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Abstract: In the case of old existing structures where the cultural value is very high, structural health
analyses and investigations would be better performed without damages or service interruptions.
Thus, modal analysis aimed at identifying eigenfrequencies and eigenmodes represents a very
effective strategy to identify structural characteristics. In this paper, an innovative strategy to identify
structural parameters exploiting the modal information obtained from operational modal analysis
is proposed. The importance of the structural modeling in the problem formulation is highlighted.
In the case of a simply supported beam, it was possible to assess the beam steel elastic modulus,
while in the case of a cantilever beam, some constraint characteristics have been evaluated as well.
In the steel frame case, the focus was on the constraint conditions of the structure determining the
flexural stiffness of the springs representing the column base constraints. The method performances
are promising for applications in larger structures such as bridges and buildings.

Keywords: modal analysis; structural identification; simulated annealing; operational modal analysis;
steel

1. Introduction

A large part of European building constructions have exceeded their service life or
require careful structural health analyses. This is particularly important in Italy where his-
torical monuments are spread around the whole country and the main infrastructures were
built in the 1950s and 1960s [1,2]. In this specific case and in case of monumental buildings
where the cultural value is very high [3], structural health analyses and investigations
should be performed while preserving the existing structures.

Thus, modal analysis aimed at identifying eigenfrequencies and eigenmodes repre-
sents a very effective strategy to identify structural characteristics. In particular, operational
modal analysis (OMA) is a modal parameters identification technique based on vibration
data collected when the structure is in service conditions [4]. Practically, OMA considers
random environmental vibrations and cyclic loads on the structure as unknown sources
of excitation. The easiest OMA technique is the peak picking (PP) method [5,6]. It is a
frequency domain technique in which the natural frequencies are pointed as peaks in the
power spectrum. Basic assumptions are that damping is low and the modes are well-
separated. More complex methods such as frequency domain decomposition (FDD) [7],
time domain decomposition (TDD) [8], and stochastic subspace identification (SSI) [9] are
out of the scopes of this paper.

An emerging strategy to measure the modal properties without adding accelerometers
to the system is 3D laser vibrometry, see [10–12], which has the main advantage in taking
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the measures from a distance. This can be useful in case of large structures that are not
easily reachable.

The developments of computational mechanics allow to accurately model the struc-
tural behavior considering many parameters that often are not easily known. Indeed, a
direct measure of these parameters would require high costs and would not always be
compatible with the preservation of historical and monumental buildings.

For this reason, it is often more effective to formulate an inverse problem in which
the eigenfrequencies measured through OMA represent a benchmark and the model
parameters can be tuned in order to obtain numerical eigenfrequencies similar to the
benchmark ones. Actually, this approach requires a good optimization strategy and presents
quite a high computational cost. Usually, this optimization problem is represented by target
functions that are neither continuous nor monotonic; consequently, the use of a heuristic
algorithm such as simulated annealing [13–15], genetic algorithms [16,17], differential
evolution [18], ant colony [19], and particle swarm [20] becomes mandatory.

Recently, [21] reported on an inverse problem for the structural identification of floor
diaphragms using a perturbation approach. The study [22] presented an identification
problem for a reinforced concrete, tall building based on model updating and experimental
modal analysis. In [23], the authors showed the dynamic identification of the Baptistery of
San Giovanni in Firenze (Italy) based on OMA and frequency domain decomposition.

With specific attention to steel structures, an interesting structural identification was
performed for a steel footbridge in [24], while [25] presented an experimental modal
analysis for a steel arch bridge. More recently, [26] presented an image-based operational
modal analysis aimed at damage detection in a steel frame, and [27] reported on truss steel
bridge damage identification through experimental modal analysis.

This paper presents a strategy to identify structural parameters exploiting the modal
information obtained from OMA and developing an inverse problem in which the out-
comes of experimental modal analyses are considered a known input while the structural
parameters of a mathematical model representing the real structure are unknown. The use
of the simulated annealing algorithm to minimize the difference between experimental
eigenfrequencies and those obtained by the model represents a novelty in the literature.
The importance of the structural modeling in the problem formulation is highlighted.
This methodology has been applied to three different steel structures characterized by
increasing complexity.

After this brief introduction, the paper is organized as follows: Section 2 presents
a general description of the simulated annealing algorithm necessary for the proposed
methodology, while the methodologies for structural identification are shown in Section 3.
Finally, some conclusive remarks are drawn in Section 4.

2. Simulated Annealing

Initially introduced as a generic heuristic technique for discrete optimization, simu-
lated annealing (SA) has become a widely used tool to tackle optimization problems in a
wide range of application areas such as business, medicine, and engineering [13–15].

Also known as a local search algorithm, the SA does not find the optimal solution
but provides an approximate solution very close to the optimal one. This is performed
through a stochastic and iterative procedure in which the local search starts from an initial
current configuration and the choice of the next configuration is randomly generated
(randomized exploration).

The methodological process is inspired by the behavior of fluids when subjected to
processing involving controlled cooling, as in the production of large crystals. Indeed, if
cooling occurs rapidly, the crystal lattice may be affected by defects such as cracking or
fracture. The annealing process, on the other hand, involves gradual cooling, bringing the
structure of the crystal to an optimal and stable configuration according to the principle of
minimum potential energy.
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For each temperature value T belonging to a defined range, the solid can reach thermal
equilibrium in which the probability of being in a state with energy E is defined by the
Boltzmann distribution [28]:

Pr{E = E} = 1
Z(T)

e−E/kB T (1)

where Z(T) is a normalization factor (also called partition function), which depends on the
temperature T; kB is the Boltzmann constant; and e−E/kB T is the Boltzmann factor.

The stochastic component of the method lies in the application of the Monte Carlo
method to generate successive configurations through small random perturbations starting
from a current configuration with energy Ei.

According to the Metropolis Criterion [29], the energy difference:

∆E = Ej − Ei (2)

between the perturbed j-th configuration Ej and the current i-th configuration Ei can be:
∆E ≤ 0, then the j-th configuration replaces the previous one as it has a lower poten-

tial energy:
∆E > 0, then the j-th configuration is accepted with probability e−∆E/kB T .
The algorithm, therefore, does not exclude a priori the analysis of worst-case solutions

but admits them with a decreasing probability as the temperature decreases. Indeed, the
exponential function is governed by the relationship between the change in energy of two
configurations and the temperature. The probability that the j-th worst solution will be
confirmed decreases as ∆E increases. In addition, the temperature, T, is high in the early
stages of the algorithm and low in the final stages.

Therefore, since as temperature decreases, the Boltzmann distribution concentrates on
the lower energy states, at the end of the cooling process only the lower energy states are
likely to occur.

One of the most important features of the SA is the robustness of the algorithm, due to
the possibility of easily dealing with nonlinear problems with many variables, despite the
presence of strongly discontinuous functions. However, it has some disadvantages:

- it is not possible to know whether the solution found, which is a local minimum,
coincides with the global minimum or how different the two values are;

- the quality of the local minimum obtained depends on the initial configuration cho-
sen, but no criterion establishes a way of selecting a starting point that allows good
solutions to be obtained;

- it may require very long computational times that cannot be predicted a priori.

Switching from the physical problems to combinatorial optimization problems [30],
the energy becomes the cost function C, the temperature is a control parameter c, the
particle configurations become the values of the problem variables and the search for the
lowest energy state becomes the search for the solution that minimizes the cost function.

In order to ensure that the algorithm performs the calculation cycles, it is necessary to
define the initial value of the control parameter c0, the final value of the control parameter
c f that stops the algorithm, and the decrement law of the control parameter. The choice of
c0 must be made in such a way that, in the initial phase of the algorithm, all configurations
must be approved, while on reaching c f , any deterioration of the solution must not be
accepted. Furthermore, the law of variation of the control parameter must be chosen
considering that a higher cooling rate corresponds to a higher number of iterations to reach
a new equilibrium state: this naturally influences the computational effort. If the control
parameter is initially set equal to c0 = 0, the SA operates similarly to a local minimum
search algorithm.

A MatlabTM 2013 version of SA is available in the literature [31], which initially
requires parameters to be defined. Table 1 shows the input value adopted in this work.
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Table 1. Parameters used in the optimization process.

Parameter Entity

c0 1
c f 10−8

kB 1
N 150

Variation law of c ck+1 =
(

c f /c0

)1/N
· ck

3. Structural Identification
3.1. Proposed Method

The structural identification strategy proposed in this work is based on the follow-
ing steps:

- Execution of operational modal analysis (OMA) focused on the extraction of modal
eigenfrequencies from output only experimental data.

- Development of theoretical (analytical and numerical) structural models for dentifica-
tion purpose.

- Identification of unknown structural parameters (x1, x2, . . . xj) that minimize the
following error function.

e =

√√√√ n

∑
i

(
fis − fin

(
x1, x2, . . . xj

)
fis

)2

(3)

where fis is the i-th experimental eigenfrequency and fin is the corresponding theoretical one
obtained from a model depending on the set of chosen unknown parameters (x1, x2, . . . xj).
The latter represent properly chosen unknown characteristics of the structure such as
structural stiffness, material mechanical property, boundary stiffness, etc. The optimization
of Equation (3) can be performed using the SA algorithm. In this way, it is possible to
identify the unknown parameters that are the target of the structural identification problem.
In this procedure, the experimental eigenfrequencies represent the benchmark necessary
for the structural identification strategy.

3.2. Experimental Apparatus

The proposed methodology will be tested using the experimental modal data obtained
from steel beams and a steel frame built in the Materials Strength Laboratory of the
University of Cagliari.

The experimental apparatus was composed of:

- Accelerometer sensor PCB 393C characterized by a sensitivity of 101.9 mV/(m/s2)
and a frequency range (±5%): 0.025 to 800 Hz, see Figure 1.

- Data acquisition hardware: Dymas 24. It is composed of a central unit with a CPU that
has the task of managing the acquisition process, synchronization of the sensors, and
data storage. The system is characterized by 30 channels managed by 5 acquisition
cards. Each card has an internal memory of 1 GB and is equipped with a DSP
(on-board) processor that autonomously manages the functions of digitization and
amplification of the inputs and filters the signals. Each card is connected to the CPU
by USB connections, see Figure 1.

- Dedicated software: DymaSoftTM 3.6.3 for the connection and configuration of the
system and VibroSoftTM 3.2.19 aimed at displaying and processing the recorded data.
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Given the beam characteristics, in order to have a harmonic force with variable fre-
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tin container in which a steel rotation axis with an eccentric mass was inserted. A poten-
tiometer was adopted to control the rotation speed. The dynamic forces applied by this 
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mental modal analysis tests were developed using the hypothesis of white noise in the 
loading vibration. For this reason, the vibrodyne was used at different rotation speeds that 
were randomly varied by the users. This was conducted in order to perform a pure OMA 
without knowing the dynamic loading characteristics. 

Figure 1. (a) Data acquisition hardware Dymas 24. It is composed of 30 channels (1) managed
by 5 acquisition cards (2), an internal battery, (3) and a central unit with CPU that has the task of
managing the acquisition process, synchronization of the sensors, and data storage (4); (b) PCB
393 C accelerometer.

Given the beam characteristics, in order to have a harmonic force with variable fre-
quencies, we built a home-made vibrodyne, see Figure 2 and Table 2. It was made from a
tin container in which a steel rotation axis with an eccentric mass was inserted. A poten-
tiometer was adopted to control the rotation speed. The dynamic forces applied by this
system can be expressed as:

→
F (t) = Mr·ω2

r sin
(

ω2
r t
)

(4)

where Mr represents the rotating mass and ω2
r is its rotation frequency. The experimental

modal analysis tests were developed using the hypothesis of white noise in the loading
vibration. For this reason, the vibrodyne was used at different rotation speeds that were
randomly varied by the users. This was conducted in order to perform a pure OMA without
knowing the dynamic loading characteristics.
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which was placed 435 mm from the left side, see Figure 4. 

Figure 2. Vibrodyne scheme.

Table 2. Vibrodyne dimensions.

h 120 mm mm
dV 110 mm mm
da 3 mm mm
Mr 50 gr gr
e 20 mm mm

The experimental tests were developed considering first a steel beam characterized by
different boundary conditions and then a more complex steel frame.

3.3. Steel Beams

The experimental modal analysis was developed while considering two beams with
different boundary conditions. In the first case, the beam was simply supported, see
Section 3.3.1, and in the second, it was clamped on one side and free on the other to analyze
a cantilever beam, see Section 3.3.2.

3.3.1. Simply Supported Beam

The simply supported beam’s geometrical characteristics are reported in Figure 3. Its
density is 7746.90 kg/m3, the steel longitudinal elastic modulus Es-real is 203 GPa, while
dimensions are L = 1499.00 mm, b = 118.82 mm, and h = 6.39 mm.
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Figure 3. Steel beam geometrical characteristics.

Figure 3 presents the experimental set up. The positions of the vibrodyne and ac-
celerometer were chosen in order to avoid the nodes of the beam eigenmodes, i.e., the
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sections that do not undergo any displacement during the vibrations in natural modes. The
accelerometer is located 435 mm from the right side and symmetrically to the vibrodyne
which was placed 435 mm from the left side, see Figure 4.
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The vibrodyne was used by varying randomly the rotation speed. In this way, it
was possible to record several samples with different harmonic force. In order to have a
statistical consistency, the test was repeated 6 times with a sampling frequency equal to
500 Hz.

Actually, since an OMA approach was adopted, the random rotation speed of the
vibrodyne was approximated as a white noise.

The acceleration response time histories were obtained for each case and the first
5 flexural modal frequencies were identified (see Table 3 and Figure 5) using the fast Fourier
transform [32] and the peak picking method [5]. As is well-known, see [33], this technique
is based on the low damping and well-separated modes hypotheses that can be assumed
for this case.

Table 3. Experimental eigenfrequencies of the simply supported beam and the corresponding
standard deviation (SD).

Mode fi,s [Hz] SD [Hz]

1 6.00 0.03
2 23.23 0.16
3 57.52 0.38
4 100.12 0.18
5 142.93 0.12
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The matrix of the cross-spectral density (spectral matrix) presents on its diagonal terms
the real valued autospectral densities and it is defined as:

G( f ) = Exp

[
A( f )AH( f )

]
(5)

where A( f ) is a vector containing the acceleration responses in the frequency domain and
AH( f ) is the complex conjugate transpose matrix, while Exp represents the expected value.
In the Peak Picking approach, in the neighbourhood of an eigenfrequency fr the spectral
matrix is approximated by:

G( fr) ≈ αrΦrΦH
r (6)

where αr is a parameter depending on the damping ratio, considering eigenfrequency,
excitation spectra, and modal participation factor, see [33,34]. Φr is the mode shape vector
corresponding to frequency fr. In this paper, the beam eigenfrequencies were identified
from the resonant peak in the autospectral density using the PP approach. The method was
quite efficient since the considered eigenmodes were well-detached, as is typical for simple
structures such as beams. In case of eigenmodes close to each other, it is possible to filter
the accelerometric data in order to improve the accuracy or to use different approaches
such as FDD [7], TDD [8], or SSI [9].

In order to perform the structural identification, we developed an analytical beam
model based on the Euler–Bernoulli theory with the aim of identifying the longitudinal
elastic modulus. It was previously measured with a quasi-static test, so its benchmark
value is known.

The Euler–Bernoulli beam theory takes into account bending stiffness and transversal
inertia and assumes that plane sections remain plane and perpendicular to the beam axis
after deformation, see Figure 6. In case of free vibration, the equation of motion is:

∂2M
∂x2 − µ

∂2v
∂t2 = 0 (7)

where µ represents the mass per unit lenght of the beam, M is the bending moment, v is the
deflection, and t is the time.

Buildings 2023, 13, x FOR PEER REVIEW 8 of 20 
 

Table 3. Experimental eigenfrequencies of the simply supported beam and the corresponding stand-
ard deviation (SD). 

Mode fi,s [Hz] SD [Hz] 
1 6.00 0.03 
2 23.23 0.16 
3 57.52 0.38 
4 100.12 0.18 
5 142.93 0.12 

 
Figure 5. First 5 beam eigenmode shapes. 

In order to perform the structural identification, we developed an analytical beam 
model based on the Euler–Bernoulli theory with the aim of identifying the longitudinal 
elastic modulus. It was previously measured with a quasi-static test, so its benchmark 
value is known. 

The Euler–Bernoulli beam theory takes into account bending stiffness and transversal 
inertia and assumes that plane sections remain plane and perpendicular to the beam axis 
after deformation, see Figure 6. In case of free vibration, the equation of motion is: డమெడ௫మ − 𝜇 డమ௩డ௧మ = 0  (7)

where 𝜇 represents the mass per unit lenght of the beam, M is the bending moment, v is 
the deflection, and t is the time. 

 
Figure 6. Internal forces acting on an infinitesimal Euler–Bernoulli beam. 

Given the mass of the accelerometer (0.89 kg), of the vibrodyne (0.93 kg), and of the 
beam (8.82 kg), it is necessary to take into account the exact position of these masses also 
in the analytical model. For this reason, the Euler–Bernoulli beam Equation (7) has been 
integrated considering the three different fields separated by the two lumped masses of 
the vibrodyne and of the accelerometer, see Figure 7. 

 

 
 

1st m ode 2nd m ode 

3rd m ode 

4th m ode 

5th mode 

Figure 6. Internal forces acting on an infinitesimal Euler–Bernoulli beam.

Given the mass of the accelerometer (0.89 kg), of the vibrodyne (0.93 kg), and of the
beam (8.82 kg), it is necessary to take into account the exact position of these masses also
in the analytical model. For this reason, the Euler–Bernoulli beam Equation (7) has been
integrated considering the three different fields separated by the two lumped masses of the
vibrodyne and of the accelerometer, see Figure 7.
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In each field, by means of the separation of variables technique, it is possible to
distinguish between the time harmonic solution and the space variation of the solution:
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∞
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where t is the time, x represents the position along the beam, vj is the j-th eigenmode, and
ωj is the i-th natural circular frequency of the beam. The relationship between frequencies
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(
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where vij denotes the spatial solution of the i-th field related to the j-th eigenmodes, and
Aij represents the generic integration constant that can be determined using the boundary
conditions. The 12 boundary conditions expressing static and cinematic compatibility are
presented in the following system of equations expressed in matrix notation:

D ·A = 0 (10)

where D is the matrix of the system, and A is the vector containing the unknown integra-
tion constant.

In order to avoid the uniqueness of null solution, it is necessary that:

detD = 0 (11)

Equation (11) represents the frequency equation whose roots are the circular eigenfre-
quencies of the beam. Unfortunately, this equation can be solved only with a numerical
approach; consequently, it is not possible to find a close form solution. For this reason,
an iterative semianalytical algorithm was developed in MatlabTM 2013 [36] that finds the
eigenfrequency of the beam using Equation (11).

Thus, now it is possible to use the above mentioned experimental eigenfrequencies to
set up an iterative procedure capable of finding the longitudinal elastic modulus value Es:

1. Select a value of Es;
2. Calculate theoretical eigenfrequencies using Equation (11);
3. Estimate the quadratic error e of Equation (3) comparing experimental eigenfrequen-

cies and theoretical ones.
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The steps are repeated till a minimum value of error e is obtained. Figure 8 presents
the trend of error function e that easily points at the optimal value of Es-opt = 205 GPa. In
this way, it was possible to have very little relative error (less than 1%) between the real
Es-real = 203 GPa and the ones that minimize the difference in the eigenfrequencies, see
Table 4, confirming the accuracy of the developed approach. Thus, when measuring the
experimental eigenfrequencies, it is possible to set up an inverse problem that can allow to
determine the unknown mechanical characteristics.
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Figure 8. Quadratic error e as a function of the elastic modulus for the simply supported beams.

Table 4. Comparison between experimental eigenfrequencies of the simply supported beam and the
corresponding numerical ones with the optimal value of the longitudinal elastic modulus E = 205 GPa.

Mode fi,s [Hz] fi,n [Hz] ∆ %

1 6.00 5.91 −1.55
2 23.23 22.48 −3.22
3 57.52 58.15 1.08
4 100.12 102.48 2.36
5 142.93 144.71 1.24

This first application represents a validation for both the modal analysis and the
parametric identification. Indeed, it was developed with known eigenfrequencies and
material mechanical properties.

3.3.2. Cantilever Beam

The cantilever beam geometrical characteristics are different from those of the simply
supported beam. Indeed, its density is 7652.02 kg/m3, the steel longitudinal elastic modulus
Es is still 203 GPa, while geometrical dimensions are L = 820.00 mm, b = 119.97 mm, and
h = 10.08 mm. To create the full constraint, the beam was clamped for a length of 120 mm.
Figure 9 presents the experimental set up for the cantilever beam, which shows the positions
of the vibrodyne and of the accelerometer on the free side in order to avoid, once again, the
nodes of the beam eigenmodes and maximize the vibration amplitude. The vibrodyne was
still used while varying randomly the rotation speed (in order to mimic the white noise
condition) and the test was repeated 6 times with a sampling frequency equal to 500 Hz.
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For this case study, the first three flexural modal frequencies were considered. Figure 10
shows the considered beam eigenmode shapes, and Table 5 shows the respective eigenfre-
quencies measured in the experimental tests.
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Figure 10. Considered eigenmode shapes for the cantilever beam.

Table 5. Experimental eigenfrequencies of the cantilever beam and the corresponding standard
deviation (SD).

Mode fi,s [Hz] SD [Hz]

1 11.41 0.17
2 86.68 0.01
3 257.26 0.35

In order to take into account the uncertainties due to the experimental constraint, a
flexural spring k1 and a translational one k2 were introduced in the analytical model.

Given the position of the mass of the vibrodyne and the accelerometer in this experi-
mental case, the Euler–Bernoulli beam Equation (7) was integrated while considering only
one field with a lumped mass on the free end, see Figure 11.
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Following what was performed in Section 3.3.1, the space variation of the solution is
expressed by Equation (12):
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In this case, the four boundary conditions express the static and cinematic compatibility
represented by Equation (10) already shown in Section 3.3.1.

Additionally, in this case, the frequency function was obtained by enforcing the
singularity of the system matrix in Equation (10) by Equation (11). In this way, by enforcing
Equation (11), it is possible to calculate the beam eigenfrequencies as a function of Young’s
modulus Es and the constraint stiffnesses k1 and k2. Given its strongly implicit form,
the roots of Equation (11) must be found with a numerical approach. In this case, again,
the optimization procedure is based on minimizing the difference between the model
eigenfrequencies (depending on Es, k1, k2) and the experimental ones obtained by OMA.
The optimization was performed by means of the simulated annealing algorithm.

For the described case of a cantilever beam, the minimum difference in eigenfre-
quencies (see Table 6) is reached for a value of the longitudinal elastic modulus equal to
Es = 201 GPa and for values of the constraint stiffnesses equal, respectively, to
k1 = 6.89× 1015 Nm and k2 = 9.86× 1019 N

m .

Table 6. Comparison between experimental eigenfrequencies of the cantilever beam and the corre-
sponding numerical ones with the best value of the longitudinal elastic modulus E = 201 GPa.

Mode fi,s [Hz] fi,n [Hz] ∆ %

1 11.41 11.62 1.86
2 86.68 85.59 −1.25
3 257.26 255.56 −0.66

In order to check the consistency of the obtained results, different optimizations were
developed varying the initial ranges of the unknown parameters.

Table 7 reports the main results showing a good consistency of Es and k2, while the
values of k1 presents larger variation.
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Table 7. Different variation ranges and optimal values of the unknown parameters for the cantilever
beam case.

Es [GPa] Init. Range k1 [Nm] Init. Range k2 [N/m] Init. Range Es [GPa] k1 [Nm] k2 [N/m]

1 ÷ 210 1 · 10−2 ÷ 1 · 1020 1 · 10−2 ÷ 1· 1020 201.0 6.859 × 1017 9.720 × 1019

10 ÷ 210 1 · 10−2 ÷ 1 · 1020 1 · 10−2 ÷ 1 · 1020 200.9 6.891 × 1015 9.971 × 1019

1 ÷ 400 1 · 10−2 ÷ 1 · 1020 1 · 10−2 ÷ 1 · 1020 201.0 1.213 × 1016 9.967 × 1019

1 ÷ 300 1 · 10−2 ÷ 1 · 1020 1 · 10−2 ÷ 1 · 1020 201.0 6.784 × 1015 9.700 × 1019

200 ÷ 210 1 · 1011 ÷ 1 · 1020 1 · 1011 ÷ 1 · 1020 201.0 1.398 · 1016 9.828 × 1019

1 ÷ 400 1 · 1010 ÷ 1 · 1020 1 · 1010 ÷ 1 · 1020 201.0 1.214 · 1016 9.487 × 1019

In addition, it is interesting to analyze the performance of the method when less
eigenfrequencies are considered in the target function. For this reason, the optimization
was performed considering just the first eigenfrequency, the first two eigenfrequencies, or
all three eigenfrequencies.

Table 8 reports the results of this analysis using as initial variation ranges: 1 ÷ 400 GPa
for Es, 1 · 1010 ÷ 1 · 102 Nm for k1 and 1 · 1010 ÷ 1 · 1020 N/m for k2. Looking at Table 8, it
is quite clear how for the specific problem it is possible to reach a good estimation of the
parameters while also considering just the first eigenmode. The information added from
the second and third eigenfrequencies does not significantly change the solution.

Table 8. Different variation ranges and optimal values of the unknown parameters for the can-
tilever beam case. Optimal solution with different number of eigenfrequencies considered in the
target function.

Considered
Eigenfrequencies Es [GPa] k1 [Nm] k2 [N/m]

1 201.0 6.893 × 1015 9.781 × 1019

1—2 201.0 1.662 × 1015 9.783 × 1019

1–2–3 201.0 1.213 × 1016 9.967 × 1019

3.3.3. Comparison to Other Optimization Algorithms

In order to test the efficiency of the proposed methodology based on the SA optimiza-
tion algorithm, the same cantilever beam case was analyzed using two different heuristic
algorithms: ant colony [19] and particle swarm [20].

The ant colony (AC) algorithm is a type of swarm intelligence algorithm inspired
by the behavior of ant colonies. It is used to find the shortest path between two points
in a graph. The algorithm simulates the behavior of ants as they search for food. In fact,
each ant drops a pheromone trail as it traverses the graph, so that other ants are more
likely to follow the paths with stronger pheromone trails. Over time, the pheromone trails
will converge on the shortest path. The algorithm also includes a pheromone evaporation
mechanism to prevent the trails from becoming too strong.

The particle swarm optimization (PS) algorithm is a type of optimization algorithm
inspired by the behavior of bird flocks and fish schools. It is used to find the optimal
solution of a problem by simulating the behavior of a group of particles, where each
represents a possible solution. The particles move in the search space, guided by their
current position and the best position encountered so far by any particle in the group
(global best) and by the best position encountered by that particular particle (personal
best). The movement of the particles is, therefore, determined by a combination of their
velocity and acceleration, which are updated at each iteration based on the current global
and individual best positions.

These algorithms have been implemented in MatlabTM 2013 [36] and applied to the
cantilever beam case in the model updating phase of the identification strategy, i.e., in
the minimization of the difference between the model eigenfrequencies (depending on Es,
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k1, k2) and the experimental ones obtained by OMA. This difference represents the target
function to the minimization of e, see Equation (3).

All the algorithms were set up to use the following variables’ initial variation ranges:
1 ÷ 4 · 102 GPa for Es, 1 · 10−2 ÷ 1 · 10−2 Nm for k1 and 1 · 10−2 ÷ 1 · 1020 N/m for k2.

The results of the optimization are shown in Table 9 where the error function value e, the
elastic modulus Es, the flexural spring k1, and the translational one k2 values are reported.

Table 9. Performance of different optimization algorithms for the cantilever beam case.

Algorithm e Es [GPa] k1 [Nm] k2 [N/m]

Simulated
Annealing (SA) 0.023352 201.0 6.783 × 1015 9.867 × 1019

Ant Colony (AC) 0.028223 204.7 5.372 × 1019 7.082 × 1019

Particle Swarm
(PS) 0.023353 201.0 4.451 × 1019 5.748 × 1019

Looking at Table 9, it is clear that the minimum value of the error function was reached
by the SA algorithm, while similar values of the elastic modulus Es and of translational
spring k2 were obtained by the three algorithms. However, largest differences have been
found in the values of flexural spring k1.

Looking at these results, the last case study presented in Section 3.4 was analyzed
using the SA algorithm.

3.4. Steel Frame

The third experimental case is focused on a steel loading frame (Figure 12) located in
the Materials Strength Laboratory of the University of Cagliari.

The frame is composed of two columns fully constrained at the base, connected
by a cross beam hinged on the above-mentioned columns at adjustable heights. The
latter connection is obtained with a pin, while at the columns base, welded and bolted
connections ensure a full constraint for displacements, though small rotations are allowed.
Thus, the rotation constraint can be represented by a set of flexural springs. The unknown
parameters that are necessary for structural identification with the proposed methodology
are the constraint rotational stiffnesses at the column bases.
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except for the pins, which are made of S355 steel grade. Each column is made of two
25 × 200 mm holed plates 40 mm apart, joined by 40 25 × 45 mm welded battens 250 mm
apart and has a total height of 4965 mm. Fifteen holes with a diameter of 50 mm along each
column allow the crossbar to be placed variably from a minimum height of 1105 mm to a
maximum of 4605 mm. The crossbar consists of two L-shaped welded profiles made of two
plates: 120 × 25 mm for the vertical leg and 325 × 25 mm for the horizontal one. The two
angles are, thus, coupled by means of welded battens 420 mm apart. The beam has a total
length of 5910 mm and can be employed at the maximum span of 5040 mm.

To determine the eigenfrequencies, five accelerometers were installed in the frame,
three of which were mounted at one end of the beam and two at the top of the columns
(Figure 13). The OMA yields the first 3 eigenfrequencies of the frame, once again determined
by the peak picking method (see Table 10).
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Table 10. Experimental eigenfrequencies of the steel frame.

Mode fi,s [Hz]

1 1.97
2 3.25
3 4.23

In this case, the frame model has been developed with finite element analysis (FE). In
fact, the presented method is suitable for the update of a finite element model, aimed at
the minimization of the difference between real modal parameters (e.g., eigenfrequencies)
and the numerical ones. In this application, the stiffness kij of the springs representing the
constraint conditions at the base of the column was chosen as the unknown parameter of
the optimization process. For this purpose, a proper Fortran code was developed to call the
finite element analysis execution for each iteration of the optimization procedure, along
with the execution of the simulated annealing algorithm employing the numerical results.

The 3D finite element model was developed using the commercial software Strand7
(see Figure 14). For the modeling of the columns and the crossbeam, 15,948 four-node
bilinear isoparametric plate elements were used. Mutual and base connections of steel
members were modeled by means of multipoint constraints employing a total of 234 link
elements. In detail, the pin connections were modeled as hinged internal constraints
involving translational rigid links, while the base column connections were carried out by
constraining the base section to a master node where flexural base springs were located.
The examination of structural details suggested that no translations were likely to occur at
the column bases, thus no translational base springs were taken into account. For the same
reason, no torsional springs were accounted for. In both cases, the degrees of freedom were
rigidly restrained. The total number of model nodes is 17,702.
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This modeling strategy represents the best compromise between accuracy of re-
sults and computational efforts. The modulus of elasticity adopted for the material is
Es = 210,000 MPa and the specific weight is 7870 kg/m3.
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Therefore, the optimization process was implemented with the aim of calibrating
the stiffness of the flexural base springs, only one around x-axis kx and the two flexural
stiffnesses kz1 and kz2 around the z-axis, pertaining to the base master nodes. The choice of
having two different flexural springs (kz1 and kz2) for rotations around the z-axes of each
column and only one kx stiffness for the rotations around x-axis, stemmed from evaluation
of structural details and their effects on the measured eigenfrequencies.

The algorithm performed 10,018 iterations (Figures 15 and 16), identifying at the itera-
tion number 6047 the parameters that minimize the difference between the experimental
and model eigenfrequencies, see Equation (3).
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Figure 16. Detail of the trend of the error function showing that the minimum was reached at iteration
number 6047.

Table 11 shows the values of kx, kz1, and kz2 that make the error function equal to
4.83× 10−5, while the comparison between the experimental frequencies and the frequen-
cies determined with the calibrated model is shown in Table 12.
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Table 11. Values of kx, kz1, and kz2 that minimize the error function.

Flexural Stiffness Value [kNmm/rad]

kx 7.93× 107

kz1 1.63× 107

kz2 1.54× 106

Table 12. Comparison between experimental eigenfrequencies of the steel frame and the correspond-
ing numerical ones with the best value of the kx, kz1, and kz2 [kNmm/rad].

Mode fi,s [Hz] fi,n [Hz] ∆ %

1 1.97 1.96 0.62
2 3.25 3.25 −0.05
3 4.23 4.24 −0.30

4. Discussion and Conclusions

This paper presented an innovative methodology for structural identification using
OMA by the minimization of the difference between experimental and theoretical modal
parameters, specifically the eigenfrequencies, using simulated annealing. Properly chosen
unknown structural parameters are the variables of the minimization procedure that, by
means of analytical or numerical models, allows to improve the knowledge of the structure
with negligible damage to the structure itself and to its service. Indeed, OMA can be
performed without any service interruption and allows to exploit environmental vibrations
and service dynamic loads to evaluate experimental eigenfrequencies. The critical part of
the methodology lies in the modeling and in the model optimization procedure used to
tune the unknown parameters.

The method has been validated considering three new experimental cases: two small-
scale steel beams and one full-scale steel frame. In the case of the simply supported beam,
it was possible to assess the beam steel’s elastic modulus, while in the case of the cantilever
beam, some constraint characteristics were evaluated as well. In the steel frame case, the
focus was on the constraint conditions of the structure determining the flexural stiffness of
the springs representing the column base constraints.

Section 3.3.3 presented a comparison between three different heuristic optimization
algorithms: simulated annealing, ant colony, and particle swarm. Each algorithm was used
to minimize the difference between the model eigenfrequencies (depending on structural
mechanical parameters) and the experimental ones obtained using OMA. For the considered
case, the SA algorithm obtained the best performance but good results were also obtained
with the other two.

In the beam cases, the computational cost was very small and the code could yield the
optimal solution in few seconds. A completely different situation was faced for the frame
case. Indeed, each run of the finite element model required about 15 s, which needed to be
repeated tens of thousands of times for the complete process, resulting in almost 2 days of
computational time in a common PC equipped with 8 Gb of Ram and an intel i5 processor.

Another important aspect is the experimental eigenfrequencies identification. It is
of paramount relevance to acquire and measure the highest number of eigenmodes and
eigenfrequencies to improve the benchmark data necessary for parameter identification. In
the considered cases, the eigenmodes of the beams were clearly detached and also the first
modes of the frame were quite distant. This approach can be already developed in the case
of close eigenmodes using more advanced techniques to analyze the accelerometer’s data.

In addition, it is not possible to find general relationships between the number of
unknown parameters and the number of known eigenfrequencies considered in the target
function that is always valid. Clearly, it is always better to have the largest amount of
available information in the target function. The authors are persuaded that criticalities
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should be regarded in the general frame of ill-conditioned or rank deficient linear systems
through spatial parameter estimation, see for example [38,39].

Finally, it is important to underline that the proposed case-studies are just examples
for a general methodology that can be applied to larger structures where the values of
elastic constants or constraint stiffness are not known or cannot be measured with simpler
techniques. In particular, the estimation of constraint stiffness can be very important for
existing steel structures where aging effects can modify the starting boundary conditions.

For this reason, further developments of this methodology are expected considering
both damping property estimation and larger structures such as bridges or buildings that
can represent interesting applications for this family of problems. The measurements of
the modal parameters can be developed using also innovative techniques such as sound
pressure as an excitation source and a laser doppler vibrometer as a sensor [10,11].
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