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Abstract: Digital Twin Technology (DTT) has gained significant attention as a vital technology for
the efficient management of smart cities. However, its successful implementation in developing
countries is often hindered by several barriers. Despite limited research available on smart city
development in Malaysia, there is a need to investigate the possible challenges that could affect the
effective implementation of DTT in the country. This study employs a mixed methodology research
design, comprising an interview, a pilot survey, and the main survey. Firstly, we identified barriers
reported in the literature and excluded insignificant factors through interviews. Next, we conducted
an Exploratory Factor Analysis (EFA) on the pilot survey results to further refine the factors. Finally,
we performed a Structural Equation Modeling (SEM) analysis on the main survey data to develop a
model that identifies barriers to DTT implementation in smart city development in Malaysia. Our
findings suggest the presence of 13 highly significant barriers, which are divided into four formative
constructs. We found that personalization barriers are highly crucial, while operational barriers were
less important for DTT implementation in smart city development in Malaysia.

Keywords: smart city; Digital Twin Technology (DTT); Malaysia; Partial Least’s Squares; Structural
Equation Modeling

1. Introduction

DTT has emerged as a possible option for the global expansion of smart cities. This
technology can facilitate many applications, such as real-time monitoring and modelling of
urban infrastructure, optimizing for resource planning, and adopting an environmentally
friendly urban policy. Digital Twin is the center of Industrialization 4.0, which is enabled
by powerful data analytics and Internet of Things (IoT) connections. According to Mohd
Noor Isa et al. (2017), IoT has increased the volume of data that may be utilized in
manufacturing, medical, and even smart city situations [1]. Mohammadi and Taylor (2018)
stated that IoT environments, combined with data analytics, serve as a crucial resource
for preventive analytics and fault diagnosis, to mention a few. In addition, they also
serve as a crucial resource to the evolution of smart cities and the long-term viability of
industrial processes, along with helping with defect identification, traffic monitoring, and
detection techniques in the delivery of health and care [2]. Digital Twin addresses the
difficulty of interconnectivity among IoT and big data analytics by creating a virtual and
physical twin that is linked (Digital Twin). Through precise data, a Digital Twin ecosystem
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enables quick analysis as well as real-time decision-making. According to D. Liu et al.
(2018), cities are accountable for more than 75% of the resources and energy consumption
and flows used worldwide [2]. Consequently, cities play a crucial role in regulating the
intensity of materials and resources. Understanding the urban metabolism of cities is
emphasized as a prerequisite for creating more sustainable cities and communities [3,4].
Urban physiology, according to Madni et al. (2019), is the creation and use of numerous
natural and exhaustible resources in urban environments, including water, energy, food,
and waste [4]. Urban physiology also includes principles from the sustainable society,
recycling, waste management, and fluxes of material imports and exports. According to
Sepasgozar et al. (2019), advanced digital techniques enable cities around the world to
fulfill their sustainability goals [5]. Urban waste management is improved by the use of
communications technologies such as sensor and Internet-of-Things (IoT) technologies,
artificial intelligence (AI), and data analysis results [6,7]. By investing in DTT, communities
want to improve citywide surveillance and administration. Additionally, the growth of the
city’s essential services and infrastructures, such as electricity, water, and transportation, is
aided by innovative DTT. Using cutting-edge DTT, the city may synchronize its operations
and entice residents to participate in urban development initiatives [5,6]. Consequently,
municipal operations could become more open and less bureaucratic for residents.

This study discusses the notions of smart city and digital twin technologies as solutions
to the urban physiology and sustainable development problems of cities. Fuller et al. (2020)
and Olszewski et al. (2019) stated that “smart city” refers to the use of digital technologies
such as IoT, big data, and artificial intelligence (AI) to enhance the socioeconomic and
environmental results of a city [7,8]. The technique of digital twins depicts both virtual
and real representations. With IoT and sensor technology, a dynamic connection may be
established among a virtual duplicate and its actual counterpart. The dynamic digital
twin connection permits a combination of data, along with the observation of digital twin
in its physical and virtual worlds [9,10]. Without the adoption of DTT, it is significantly
more uncertain for smart cities to develop and effectively utilize the functionality of other
technologies as well [11,12]. Malaysia, as a rapidly developing country, has future plans for
smart cities, and this research will provide a foundation framework of barriers to effective
DTT implementation for smart city development [13,14].

DTT usage in the construction of smart cities in Malaysia is still beginning, and much
work is needed to fulfil its full potential. Nonetheless, this technology may significantly
influence various sectors, particularly urban planning, infrastructure management, and
even citizen participation [4,15]. DTT may give significant insights into the behavior and
performance of cities, which will promote more efficient and considerable decision-making
in urban planning [16,17]. For instance, it may be used to simulate various transportation
planning scenarios, such as the flow of traffic and public transport use, and to maximize the
utilization of resources, such as electricity and water. It may also be used to assess the envi-
ronmental effect of urban growth and find options for sustainable urban planning [11,12].

DTT is required to develop smart cities in Malaysia for several reasons. First, Malaysia
is undergoing fast urbanization, with an increasing number of people residing in urban
areas [14,18]. This has resulted in a need for more efficient and effective urban planning
and administration to enhance the quality of life for inhabitants. DTT may offer a platform
for combining and analyzing data from many sources, as well as helping to construct more
sustainable and livable communities.

Malaysia confronts various infrastructure management difficulties, including ageing
infrastructure, limited resources, and environmental damage [19,20]. DTT may provide
real-time infrastructure monitoring and predictive maintenance, lowering downtime and
repair costs [21,22]. It may also be utilized to maximize resources such as electricity and
water, hence minimizing waste and fostering sustainability.

Finally, DTT may promote public input and engagement in urban planning and admin-
istration. It may allow for a more inclusive and participatory metropolitan government by
offering a platform for collecting and analyzing general preferences and behavior data [23].
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This promotes social cohesiveness and stability by fostering confidence between people
and the government.

Lastly, DTT may create chances for Malaysian businesses to develop and commercial-
ize innovative smart city development solutions, fostering economic growth and competi-
tiveness [24,25]. By encouraging innovation and entrepreneurship, it is possible to promote
economic activity and generate employment.

Innovative city development in Malaysia requires DTT to handle the difficulties of ur-
banization, infrastructure management, public involvement, and economic growth [26,27].
With the right policies, tactics, and investments, DTT may aid in developing Malaysian
cities that are more sustainable, habitable, and competitive.

This study presents a complete evaluation of Digital Twin usage, focusing primarily
on the challenging factors affecting the implementation of DTT for smart city development
in Malaysia. The bulk of the literature focuses on obstacles to digital twin adoption
around the world, but behaviors and trends vary from region to region; therefore, there
is no study performed within the Malaysian region along with an in-depth structural
equation modeling analysis. Most importantly, the study attempts to gather pertinent
publications from 2011 onwards in specific fields: construction, digital twin, and smart
cities. For the development of DTT in smart cities, it is important to have an effective
understanding of the challenges [16,28]. It is practically not possible for the companies
and future researchers to increase the smart city development in Malaysia with DTT
without knowing the critical factors affecting implementation. The study utilizes a variety
of academic sources discovered using keywords associated with IoT and data analytics,
with the overarching objective of locating publications pertaining to impediments to the
adoption of Digital Twin. The purpose of this project is to address the following research
question: What barriers influence the application of DTT for smart city development in
Malaysia? Our research examines the current situation of Digital Twins, identifying the IoT
or Industrial Internet of Things (IIoT) among the enabling technologies and data analytics.
This study highlights the crucial elements affecting how digital twins are used in the
advancement of smart cities with the aid of the literature. These factors are then analyzed
and categorized based on the opinions of 15 industry experts, and EFA and SEM are used
to determine the impact of each identified critical factor. This in-depth research on digital
twins for smart city development using structural equation modelling is unprecedented
and likely the first of its type in Malaysia.

2. Smart City and Digital Twin

The smart city idea has played an important part in the digital transformation of cities.
A simplistic and limited definition of a smart city is a city that employs current DTT to
enhance municipal services, infrastructure, and the quality of life for its residents. However,
a larger description complements the sociotechnical approach and considers, with an envi-
ronmental and economic perspective, the smart city [29,30]. For example, Kee and Ching
(2020) describe a smart city as one in which “investments in human and social capital and
traditional (transport) and modern ICT communication infrastructure fuel sustainable eco-
nomic growth and a high quality of life, with a prudent management of natural resources
and a participatory government [31].” In European contexts, the European Commission
considers a smart city as “a location where traditional networks and services are made
more efficient through the use of digital and telecommunication technologies,” and that “a
smart city goes beyond the use of information and communication technologies (ICT) to
improve resource utilization and reduce emissions” [32,33]. In developed countries, it has
developed a strategy to promote urban development via the use of DTT. Shamanna et al.
(2020) stated that, to bolster smart city projects, the European Union has invested in the
development of smart cities and DTT to renovate and modernize constructions, energy
networks, public transit, and waste disposal systems in European towns [34]. European
towns have aggressively reacted to the European Union’s demand for change by forming
partnerships with companies and academic institutions. Consequently, for more sustainable
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urban development, new versions and strategies have emerged [20,21]. According to Laa-
marti et al. (2020), the smart city development concept is gaining traction in the Malaysian
context, but there must be adequate implementation plans based on digital advancements
and other cutting-edge technological adoptions [35]. In our research, the primary objective
was to identify the critical constraints that impede the adoption advancement of DTT of
smart cities in Malaysia.

Product design and production design have embraced digital twin, but other sectors,
including aircraft, robotics, nautical, medicine, and power, have lately reaped the benefits
of this technology [36,37]. Austin et al. (2020) stated that because virtual simulation
technologies have matured alongside advanced digital technologies such as data collecting
and virtual manufacturing technologies, DTT usage has expanded [38]. Computer-aided
design (CAD), which enables the production and depiction of stable three-dimensional (3D)
products, is the basis for digital twin. Digital twins give a more dynamic portrayal of a 3D-
designed product or solution than CAD-designed products [39,40]. It is proposed that, in
the best-case scenario, a digital twin’s characteristics and information are identical to those
of its physical counterpart. Kwak (2020) claimed that the usage of digital twins is common
for modelling, monitoring, and control, as well as for computing and managing system
status and processes [41]. A digital twin, which simulates the technology in question,
increases the possibilities for studying; for instance, the behavior of a 3D-designed solution
in virtual reality. Digital twins also allow for the investigation and testing of the effect
of physical pressures on created objects [3,42]. For verification purposes, a digital twin
enables the representation and understanding of the characteristics and current situations
of a physical and virtual entity [23]. Innovative digital technologies, such as IoT, and
high-speed connections, such as 5G, expand the ability to synchronize as well as the ways
of assessing virtual and physical objects. Bhatti et al. (2021) and Deren et al. (2021) found
that the control aspect encompasses instances where digital twins directly affect goods or
industrial assets and allow remote, real-time control of physical items [21,43].

The link among the digital and physical equivalents is a crucial component of the
digital twin. A physical object with a one-way link to its virtual equivalent is referred to
as having a one-directional connection [22,44]. A one-way data transfer and connection
are also known as a digital shadow. A digital shadow is defined as “a change in the
state of the physical item that causes a change in the state of the digital object, but not
the other way around.” According to Mylonas et al. (2021), a bidirectional connection
refers to a digital twin that connects a real thing to its virtual counterpart [45]. Utilizing
dispersed computing devices and data systems with data and real-time communication,
bidirectional connectivity is created. Bidirectional communication allows the digital twin
to autonomously operate its physical counterpart [46–48]. A bi-directional connection
consists of several levels, such as various data sources, hardware and software, sensors,
data connections, and cloud environments [12,49].

When creating and integrating IoT components, such as linked devices, gateways, and
apps into a digital platform, cloud-based digital platforms have become popular. Cloud-
based platforms allow for the creation, deployment, and growth of IoT ecosystems to be
managed. In the framework of smart cities by Deng et al. (2021), as well as Rafsanjani
and Nabizadeh (2021), to merge both virtual and actual smart city elements, digital twin
systems have been developed [39,40]. Several cloud applications, such as Smart World
Pro, Open Cities planner, and Portal of Confidence, make use of data from diverse sources
related to smart cities. Smart World Pro creates a concurrent digital copy of actual smart
city components using 3D city models, building and geospatial data, IoT devices, and other
datasets. For smart city organizations, the Smart World Pro interface gathers and visually
displays smart city projects under the work plan [41–43].

Smart city designers can integrate data types like 3D models, pictures, documents, and
geographical data, along with vector data using the Open Cities planner framework [44,45].
Any web browser can use the scaled Open Cities planner, which improves the ability
to create and experience cities from a roadside perspective to a larger city-level vision.
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Data from numerous providers and data sources are combined on the Portal of Trust. The
Platform of Trust uses standardized data to improve data interoperability and provider
credibility. The system enables data integration for small-to-large-scale applications and
is scalable.

3. Methodology

This research intends to increase the effectiveness of sustainable construction sector
delivery in smart city development in Malaysia by investigating and addressing imple-
mentation hurdles for Digital Twin Technology (DTT). Figure 1 displays the research
methodology. The overall methodology is framed to answer the research question: What
barriers influence the application of DTT for smart city development in Malaysia? The
literature was examined to determine the obstacles to DTT implementation. The hypothe-
sized framework, along with all research hypotheses, are presented in Figure 2. As a result,
a questionnaire was designed to evaluate these difficulties. Stakeholders in the building
business include designers, quantity surveyors, engineers, constructors, contractors, opera-
tors, special individuals, management specialists, employees, construction administrators,
employees, and proprietors of the building locations.

Figure 1. Research methodology.

Figure 2. Hypothesized framework.
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3.1. Qualitative Assessment

A qualitative questionnaire addressing challenges in implementing DTT in Malaysian
smart city construction projects was developed for semi-structured interviews. Various
research indicates varying minimum sample sizes for semi-structured interviews. Inter-
views are descriptive in nature. Thus, gathering as much data as possible is always the goal.
Time constraints often reduce the size of focus groups and interview panels. Taylor et al.
(2021) agree that a minimum sample size of 10–20 should be used for qualitative inter-
views [50]. However, Duch-zebrowska and Zielonko-jung (2021) argue that interviewees
should include five-to-fifty specialists [11]. Therefore, 15 professionals presently engaged
in the construction business in Malaysia were asked to take part. Executives and project
managers, who oversee implementing DTT on construction projects, were the ones who
were most likely to be questioned. Three interviewees had to be questioned over the
phone via conference call since they couldn’t make the in-person encounter, while the other
interviewees were met at their homes or offices [20,51]. Table 1 is presenting the research
variables focused throughout the study.

Table 1. Research variables and their description.

Variables Theoretical Description References

IT Infrastructure Technology that supports IoT adoption and data analytics is needed for the Digital Twin;
both are necessary for its proper functioning. [52,53]

Useful Data

High-quality data must be transmitted in one constant flow. There is a chance that the
Digital Twin’s efficiency will suffer if the data is shaky and unreliable. It may suffer since

it will be operating on bad and missing data. Quality and quantity of IoT signals are
crucial factors for Digital Twin information.

[54,55]

Privacy and Security

Digital Twins make privacy and security difficult inside an industrial context because of
the huge quantity of data they utilize and the danger this creates to important system

data. Security and privacy considerations for Digital Twins information contribute to the
resolution of Digital Twins’ trust difficulties.

[4,19]

Trust

From both an organizational and a consumer standpoint, trust-related challenges exist.
The advantages of a Digital Twin, which strives to break down the obstacle of trust,

should be explained in more detail and at a fundamental level in order to ensure that end
users and organizations are conscious of them. The field of research will address

confidence issues by increasing transparency into the processes that ensure requirements
for privacy and security are followed all through the design process.

[14,18,24]

Expectations

Despite the fact that industry behemoths Siemens and GE are speeding up the production
of digital twins, it is crucial to highlight the problems with digital twin expectations and
the need for deeper understanding. In addition to the issues that Digital Twin share to IoT

and data analytics out of a user viewpoint, as well as the privacy and infrastructural
difficulties of Digital Twin, there are unique challenges associated with the modelling and

construction of the Digital Twin.

[56–58]

Standardized
Modelling

The next barrier in the advancement of any type of Digital Twin is the modelling of such
systems because there isn’t a standard way for modelling. A uniform approach, whether

physics-based or design-based, is necessary from the initial concept through the
simulation of a Digital Twin. Across all phases of the creation and use of a digital twin,

standardized techniques ensure domain and user comprehension and information flow.

[26,27,59]

Domain Modelling

Another issue is making sure that domain-specific information is communicated to all of
the developmental and functional phases of Digital Twin modelling due to the

requirement for uniform usage. Municipal employees lack awareness of digital twins and
their uses, but this is expected to change as more instances emerge.

[60,61]

Lack of visionary
leadership

The first essential step is to determine precisely how a digital twin will benefit the
organization. This involves familiarity with the vast array of available technology and

knowledge of which partners may aid.
[62,63]
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Table 1. Cont.

Variables Theoretical Description References

Being unprepared
for change

IoT and digitalization in general are altering our work and business practices. Digital
twin may improve the efficiency of industrial processes, but the inability of many
businesses to implement the essential organizational reforms prevents them from

realizing these advantages.

[64–66]

Unclear ecosystem
support

The number of digital twin applications and associated specialist technology that
solutions might grow complicated and expensive. According to changes to twin, a shared
language must be developed via best practices and standards to make alternatives more

economical and easier.

[15,67,68]

Keeping it
fit-for-purpose.

Depending on its technological function and the business objective it was created to assist,
a digital twin must be continuously updated and improved in accordance with

that objective.
[17,28]

Maintaining reliable
operation

Throughout the existence of its “real-world” counterpart, the digital twin may be used.
Maintaining the lifecycle of a digital twin may be challenging because of software

complexity and technology, even though this is one of the main advantages.
[15,16]

Ensuring effective
execution

A digital twin demands enormous computing resources. What must be performed at the
system’s edge, such as through an edge computing platform like TT Tech Industrial’s

Nerve, and what is performed in a cloud computing environment must be
explicitly specified.

[17,64]

Accounting for
uncertainty

The basis for successful digital twin systems is solid data. Data, modeling, and reasoning
must be thoroughly comprehended and trusted before use. [27,61]

Bringing it all together
Understanding the dynamics of the entire network is important in order to develop a

digital twin. It requires combining data from many sources into a digital twin’s unified
data structure.

[62,63]

To conduct a thorough content analysis and label the respondents’ responses, we
utilized the qualitative analysis programme NVivo. As can be seen in Table 2, the study
uncovered a total of four key areas, including: personalization, standardization, knowledge,
and operational barriers. The final framework, which incorporates all findings from the
literature research and interview analysis, is based on 15 criteria retrieved from the content
analysis and organized into four core categories.

Table 2. Constructs and variables.

Constructs Assigned Code Variables References

Personalization

DTT.FP1 Accounting for uncertainty [16,68]
DTT.FP2 Lack of visionary leadership [20,51]
DTT.FP3 Trust [18,55]
DTT.FP4 Expectations [25,49]
DTT.FP5 Privacy and Security [22,44,45]

Standardization

DTT.FS1 IT Infrastructure [12,49]
DTT.FS2 Useful Data [46,69]
DTT.FS3 Standardized Modelling [70–72]
DTT.FS4 Domain Modelling [11,73]

Knowledge
DTT.FK1 Being unprepared for change [70–72]
DTT.FK2 Unclear ecosystem support [12,45,49]
DTT.FK3 Keeping it fit-for-purpose [25,71]

Operational
DTT.FO1 Maintaining reliable operation [26,60]
DTT.FO2 Ensuring effective execution [62,66]
DTT.FO3 Bringing it all together [64,65,67]

Following hypotheses are devised based on the constructs and their hypothesized
relationship to latent variable digital twin implementation.



Buildings 2023, 13, 775 8 of 23

• HI: Personalization factors have significant impact on digital twin implementation for
smart city development.

• H2: Standardization factors have significant impact on digital twin implementation
for smart city development.

• H3: Knowledge factors have significant impact on digital twin implementation for
smart city development.

• H4: Operation factors have significant impact on digital twin implementation for
smart city development.

3.2. Pilot Survey and Main Questionnaire Survey

According to the Construction Industry Development Board, out of Malaysia’s total
of 39,158 small construction enterprises, around 80% are engaged in minor construction
projects (CIDB). The 15 obstacles to DTT discovered via interviews were the subject of
a preliminary study. A preliminary survey with closed-ended questions was developed
from a list of 15 obstacles to DTT. Although 250 pilot survey questionnaires were sent
out, it was judged that a sample size of at least 100 will be sufficient. All respondents
were employed by relatively obscure Malaysian building firms. A total of 152 real pilot
surveys were conducted from 250 divisions. Data from the pilot survey were assessed using
exploratory factor analysis (EFA). Instead of forcing a structure onto the data, exploratory
factor analysis (EFA) investigates the likely underlying factor structure of a set of observed
variables and whether the suggested combination of variables or features is acceptable.
The DTT barriers of 15 are within the permitted range of 20 to 50, making EFA a valid
test in this scenario when the sample size is among 150 and 300 [62,64]. The sum of the
replies multiplied by the number of questions in the survey should be larger than the
sample size [65,66]. Because 152 was larger than 120, the data from this pilot survey are
adequate for EFA assessment. The Kaiser–Mayer–Olkin (KMO) and Bartlett’s Tests were
performed to find whether the sample was representative and whether or not its members
were statistically similar. According to Thiong’o and Rutka (2022), the KMO test index may
vary from 0 to 1, with findings greater than 0.6 being regarded adequate for elucidating
the nature of correlations among variables [17]. Bartlett’s Test, a factor analysis sphericity
evaluation method, accepts a p-value of less than 0.05. EFA, KMO, and Bartlett’s Test were
all performed using SPSS 24.0.

The target sample size for the quantitative survey that will analyze the primary
questionnaire is 207, with a minimum of 100. The primary questionnaire survey, which
originated from EFA, had questions on 15 unique obstacles to DTT. In order to analyze
response rates effectively, demographic information was also gathered. Three hundred fifty
Malaysian contractor firms specializing in DTT construction received the survey. Analysis
was accomplished with the use of Structural Equation Modeling (SEM). In the 1980s, SEM
was developed as a method for testing hypotheses regarding the relationships among
latent variables and the observed data. The first model in structural equation modelling
(SEM) is the measurement model, and it uses Confirmatory Factor Analysis (CFA) to enrich
the model by validating the validity and reliability of the measuring variables against
pre-set criteria, thereby linking the constructs with the latent components [62,65]. The
second model, a structural one, calculates variances, tests assumptions, and adjusts those
that best represent the data. Opoku et al. (2022) and Thiong’o and Rutka (2022) stated
that fine-tuning the conceptual model to the point where it can be utilized to test the
hypothesis involves exchanging the correlation among the components for the postulated
causal relationships [15,17]. Based on the results of an EFA analysis performed on the
previously identified obstacles to BIM obtained from the aforementioned literature research,
a conceptual framework for SEM assessment was constructed in this study.

3.2.1. EFA Analysis

Exploration Factor Analysis (EFA) is indeed a statistical technique used to determine
the structure underlying a collection of observed data. In psychological, sociology, and
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marketing research, it is often employed to uncover latent constructs that may explain the
correlations between a large number of observable variables. EFA seeks to uncover a smaller
collection of latent variables or underlying factors that explain the bulk of the observable
variables’ covariance structure. Major et al. (2021) and D. Yang et al. (2021) claimed that
PCA is the primary state of several numerical software programmes, and that is widely
utilized in EFA [62,64]. The researcher and data determine the factor loading range. Some
studies prefer −1 to 1, whereas others prefer 0 to 1. Data type affects range selection. A
range of −1 to 1 may not be suitable for binary or dichotomous variables. EFA may also
provide the communality, that is the percentage of variation in every observed variable,
which is accounted by all factors, and the factor loadings. EFA simplifies complicated
observable variables and identifies hidden components. EFA is exploratory, thus, findings
should be considered cautiously. Confirmatory factor analysis is typically needed to
validate EFA factors. In PCA, the Varimax rotation is more suited [61]. Typical unsolved
theories limit particulars. Total amount of variables would be regarded as a prototypical
sample within the appropriate intervals. Therefore, 15 examined factors and questionnaires
aimed at 207 people are utilized to generate information for work and are deemed suitable
for PCA.

3.2.2. Developing PLS-SEM Model

Limited Least Squares Structural Equation Modeling (PLS-SEM) is indeed a statistical
method for analyzing the relationships between a collection of independent variables and a
group of dependent variables. It is a kind of structural equation modelling that is beneficial
when there are a high number of variables relative to a sample size [71]. Numerous sorts of
studies on the PLS–SEM method have been published in contemporary publications [46,72].
Current SMART–PLS 4 technology was used for DTT implementation barriers significance
modelling and data analysis using SEM. Initial support for the PLSSEM was based on its
superior prediction concepts, which are match with the covariance-based SEM (CB–SEM);
nevertheless, the variances across binary approaches be rather modest. This paper’s
statistical study comprised structural and dimensional evaluation methodologies.

3.2.3. Common Method Variance

The CMV makes a correlation among variances that may be ascribed to ideas and
measuring instrument types. The private data may inflate during studied connections; as a
result, difficulties may arise [69]. Considering that investigated data is private, singular,
and derived from one source, this might be crucial for this research. Consideration of these
factors is essential for detecting deviations from conventional practice. Kaewunruen et al.
(2021) used the formal one-factor test developed by [70]. The factor analysis revealed one
element is considered for a significant amount variation.

3.2.4. Measurement Model

Dimensionality illustrates connection among the variables and underlying structure.
The next sections discuss the convergent and discriminant validity of the dimension model.

3.2.5. Convergent Validity

The degree of concordance among two indicators or tools of the same notion is shown
by convergent validity (CV). It is acknowledged as a factor in construct validity. Three
methods [9] can be used to evaluate the CV of the predicted constructs in PLS: average
variance extracted, Cronbach’s alpha, and composite reliability scores. The acceptable top
limit for aggregate uniformity was proposed by D. Liu et al. (2018) and Mohammadi and
Taylor (2018) to be a Pc value of 0.7 [2,3]. Values of 0.7 and 0.6 for exploratory assessment are
deemed appropriate for all studies [4,5]. The AVE, a common measurement employed in
the dimension model to assess the components of the CV, was the most recent. Acceptable
CV values are those greater than 0.50.
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3.2.6. Discriminant Validity

Overall discriminant validity (DV) suggests investigated events are systematically
unique and that no dimension identifies the uniqueness examined in SEM. Mohd Noor
Isa et al. (2017) argued that for DV to be undertaken, the correlation across various pointers
or tools should be substantially greater [1].

3.2.7. Structural Assessment Model

The purpose of this research was to investigate and rank DTT application obstacles
utilizing SEM method. To do this, the route or path coefficients here, among estimated
coefficients, should be recognized. Consequently, the basic linkage or route interaction
among DTT £ tools and DTT µ obstacles was postulated. Consequently, the essential link
among £, µ, and €1 rule inside the structural model, that is referred to interior relation, may
represent linear behavior Equation (1):

µ = β£ + €1 (1)

Here, (β) is route coefficient connecting components of DTT adaptation obstacles, (€1)
is indeed the structural severity residue variance expected to occur, and (£) is the standard-
ized regression load, analogous to the load many model of regression type [5,74]. Indica-
tions are concurrent by model’s estimates along with experimentally significant [46–48].
Regarding CFA, a fundamental approach from SMART–PLS 4 software program deter-
mines route coefficient’s common errors. It is conducted on 5000 subsamples according to
proposal of Schimanski et al. (2019) and Sepasgozar et al. (2019) that specifies the statis-
tics for assessing the hypothesis [6,75]. In addition, using the PLS model, four equations
relating to structure involving DTT constructs application hurdles are generated, revealing
inherent connections among Equation (1) and ideas.

4. Results
4.1. The EFA of DTT Barriers

This study focused on the challenges to RFID implementation in Malaysia’s construc-
tion sector. The selecting technique used in this study has made it quick and easy to gather
information from the individuals who have been recognized. The magnitude of the research
population led to the adoption of the investigative methodology. Sample population for
EFA must include among 45 and 61 study populations. On the other hand, all appropriate
statistical tests are run. Three hundred fifty individuals were asked to participate in this
study, and 207 responses were gathered, exceeding the required number. It was accepted
for further investigation because it made up 60% of the return rate. In the first element
of the survey tool, the demographic traits of the respondents were gathered. The DTT
used a five-point Linkert Scale to rank its barriers: Very High (5), High (4), Average (3),
Low (2), and Very Low (1). To take the relationship into account, many clearly stated
factors were in use. The Kaiser–Meyer–Olkin Measure (KMO), which is frequently used
to determine if proportional correlations among variables are the least possible, can be
used to measure factor similarity. The KMO sampling adequacy estimate indicated that the
data return rate was sufficient to conduct factor analysis. In the same line, the relationship
appropriateness among the highly powerful methods is suited for Bartlett’s sphericity test.
The evaluation determined if the sampling strategy or the data set are suitable for factor
analysis. KMO = 0.816 was used in the sampling suitability test because it is appropriate
for factor analysis. The results revealed that the predicted Chi2 for the obtained p-value
was 1006.545. Bartlett’s test was, therefore, considered important by the analysis (p = 0.00).
It suggested that there was a substantial association in the data matrix. Additionally, it
showed that the correlation analysis for each of the given variables was highly associated at
a 0.50 level. As a result, the EFA’s output was satisfactory. The construction industry’s RFID
obstacles’ application domains are described by the amount of variance. Four elements
with eigenvalues greater than one were identified by the PCA [2].
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These elements accounted for 58.722% of the overall variance. A scree plot is shown
in Figure 3 with the variables on the x-axis and the eigen vectors on the y-axis. It also
showed a declining tendency. The entire number of elements that the model must output
can be seen at the point where the curve’s slope begins to flatten out [6]. It is interesting
that one important goal of multiple regression was to reduce the number of factors needed
to adequately describe the complex construct of DTT obstacles found in the component
matrix for the Malaysian construction sector. Table 3 provides the rotational factor matrix
for DTT adoption hurdles in the Malaysian construction sector. The model, which featured
four main elements or obstacles, was excellent for illustrating the importance of DTT in the
advancement of smart cities in Malaysia. It is important to first draw attention to the four
factors or variables while describing the four key elements. Only one of the sets is strongly
affected by each factor [7]. In order to classify the concepts into minor elements found in
the literature, customization, standardization, functional, and information were used.

Figure 3. Scree plot.

Table 3. EFA results after rotation.

Variables
Component

Cronbach Alpha
1 2 3 4

DTT.FP4 0.804

0.849
DTT.FP3 0.798
DTT.FP5 0.763
DTT.FP2 0.737

DTT.FS2 0.782

0.786
DTT.FS4 0.762
DTT.FS1 0.725
DTT.FS3 0.712

DTT.FK2 0.806
0.752DTT.FK1 0.800

DTT.FK3 0.637

DTT.FO1 0.784
0.708DTT.FO3 0.765

DTT.FO2 0.617

DTT.FP1 0.781 0.518

Eigen Value 3.416 2.950 2.217 2.1

%Variance 18.980 16.390 12.314 11.037
DTT.FP1 excluded because of wrong group and cross-loading error.
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4.2. Demographics of Main Questionnaire Survey

The demographic details of the respondents involved in this study are given in Table 4.
In total, 9.9% of responders were quantity surveyors, 10.89% were architects, 59.41% of
respondents were civil engineers, 6.93% were mechanical engineers, and 2.97% were other
professions. This distribution demonstrates that the Malaysian construction industry’s
most prominent specialists were well-represented. In total, 26.73% of respondents had
5–10 years of work experience, 25.74% had less than 5 years, 34.65% had 11–15 years,
6.93 % had 16–20 years, and 5.94 % had 21 years or more of experience. This indicates
that the respondents have sufficient expertise to give accurate and informative data for
this research.

Table 4. Demographic profile.

Category Classification Frequency %

Profession

Architect 11 10.89
Quantity Surveyor 10 9.9

Civil Engineer 60 59.41
Mechanical Engineer 7 6.93

Project Manager 10 9.9
Other 3 2.97

Organization
Contractor 55 54.46
Consultant 39 38.61

Client 7 6.93

Experience

0–5 Years 26 25.74
6–10 Years 27 26.73

11–15 Years 35 34.65
16–20 Years 7 6.93

Over 20 Years 6 5.94

4.3. Common Method Variance

The discrepancy of the typical technique was determined by examining a single
element [13]. If the overall variance value of the element was less than 50%, the conventional
method variance (CMV) had no effect on the data, as indicated in Table 5. In addition,
the analyses indicated that the initial components accounted for 29.246% of the overall
variation. It suggested that the CMV had no effect on the outcomes since its prevalence
was below 50% [13].

Table 5. CMV Results.

Total % Variance Cumulative %

5.264 29.246% 29.246%

4.4. Measurement Model

The analytical respondents expressed, according to Fuller et al. (2020), included
estimations of (i) indicator consistency; (ii)composite reliability; (iii); (iv) discriminant
authenticity; (v); and (iv) lastly, (AVE) average variance extracted (avg) [10]. The PLS ap-
proach, as defined by Sepasgozar et al. (2019), was employed in this study, with a maximum
of 300 cycles, weighed lessons, an evaluate, path-weighing, Variance 1, data measurement
with a mean of zero, beginning weights of 1, and an abort threshold of 1.0 × 1–5. In general,
markers with various resources among 0.4 and 0.7 were only evaluated for exclusion from
the scale if doing so significantly increased the AVE and composite reliability [5,8]. As
indicated by Dembski et al. (2020), variables with external loadings of less than 0.70 were
deemed compatible with criteria and eliminated from any further analysis [9]. It showed
the threshold when the indicator’s variance could be explained by its own element to a
degree of about 50%, as well as the threshold at which the reported disparity exceeded the
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variation error [76]. Additionally, the external loadings of the variables in the updated and
initial models are shown in Figure 4 and Table 6. Hence, the exterior loading of DTT.FP1
was below the criterion and exhibited cross-loading in the first EFA analytic model. There-
fore, it was deleted prior to the SEM analysis. In the SEM analysis, the factor DTT.FO2
was omitted. It has been shown that its influence on the related concept is negligible. In
addition, a revised model was examined after eliminating variables deemed irrelevant by
Cronbach’s alpha bounds. It evaluated sensitivity with respect to the number of confound-
ing variables and the dependability reliability coefficient (CR) [77]. According to research,
CR values greater than 0.7 were regarded appropriate for this investigation. Likewise, CR
values greater than 0.6 are regarded suitable for research assessment [7]. According to
Table 5, all models achieved a CR value greater than 0.7 and were, thus, acceptable. A
popular approach for evaluating the convergent validity of the constructs inside the model
is AVE, which has values greater than 0.50. It suggested a reasonable convergent value that
matched. According to the data in Table 3, all of the model’s ideas passed the evaluation.
Further, Table 7 is indicating the empirical correlation matrix for all of the items involved
in the modelling. Acceptable correlations are observed between the items indicating better
performance of the model.

Figure 4. Structural model with path coefficients.

Table 6. Construct validity and reliability.

BIM Stages Assigned Code
Loadings

Cronbach Alpha Composite Reliability AVE
Initial Final

Personalization

DTT.FP2 0.819 0.819 0.849 0.898 0.689
DTT.FP3 0.828 0.828 - - -
DTT.FP4 0.828 0.828 - - -
DTT.FP5 0.845 0.845 - - -

Standardization

DTT.FS1 0.790 0.790 0.786 0.862 0.609
DTT.FS2 0.786 0.786 - - -
DTT.FS3 0.770 0.770 - - -
DTT.FS4 0.775 0.775

Knowledge
DTT.FK1 0.833 0.833 0.755 0.858 0.669
DTT.FK2 0.834 0.834 - - -
DTT.FK3 0.785 0.785

Operational
DTT.FO1 0.799 0.869 0.71 0.858 0.752
DTT.FO2 0.673 Deleted - - -
DTT.FO3 0.776 0.865 - - -
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Table 7. Empirical correlation matrix.
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4.5. Structural Model

According to Table 5, all models achieved a CR value greater than 0.7 and were, thus,
acceptable. A popular approach for evaluating the convergent validity of the constructs
inside the model is AVE, which has values greater than 0.50. It suggested a reasonable
convergent value that matched. According to the data in Table 6, all of the model’s ideas
pass the evaluation. After obtaining a through using the reported standard, if there is a
statistically significant distinction among the constructs, the discriminant validity may be
precisely defined (DV) [74,75]. Establishing discriminant validity, thus, defines singularities
that are inadequately characterized by other model components. The DV may be computed
using three methods: in the hetotrait–monotrait correlation ratio (HTMT), Fornell–(1981)
Larcker’s criteria, and the cross-loading criterion [2]. To evaluate the DV, the square root of
the AVE of the distinct relationship was examined to the constructs, among a specific idea
and the other concepts. The under root of the AVE must be bigger than the relations among
the hidden variables, according to the Fornell and Larcker criteria [75]. The results of this
investigation established the analytical model’s DV, as presented in Table 8. In contrast,
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several researchers have disregarded the Fornell and Larcker conventional DV criteria.
HTMT was proposed as an alternative method for calculating DV. It is a unique method
for calculating the DV of variance-based SEMs and determining whether there is a precise
relationship among binary constructs if the two factors are correctly evaluated; that is, if the
two constructs are regularly assessed. In this study, the HTMT model is also used to analyze
the DV [6]. In this study, the HTMT value needed to have fallen among 0.85 and 0.90. It
implied that each of two variables was distinct. Model constructs needed to have HTMT
values that were less than 0.90 to be conceptually similar [5]. The model’s hypothetical
constructs needed to be diverse if the HTMT values were less than 0.85. Table 9 presents
the HTMT values for the examined study hypotheses. Therefore, the structures displayed
appropriate DV.

Table 8. Correlation of latent variables.

Knowledge Operational Personalization Standardization

Knowledge
Operational 0.373

Personalization 0.536 0.439
Standardization 0.507 0.333 0.435

Table 9. HTMT results.

Knowledge Operational Personalization Standardization

Knowledge 0.818
Operational 0.278 0.867

Personalization 0.441 0.332 0.83
Standardization 0.404 0.243 0.363 0.78

In this study, the third method, the cross-loading criteria, was used to estimate DV.
The method predicts that the loading of the identifiers for a certain hidden variable should
have value greater than the loading of other variables per row. It was suggested that the
loading of the residual constructs should be bigger than the loading of the signals for the
variables. The loading of Table 10 demonstrates that the cross-loading on the additional
factors per row was less important than for the basic indications on the allocated concealed
construct. Individual constructs were shown to be significantly unidimensional, according
to the results.

Table 10. Cross loading with discriminant validity.

Variables Knowledge Operational Personalization Standardization

DTT.FK1 0.833 0.149 0.332 0.263
DTT.FK2 0.834 0.342 0.429 0.414
DTT.FK3 0.785 0.16 0.304 0.294
DTT.FO1 0.255 0.869 0.317 0.171
DTT.FO3 0.226 0.865 0.258 0.251
DTT.FP2 0.398 0.283 0.819 0.341
DTT.FP3 0.319 0.243 0.828 0.287
DTT.FP4 0.298 0.274 0.828 0.25
DTT.FP5 0.435 0.299 0.845 0.32
DTT.FS1 0.304 0.223 0.343 0.79
DTT.FS2 0.266 0.176 0.257 0.786
DTT.FS3 0.273 0.173 0.197 0.77
DTT.FS4 0.405 0.181 0.318 0.775

4.6. Structure Model Assessment

As soon as the DTT implementation in smart city development was defined, the
variable inflation factor (VIF) analysis could be employed to better analyze the relationship
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among the variables and formative construct objects of the constructs as a fundamental
concept [2]. In addition, the data indicated that every VIF score was less than 3.50, as
indicated in Table 11. It suggested that these subdomains independently supported the
higher-order concept. In addition, a bootstrapping method was used to predict the influence
of the route coefficients. As shown in Figures 5 and 6, all pathways are calculatedly
important at the 0.01 level.

Table 11. SEM path significance results.

Path β SE t-Values p-Values VIF

Knowledge -> Implementation of DTT for Smart City Development 0.374 0.022 16.94 <0.001 1.377

Operational -> Implementation of DTT for Smart City Development 0.300 0.028 10.542 <0.001 1.163

Personalization -> Implementation of DTT for Smart City Development 0.375 0.02 18.983 <0.001 1.372

Standardization -> Implementation of DTT for Smart City Development 0.346 0.021 16.701 <0.001 1.271

Knowledge and Operation -> Implementation of DTT for Smart City Development

Personalization and Standardization -> Implementation of DTT for Smart City Development
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Figure 5. Structural model after bootstrapping analysis with path coefficients and significance.

Figure 6. Model with loading factors and significance p-statistic.
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5. Discussion

In the personalization construct, the significant barriers are: DTT.FP2 “Lack of vision-
ary leadership,” DTT.FP3 “Trust,” DTT.FP4 “Expectations,” and DTT.FP5 “Privacy and
Security.” The personalization construct further indicated the path coefficient of 0.375 with
the implementation of DTT for smart city development. The most significant barrier from
a personalization perspective is found to be privacy and security, as they are creating a
negative impact on the effective implementation of DTT for smart city development. The
least important factor that contributes to personalization is a lack of vision in leadership,
as it is also regarded by previous studies as a contributing factor in effectively improving
DTT for smart city development. The observed behavior is indicating a highly significant
relationship of personalization barriers that are creating a negative impact on the imple-
mentation, and it can be entirely attributed to the data sharing capability of smart cities as
it can ultimately affect the privacy of the overall information of residents [5,75]. It is the
reason that the significant gap in smart city development is present in Malaysian contacts,
which is identified by the study, and it is entirely different from existing research where
the crucial evidence of personalization bias is not identified. Comparatively, the outcomes
are more effective in terms of creating impact on the final implementation of DTT, which
can be compromised if proper actions are not taken [8]. It is for this reason that effective
identification has indicated possible implications for improving DTT if personalization is
improved. The results of personalization construct may be valid for other countries on
the path of developing smart cities in the future, which is because of the fact that coun-
tries with similar environmental and economic abilities can face similar barriers when
implementing DTT [78,79].

In the standardization construct, the significant barriers are: DTT.FS1 “IT Infrastruc-
ture,” DTT.FS2 “Useful Data,” DTT.FS3 “Standardized Modelling,” and DTT.FS4 “Domain
Modelling.” The standardization construct further indicated the path coefficient of 0.346
with the implementation of DTT for smart city development. IT infrastructure is not much
advanced in the context of Malaysian smart city development, and it is still in the develop-
ment phase, which is why there is space in adopting the DTT. Overall, the industry cannot
be adopted because it will be highly negative in terms of affecting the efficiency of new tech-
nology in smart city development projects. For that reason, it needs a specific intervention
that focuses on the development of IT infrastructure first. The indicated behavior is differ-
ent from Cheng and Cheah (2020) and Dembski et al. (2020), where more preference is not
given to improving IT infrastructure, but it is relatively linked with other issues such as the
requirement of effective standardization and improving data management [9,10]. It is, for
this reason, that the unique aspect of overall barriers is observed in this scenario, where the
implementation of DTT can be accelerated with proper adjustments in IT infrastructure at
first before moving towards the mitigation of other barriers. This can ultimately contribute
to increasing the positive outcomes for Malaysian smart city development, where the future
domain modeling barrier, as well as the effective standardization of different factors, can
achieve better development in technology. Standardization construct factors can be the
barriers that other countries also face when implementing DTT, which is because of the fact
that most other countries are also facing challenges when implementing DTT [78,79].

In knowledge construct, the significant barriers are: DTT.FK1 “Being unprepared for
change,” DTT.FK2 “Unclear ecosystem support,” and DTT.FK3 “Keeping it fit-for-purpose.”
The knowledge construct further indicated the path coefficient of 0.374 through the use of
DTT to develop smart cities. The unclear ecosystem support is found to significantly affect
the implementation of DTT in the smart city development of Malaysia. People are reluctant
to adopt the new technology for smart city development, and the whole construction
sector is not contributing well because of the knowledge gap that is always created by the
overall ecosystem of the construction industry. Further, it is identified that other factors
are also contributing to the knowledge barrier in the adoption of DTT. The difference in
results is indicated by the high significance given to the overall ecosystem knowledge
barrier [29,30]. It is also different from the perspective of previous implications where the
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smart city development barriers are not indicated more specifically with the knowledge
gaps that are coming and the responsibility of the whole construction ecosystem. This
increases the demand for sustainable interventions that do not only improve the knowledge
of people who are trying to adopt the new technology for smart city development, but will
also require sustainable development for future workers in the smart city development
industry [26,59]. It should be noted that there is a need to maximize the understanding of
the overarching knowledge gap in the industry, which could easily provide future outcomes
for the development of DTT.

In operational construct, significant barriers are: DTT.FO1 “Maintaining reliable oper-
ation,” and DTT.FO3 “Bringing it all together.” The operational construct further indicated
the path coefficient of 0.300 with the implementation of DTT for smart city development.
Reliable operations are always important in smart city development, and as indicated by
the study, it is evident that the operational construct indicates barriers in the maintenance of
proper and reliable operations that might result in the DTT’s contribution to the sustained
growth of smart cities. It is a highly important factor in terms of increasing the efficiency
of overall development projects where operational barriers can be effectively removed
if more attention is given to maintaining reliable operations. Existing studies have also
indicated similar behavior [27,60]. The unique aspect of this construct is that it has shown
significantly less relativity with the implementation of DTT for smart city development as
its path coefficient is lower as compared to the other three constructs. This is significant
in terms of raising further awareness and also increasing the chances of success where
the operational and other constructs can contribute well to the development of smart city
projects if the barriers are removed according to the significance level indicated in each
construct [62,64]. Further, it is clear that all the constructs indicate barriers that could lead
to the appropriate implementation of DTT, and positive implications are observed that
could be used in both a practical and theoretical manner to contribute to the development
of smart city projects with DTT.

6. Conclusions

The development of smart city projects in Malaysia is highly affected by barriers
related to personalization, knowledge, standardization, and operations. It was the aim of
the study to contribute to effectively identifying the barriers that affect the implementation
of DTT for smart city development projects in Malaysia. The quantitative method involving
the pilot study on which the exploratory factor analysis was conducted was adopted, and
then the main questionnaire survey was carried out, which resulted in the development of
the structure equation model. A total of 15 barriers were initially investigated, which ended
up showing 13 barriers that are significantly related to affecting the implementation of
DTT for smart city development projects in Malaysia. The research question was answered
along with significant evidence of acceptance of all research hypotheses. The highest
relationship among barriers is observed in the case of personalization, where the issue
of privacy is creating problems for implementing DTT. The knowledge gap, along with
the lack of standardization, contributed in affecting the application of DTT. The weakest
relationship is observed in cases of operational barriers, which are not contributing well
to the application procedure of DTT. From a theoretical perspective, it is evident that the
research has contributed to mitigating the gap in existing research where there was a
significant need for the identification of current barriers affecting the implementation of
DTT for smart city development. It is indicated that the future researchers should focus on
various identities in terms of providing suitable mitigation methods that could help the
overall smart city development and relevant construction industry of Malaysia to easily
adopt DTT. The research has to continue in the direction of the development of mitigation
techniques, as the industry of smart cities in Malaysia needs proven techniques to accelerate
its development. Practically, the study has highlighted the barriers for professionals who
are currently working on smart city development projects in Malaysia, and they need to
divert their attention to the identified barriers and their significance. This will ultimately
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lead to the overall development of smart cities in a positive direction, which will ultimately
be better for Malaysia’s urban construction industry in the future.
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