniques. In this context, this study reviewed 505 papers of
500 journal articles and 5 book chapters published between 1991 and 2022. The number of
publications grew starting from 2002 onward and increased sharply from 2015 onward. In
addition, the conducted performance analysis suggested that the average number of article
citations per year has experienced significant growth since 2016. With regards to geographic
distribution, the United States of America, China, Canada, South Korea and Japan are the
most prolific countries in CBD_NDT research. The countries’ co-authorship analysis also
revealed that significant collaboration relationships existed between the United States of
America and Japan, between South Korea and Japan, and between China and Canada.
Furthermore, the United States of America, Canada, China, South Korea and the United
Kingdom were the top-placed nations according to citation counts. The conducted analysis
exemplified that Rutgers University, Concordia University and Hong Kong Polytechnic
University are the three most prominent institutions with regard to publication productiv-
ity. The top five active sources were Construction and Building Materials, Transportation
Research Record, NDT & E International, Automation in Construction and Sensors. In
addition, Construction and Building Materials, NDT & E International, the Journal of
Computing in Civil Engineering, Automation in Construction and Sensors are the most
cited journals. The Journals co-citation analysis exemplified the presence of a notable
relationship between Computer-Aided Civil and Infrastructure Engineering and Automa-
tion in Construction, and between Construction and Building Materials and NDT & E
International. In addition, the average normalized citations showed that the top five ranked
journals were IEEE Transactions on Automation Science and Engineering, Computer-Aided
Civil and Infrastructure Engineering, Structural Health Monitoring, Cement and Concrete
Composites and Automation in Construction. At the same time, Bradford’s law identified
the core journals as Construction and Building Materials, Transportation Research Record,
NDT & E International, Automation in Construction, the Journal of Bridge Engineering,
the Journal of Performance of Constructed Facilities, ACI Materials Journal, Structure and
Infrastructure Engineering and Sensors.

The most relevant 10 keywords in the CBD_NDT domain were “nondestructive test-
ing”, “ground penetrating radar”, “concrete”, “concrete bridge decks”, “concrete bridges”,
“corrosion”, “delamination”, “bridge inspection”, “infrared thermography” and “deep
learning”. The keyword co-occurrence analysis elucidated that GPR and HCP were the
most used NDTs for corrosion assessment, IRT and IE were the most used for delamination
evaluation, and DP, LS and sensors were the most dominant NDTs to deal with surface de-
fects. The temporal keyword co-occurrence map elucidated that researchers’ main attention
was directed toward corrosion assessment before 2014, transitioned towards delamination
between 2016 and 2018, and then shifted toward surface defects from 2019 onward. In
terms of author impact, GUCUNSKI N, WASHER G, AZARI H and ZAYED T were the
foremost scholars according to h-index and g-index. Lotka’s law revealed the presence
of many occasional authors contributing to the field of CBD_NDT research. Elsevier Ltd.,
ASCE, Springer, MDPI and SAGE Publishing Ltd. emerged as the leading publishers with
respect to the number of produced papers. The systematic review analysis illustrated that
scholars mostly used the NDTs of DP, GPR, IE, IRT and IRT in their research work. In
that vein, most of the reported research endeavors were directed toward electromagnetic,
electrochemical, optical and acoustic NDTs. In addition, the vast portion of research efforts
studied the defects of corrosion, delamination and surface cracks. Conversely, limited
research was devoted to honeycombing, rupture and efflorescence. The conduced analysis
unveiled that trained-from-scratch CNN, VGG16, AlexNet, GoogleNet, ReseNet-50 and
Unet are the most adopted deep learning models in the CBD_NDT domain. It was also
noticed that surface detection models were carried out on pixel-level more than patch-level
and bounding-box levels.
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Future research directions need to pay more attention to other critical defects like
deformation, efflorescence, honeycombing, erosion and pop-out. As for severity assessment,
current research primarily focuses on delamination, corrosion and surface cracks. It is
suggested that more exhaustive work needs to be performed on the severity evaluation of
spalling, scaling, voids, moisture, rupture, efflorescence and debonding. Thirdly, the use
of artificial intelligence and computer vision is mostly limited to surface crack detection
and assessment. In this context, machine learning and deep learning models need to be
further investigated and studied with other defects to ameliorate their automation and
detection accuracy. Fourthly, there is a lack of integration models between sensors and
electromagnetic or acoustic methods that can render both nondestructive evaluation and
structural health monitoring. Fifthly, augmented reality can be coupled with NDTs to create
an interactive display and assessment of bridge anomalies. Sixthly, most deterioration
prediction and budget allocation models relied on visual inspection in their design due to
the data-hungry nature of NDTs. To this end, NDTs need to be popularized in a wide range
of case studies to be able to devise reliable deterioration prediction and maintenance budget
allocation models. In addition, condition assessment using NDTs needs to be correlated
with physical-related and environmental-related factors of bridges for reliable deterioration
prediction. Seventhly, optimization models need to be constructed for bridge inspection
using NDTs while considering the time, cost and societal constraints of their application.
In this respect, most NDTs are applied in limited localized areas. To this end, inspection
optimization can permit the application of NDTs efficaciously on a network level. Eighthly,
there is a lack of publicly available datasets other than of surface cracks. These datasets are
essential for the better application of artificial intelligence so that this research domain can
reach a mature stage.
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Abbreviations

The following abbreviations are used in this article.

Acronym Description Acronym Description

CBD_NDT
Assessment of reinforced concrete bridge

3DX 3D X-ray tomography
defects using non-destructive techniques

STRUM Spatially tuned robust multifeature 3DN 3D neutron tomography

DP Digital photogrammetry M5
Magnetic force induced vibration
evaluation method

GPR Ground penetrating radar SI Satellite imaging
IE Impact echo BCIS Ball chain impact source
IRT Infrared thermography AS Acoustic scanning
HCP Half-cell potential EHI Eddy heat imaging

ER Electrical resistivity iCAMM
Infrastructure corrosion assessment
magnetic method
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Acronym Description Acronym Description
CD Chain drag AS Acoustic scanning
USW Ultrasonic surface waves EHI Eddy heat imaging

LS Laser scanning iCAMM
Infrastructure corrosion assessment
magnetic method

LPR Linear polarization resistance AIDD
Automatic impact-based
delamination detection

AE + OF Acoustic emission and optical fiber sensors UAV Unmanned aerial vehicle
HS Hammer sounding ROC Receiver operating characteristic
UT Ultrasonic testing SAFT Synthetic aperture focusing technique
UPE Ultrasonic pulse echo DWT Discrete Wavelet Transform
EIS Electrochemical impedance spectroscopy SSD Sum of square difference
MB Magnetic-based SVM Support vector machines
SI Satellite imaging ANN Artificial neural network
ST Sound test DT Decision tree
UPV Ultrasonic pulse velocity LR Logistic regression
IR Impulse response BDT Bagged decision tree
MFL Magnetic flux leakage FBE Fusion bonded epoxy
IMF Induced magnetic field ANOVA Analysis of variance
TDR Time domain reflectometry AUC Area under curve
SM Squid magnetometer ICA Independent component analysis
RCT Reinforced concrete tomography DenseASPP Densely connected atrous pyramid pooling
CC Chloride content CWT Continuous wavelet transform
TP Tafel plot FFNN Feed forward neural network

AU Acousto ultrasonic TLSM
Temperature gradient-based level
set method

MW Microwave method FFT Fast Fourier Transform
ERM Electromagnetic resonance measurement MLS Vehicle mounted mobile laser scanning
ULA Ultrasonic linear array ALS Airborne laser scanning
MGS Micro-magnetic sensor PSP-InSAR Persistent Scatterer Pairs InSAR
3DN 3D neutron tomography PSP-InSAR Persistent Scatterer Pairs InSAR
ESSA Enhanced salp swam algorithm FCN Fully convolutional network
D-S Dempster-Shafer PCR-Net Pruned crack recognition network

SQUID
Superconducting quantum

1D-CNN
One dimensional convolutional

interference device neural network
R-CNN Region convolutional neural network LSTM Long short term memory network
RFCN Richer fully convolutional neural network SrcNet Super-resolution crack network
YOLO You Only Look Once CNN Convolutional neural network

CR-YOLO
YOLO network for performing

GAN Generative adversarial network
crack detection

DBCC-net Deep bridge crack classification network F-BRS
Feature back-propagating
refinement scheme

HDCB-net
Deep learning-based network with

NB Naïve Bayes
hybrid dilated convolutional block

VGG Visual Geometry Group KMC K-means clustering
MLC Maximum likelihood classifier KNN K-nearest neighbors
SV Surface variation GWO Grey wolf optimizer
NV normal vector ICP Iterative closest point
CV curvature variation FS Feature sampling

XR Extended reality CDFFHNet
Convolution–deconvolution feature fusion
with holistically nested networks

IWO Invasive weed optimizer ENN Elman neural network
SVD Singular value decomposition GLCM Grey level co-occurrence matrix
CE Cross entropy
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