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Abstract: Indoor temperature and relative humidity control in office buildings is crucial, which can
affect thermal comfort, work efficiency, and even health of the occupants. In China, fan coil units
(FCUs) are widely used as air-conditioning equipment in office buildings. Currently, conventional
FCU control methods often ignore the impact of indoor relative humidity on building occupants by
focusing only on indoor temperature as a single control object. This study used FCUs with a fresh-air
system in an office building in Beijing as the research object and proposed a deep reinforcement
learning (RL) control algorithm to adjust the air supply volume for the FCUs. To improve the joint
control satisfaction rate of indoor temperature and relative humidity, the proposed RL algorithm
adopted the deep Q-network algorithm. To train the RL algorithm, a detailed simulation environment
model was established in the Transient System Simulation Tool (TRNSYS), including a building
model and FCUs with a fresh-air system model. The simulation environment model can interact
with the RL agent in real time through a self-developed TRNSYS–Python co-simulation platform.
The RL algorithm was trained, tested, and evaluated based on the simulation environment model.
The results indicate that compared with the traditional on/off and rule-based controllers, the RL
algorithm proposed in this study can increase the joint control satisfaction rate of indoor temperature
and relative humidity by 12.66% and 9.5%, respectively. This study provides preliminary direction
for a deep reinforcement learning control strategy for indoor temperature and relative humidity in
office building heating, ventilation, and air-conditioning (HVAC) systems.

Keywords: fan coil units; reinforcement learning; DQN algorithm; indoor temperature and relative
humidity control; co-simulation

1. Introduction

With a rapidly developing economy, the number of office buildings in China has
gradually increased. One study reported that the area of office buildings in China has
grown from 1.6 billion to 4.8 billion m2 in the past two decades [1]. An increase in building
area has driven the growth of building energy consumption, and a study reported that
the entire lifecycle energy consumption of buildings accounts for approximately 46.5%
of the total energy consumption, and the total lifecycle carbon emissions of buildings
account for 51.2% of total carbon emissions in China [2]. The total energy consumption
and carbon emissions from office buildings are relatively high compared to other building
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types [3–5]. This indicates that office buildings are essential for economic development.
Furthermore, office buildings are a kind of building where modern people spend much
time. Their indoor environmental quality significantly affects the health and work efficiency
of users [6]. Mechanical and electrical equipment in office buildings also provides various
convenient services for humans, such as air-conditioning equipment, elevators, and lighting.
In general, office buildings are among the most important buildings that support economic
growth, stimulate investments, and facilitate services in any country. Therefore, research on
various aspects of office buildings is crucial for social and economic development, human
health, and air quality.

As the location of human activities gradually shifts from outdoors to indoors, humans
spend on average 80–90% of their time inside buildings, especially office buildings [7],
which increases requirements for the environment and indoor thermal comfort of office
buildings. Studies [8,9] have indicated that the office building environment and thermal
comfort affect occupant health and work efficiency. With a suitable office environment and
thermal comfort, occupants will have a greater sense of well-being, and increase their work
efficiency by approximately 15–20%. Therefore, controlling the indoor-air status of office
buildings within an appropriate range and improving the indoor environment quality of
office buildings have received considerable attention from various scholars worldwide.

The indoor-air environment is mainly affected by outdoor weather, occupant behavior,
and energy-using equipment [10]. Creation of the indoor-air environment mainly depends
on various air-conditioning equipment. Currently, the number of office buildings in Chi-
nese major cities is increasing, and fan coil units, as a type of air-conditioning equipment,
have been widely used in heating, ventilation, and air-conditioning (HVAC) systems of
office buildings because of their small size, high flexibility in arrangement, and individual
control [11]. Existing research on the control of fan coil units has mainly focused on reduc-
ing the fluctuation of indoor temperature to obtain satisfactory indoor thermal comfort.
This method of using only indoor temperature as a control object ignores the influence of
indoor relative humidity on the human body and thermal comfort evaluation of the indoor
environment by different groups of people in different relative humidities. Relative humid-
ity affects human thermal comfort mainly by influencing heat and water–salt metabolism
in the human body [12], and different people have different sensitivities to indoor relative
humidity. For most people, fluctuations in indoor relative humidity within an appropriate
range at the same indoor temperature do not significantly affect their thermal comfort eval-
uation of indoor environments, whereas, for people with respiratory diseases, differences
in relative humidity significantly increase their discomfort and affect their actual thermal
comfort evaluation of indoor environment [13,14]. Therefore, it is crucial to develop a
control method for fan coil units to jointly control the indoor temperature and relative
humidity of office buildings within an appropriate range for the health status of occupants,
improvement in occupant work efficiency, and thermal comfort evaluation.

Currently, commonly used control methods for fan coil units usually consider only
indoor temperature as the control object, such as on/off control, rule-based control (RBC),
and proportional–integral–derivative (PID) control. These control methods are widely
used in actual projects owing to their simple deployment. For example, a PID controller
was proposed in [15] and its control effect on indoor temperature and relative humidity
was tested. Lifei Xu of the Harbin Institute of Technology [16] designed a cascade control
system for indoor temperature and relative humidity, and optimized the performance of
the controller by self-tuning the parameters of the PID controller using artificial neural
networks (ANNs). However, HVAC systems, as a class of highly nonlinear time-varying
systems, often have difficulty achieving the desired control effect using conventional
control methods [17]. Recently, the application of model predictive control (MPC) to HVAC
systems has received considerable attention. The MPC as a supervisory control has better
stability and multiobjective rolling optimization, but the operation effect of MPC depends
on accurate mathematical models, and requires data information that can accurately reflect
changes in indoor and outdoor building parameters [18]. If the difference between the
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mathematical model and the actual HVAC system is significant, the control effect of the
MPC is difficult to ensure.

With the development of big data technology and artificial intelligence (AI), a machine
learning method that is model-free and self-learning has emerged in recent years called
reinforcement learning (RL) [19–21]. Some scholars have conducted research on the optimal
control of RL algorithms in HVAC systems. Table 1 summarizes the related RL studies for
the optimal control of building HVAC systems. Junwei Yan et al. [22] applied the double
deep Q network (DQN) algorithm to the energy-saving optimization operation of a central
air-conditioning system in an office building in Guangzhou. In the premise of meeting
indoor thermal comfort requirements, compared with PID control, this algorithm reduces
the total energy consumption of the system by approximately 5.36%. Guangcai Gong
et al. [23] applied the DQN algorithm to a variable air volume (VAV) system to save the
total system energy and satisfy indoor thermal comfort. They verified that the control
effect of the DQN algorithm was superior to RBC in most cases by controlling the setpoint
of the air supply temperature and that of the chiller water supply temperature. Ruihua
Ding et al. [24] proposed a deep reinforcement learning optimal control method based on
expert knowledge to study a water-cooled air-conditioning system in a data center, and
compared the method with traditional RBC and PID control to demonstrate that the method
can reduce the total system energy consumption, while retaining the cabinet outlet air
temperature within a safe range. Yan Du et al. [25,26] applied the deep deterministic policy
gradient (DDPG) algorithm to a multizone residential HVAC system to minimize energy
consumption costs while maintaining indoor environment thermal comfort. Zhiang Zhang
et al. [27] proposed a control method based on the asynchronous advantage actor–critic
(A3C) algorithm, which was then deployed in an actual radiant heating system for testing.
The results demonstrated that the control method had over 95% probability of saving 16.6%
of the heating demand during the deployment period. Marco Biemann et al. [28] evaluated
four actor–critic algorithms in a simulated data center environment and demonstrated
that all four algorithms could achieve zone temperature maintenance within the desired
range while reducing energy consumption by 10% compared to a model-based controller.
Guanyu Gao et al. [29] used the DDPG algorithm to regulate a HVAC system to reduce
energy consumption while meeting the thermal comfort requirements of occupants. Yiqun
Pan et al. [30] used a VAV air-conditioning system for an office building as a case study to
validate the optimization performance of an RL controller-based DQN algorithm. They
demonstrated that the RL controller is more energy efficient than RBC and PID controllers
in meeting indoor temperature requirements. Currently, research on the application of
reinforcement learning algorithms in HVAC systems mainly focuses on reducing the total
system energy consumption while meeting indoor temperature requirements, and its
control objects are mostly various setpoints. This ignores the potential risk of not meeting
indoor relative humidity and deviation between setpoints and actual operating conditions.

From the literature review, in the control research of fan coil units, the current common
control method considers temperature as a single control object and disregards the effect of
indoor relative humidity. On the one hand, owing to the coupling relationship between
indoor temperature and relative humidity, it is difficult to regulate fan coil units to maintain
both the indoor temperature and relative humidity of office buildings within an appropriate
range, and there are still relatively few related studies. On the other hand, as machine
learning control methods, RL algorithms have appeared in recent years, and there have
been preliminary studies on their application in HVAC systems, but most of these studies
focus on reducing system energy consumption in the premise of meeting only indoor
temperature requirements, and control objects are often various setpoints. There are few
studies on joint control of both indoor temperature and relative humidity in office buildings
using RL algorithms. Therefore, it is significant to study the RL algorithm for the joint
control of indoor temperature and relative humidity. To solve these problems, this study
considers fan coil units with a fresh-air system in an office building in Beijing as the study
object, develops a TRNSYS–Python co-simulation platform, and proposes a reinforcement
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learning algorithm based on action intervention to regulate the air supply volume for the
fan coil units. The study objective is to improve the joint control satisfaction rate of indoor
temperature and relative humidity. In summary, this study provides preliminary direction
for a deep reinforcement learning control strategy for indoor temperature and relative
humidity in office building HVAC systems.

Table 1. Summary of the RL algorithm for optimal control of HVAC system.

Reference Building HVAC System Control Action Optimization
Objective RL Algorithm

Junwei Yan et al. [22] Office building

Water-cooled
central

air-conditioning
system

Chilled water
outlet

temperature and
chilled water flow

Energy consumption
and indoor air
temperature

Double DQN

Xi Fang et al. [23] Office building VAV

Air supply
temperature
setpoint and

chilled supply
water

temperature
setpoint

Energy consumption
and thermal comfort DQN

Ruihua Ding et al. [24] Data center

Water-cooled
central

air-conditioning
system

Chilled water
outlet

temperature and
the pressure
difference of
chilled water

pump

Energy consumption
and temperature of

air inlet area of
cabinet

DQN based on
expert

knowledge

Yan Du et al. [25,26] Residential
building

Split air
conditioner

Zone temperature
setpoint

Energy consumption
cost and thermal

comfort
DDPG

Zhiang Zhang et al. [27] Office building
Water-based

radiant heating
system

Supply water
temperature

setpoint

Energy consumption
and thermal comfort A3C

Marco Biemann
et al. [28] Data center VAV

Zone temperature
setpoint and zone
fan mass flow rate

Energy consumption
and indoor

temperature
Actor–critic

Guanyu Gao et al. [29] Laboratory Split air
conditioner

Air temperature
setpoint and

humidity setpoint

Energy consumption
and thermal comfort DDPG

Yiqun Pan et al. [30] Office building VAV Air supply
volume

Energy consumption
and indoor

temperature
DQN

The remaining parts of this article is organized as follows: Section 2 introduces method-
ology, including overall technical approach, establishment of simulation environment,
algorithm principle and design, co-simulation platform operating principle, and algorithm
evaluation; Section 3 shows the optimization control results of the controller proposed in
this study, which are compared with other controllers. Additionally, the sensitivity analysis
results of the DQN algorithm are also shown in this section; lastly, the conclusions and
limitations are summarized in Section 4.
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2. Methodology
2.1. Overall Technical Approach

In this study, an RL algorithm based on action intervention was proposed to regulate
the air supply volume for the fan coil units, commonly used in office buildings in China.
This study used a fan coil unit with a fresh-air system in an office building as a case study
to validate the optimization control performance of the RL controller proposed in this study.
The objective was to improve the joint control satisfaction rate of indoor temperature and
relative humidity. The overall technical approach of this study is illustrated in Figure 1,
and is divided into four parts:

• Establish a building virtual simulation environment. The building and its energy
system are modeled in TRNSYS software, which provides an interactive environment
for subsequent agent training.

• Design and deployment of a reinforcement learning algorithm. To improve the
joint control satisfaction rate of indoor temperature and relative humidity, this study
designed an RL algorithm with advanced applicability for regulating the air supply
volume for the fan coil units. The algorithm was deployed in TensorFlow.

• Development of the TRNSYS–Python co-simulation platform. In this study, real-
time interactions between TRNSYS and Python were realized using a data transfer
method. This method is based on files. A co-simulation platform was developed for
RL algorithm testing and evaluation.

• Algorithm evaluation. For the joint control effect on indoor temperature and rel-
ative humidity, the RL control algorithm proposed in this study was compared
with the traditional control method. Subsequently, sensitivity of the RL algorithm
was analyzed.
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2.2. Establishment of Simulation Environment

In this study, the Transient System Simulation Tool (TRNSYS) was used to build a
simulation environment. TRNSYS is an extremely flexible graphically based software
environment used to simulate the behavior of transient systems. It is a modular system
with a large component library, and users can create their own models. The TRNSYS
software has been widely used to study the performance simulation of HVAC components
and systems. The software is also verified by comparing with the experimental setup. For
example, Martinez et al. [31] modeled an air system with a desiccant wheel in TRNSYS,
and then designed a test facility to verify the effectiveness of the model.

This study established a simulation environment in TRNSYS based on weather data,
building information, and HVAC equipment information collected on-site. The simulation
environment is used for subsequent algorithm training, testing, and evaluation.

2.3. Reinforcement Learning Algorithm Design and Deployment
2.3.1. Reinforcement Learning Introduction

In this study, an RL control algorithm based on action intervention was proposed to
regulate the air supply volume for the fan coil units to improve the joint control satisfaction
rate of indoor temperature and relative humidity in office buildings.

Reinforcement learning is the third basic learning method in machine learning, in
addition to supervised and unsupervised learning. Its inspiration comes from behavior-
ism theory in psychology, which focuses on the idea that organisms constantly interact
with the environment to obtain rewards or punishments given by the environment, and
then gradually form expectations of rewards and punishments to produce actions that
can obtain maximum benefits [32]. Figure 2 shows a schematic of the reinforcement
learning algorithm.
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In Figure 2, S stands for the state and observation of the agent, A stands for an action
taken by the agent, and R stands for the reward given to the agent by the environment.
The specific interaction process follows: at each decision moment t, the agent executes
the action at, and after a time step ∆t, the environment is at moment t + 1, and the state
changes from st to st+1. The agent observes st+1 and realizes the reward R(st,at) in this
time step, which is fed back by the environment.

The iterative object of the RL algorithm is the maximum expected reward value
function Q based on the state–action pair, represented by Q(st, at), which is the cumulative
reward value that the system will obtain when the action at is executed in state st. Through
the continuous interaction between the agent and environment, the Q value is updated
by Equation (1).

Qnew(st, at)← (1− α)·Qold(st, at) + α·(R(st, at) + γ·maxQ(st+1, a)) (1)
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where α is the learning rate, α ∈ (0, 1]. When the learning rate approaches one, the
algorithm converges faster, but the risk of oscillation is higher; when the learning rate
approaches zero, the algorithm converges slower but the risk of oscillation is lower. Let
γ denote the discount factor γ ∈ [0, 1], which means the effect of the current action on
future long-term rewards. The larger γ is, the more the agent values long-term rewards
obtained in the future; conversely, the smaller γ is, the more myopic the agent is regarding
the rewards.

In an actual HVAC system, there are various devices and sensors, the dimensions of
the state are large, and many states are continuous rather than discrete. Calculating each
Q(st, at) is complicated and inefficient. To solve this problem, a method for estimating the Q
value using artificial neural networks (ANNs) was proposed. The input of the ANNs is the
state, and its output is Q value for each action. Such RL algorithms equipped with ANNs
are called deep reinforcement learning (DRL) algorithms. The deep Q network (DQN)
algorithm is a DRL algorithm with two ANNs (i.e., Q-network and target Q-network)
and an experience memory. The Q-network must be trained to output the maximum
Q-value. The target Q-network does not require training but only serves as a label for
the Q-network when it is trained, and its parameters are updated from replicating the
Q-network parameters over a fixed time step. The experience memory holds experience
generated by the agent interacting with the environment, which is extracted and input into
the Q-network as training data when the Q-network is being trained. The specific flow of
the DQN algorithm is presented in Algorithm 1.

Algorithm 1: Deep Q Network Algorithm Flow

1: Initialize memory M = [empty set]
2: Initialize Q network with parameters ω

3: Copy Q network and store as Q̂(·
∣∣ω̂)

4: Initialize control action a and state spre and scur
5: for m: = 1 to N do
6: Reset the environment to the initial state
7: for ts: = 0 to L do
8: if ts mod k == 0 then
9: scur ← current observation
10: r = reward

(
spre, a, scur

)
11: M←

(
spre, a, r, scur

)
12: Draw mini− batch(s, a, r, s′)← M
13: Target vectors v← target(s)
14: Train Q(·|ω ) with s, v
15: Every d∆tc steps, Q̂(·|ω̂ )← Q(·|ω )
16: ε = max(ε− ·ε, minε)

17: a =

{
ai ∈ A | i = random(n), probality ε

argmaxQ(scur, a), otherwise
18: spre ← scur
19: end if
20: Execute action a in the environment
21: end for
22: end for

Considering that the data generated by the operation of HVAC system are considerably
large and complex, the indoor-air state is a continuous variable rather than discrete. The
DQN algorithm was used in this study to solve the optimal control problem of the air
supply volume for the fan coil units.
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2.3.2. Design of the DQN Algorithm

• Selection of input parameters for the DQN algorithm.

In optimal control strategies based on DRL algorithms, selecting state S is important.
The more influencing factors the state contains, the more comprehensive the information
about the environment the agent receives, and the closer the final learned strategy is to
the optimal control strategy. However, an increase in the state dimension leads to a longer
training time and a more extensive space for the agent to explore, which increases the
risk of failure in agent learning. Therefore, in this study, after numerous experiments,
indoor temperature tem and indoor relative humidity RH are simultaneously selected
as inputs for the DQN algorithm after conversion. These experiments mainly consider
different combinations of input parameters and whether these input parameters need to be
converted. Detailed experiment settings are shown in Table 2, and the conversion formulas
are shown in Equations (2) and (3).

tem′ =


−1 + 1−(−1)

Tupper bound−Tlower bound
·(tem− Tlower bound), i f Tlower bound ≤ tem ≤ Tupper bound

1 +
(

tem− Tupper bound

)
, i f tem > Tupper bound

−1− (Tlower bound − tem), i f tem < Tlower bound

(2)

RH′ =


−1 + 1−(−1)

RHupper bound−RHlower bound
·(RH − RHlower bound), i f RHlower bound ≤ RH ≤ RHupper bound

1 +
(

RH − RHupper bound

)
/10, i f RH > RHupper bound

−1− (RHlower bound − RH)/10, i f RH < RHlower bound

(3)

where tem and RH denote the temperature and relative humidity before conversion, and
tem′ and RH′ are the temperature and relative humidity after conversion, respectively.
The purpose of Equation (2) is to distribute tem′ between −1 and 1 when tem is between
Tlower bound and Tupper bound. If tem is greater than Tupper bound or less than Tlower bound, tem′

increases or decreases when the value of tem linearly exceeds the boundary. Similarly,
the purpose of Equation (3) is to distribute RH′ between −1 and 1 when RH is between
RHlower bound and RHupper bound. If RH exceeds the upper or lower boundary, RH′ increases
or decreases with the values of RH that exceeded the boundary, based on the scale of one
tenth. This conversion keeps the scale of RH′ close to that of tem′.

Table 2. Detailed experiment settings.

Potential Input Parameters Conversion

Indoor temperature Yes or No
Indoor relative humidity Yes or No

Indoor humidity ratio Yes or No
Outdoor temperature Yes or No

Outdoor relative humidity Yes or No
Outdoor humidity ratio Yes or No

Wind velocity Yes or No
Occupancy No

Total horizontal radiation Yes

• Output setting for the DQN algorithm.

The output of the DQN algorithm can be considered a controllable variable in a HVAC
system. Based on the purpose of this study, the air supply volume for the fan coil units was
selected as the output. The fan coil units used in this study have four levels of air supply
volume: off, low, medium, and high, corresponding to 0%, 50%, 75%, and 100% of the rated
air volume, respectively. Therefore, action space A = [a0, a1, a2, a3] = [0, 50%, 75%, 100%].

• Design of the reward function for the DQN algorithm.
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In theory, an agent is trained to maximize the cumulative reward value. The design of
the reward function determines the time an agent takes to train and whether the training is
effective. According to the purpose of this study, the reward function is represented by the
negative form of the temperature penalty and relative humidity penalty terms, as shown in
Equations (4)–(6).

Reward = −k1·penaltytem − k2·penaltyRH (4)

penaltytem =

{
0, i f − 1 ≤ tem′ ≤ 1

abs(tem′)− 1, else
(5)

penaltyRH =

{
0, i f − 1 ≤ RH′ ≤ 1

abs(RH′)− 1, else
(6)

where k1 denotes the temperature penalty term coefficient and k2 denotes the relative
humidity penalty term coefficient.

• Exploration and exploitation of the DQN algorithm and hyperparameter setting.

In this study, we selected the ε-greedy exploration strategy to explore more state–
action pairs, and the specific process is that in the training phase, a random number is
generated at each time step, and if the random number is smaller than εi at this time,
the agent randomly selects an action; otherwise, the agent selects an action based on the
prediction of the Q-network. The formula for εi is shown in Equation (7).

εi = ε0 − εdecay·stepi (7)

where εdecay is the decay coefficient of ε and stepi is the i-th time step.
In this study, we intervened in the actions of the agent to avoid meaningless exploration

and enhance the utility of the RL controller. Specifically, during the training phase, if the
indoor temperature was higher than Tupper bound + 2 ◦C, the air supply volume for the fan
coil units was 100% of the rated air supply volume, and if the indoor temperature is lower
than Tlower bound − 2 ◦C, fan coil units were turned off. Such a setting enables the agent
to avoid meaningless exploration and reduce the computation cost of learning. During
the testing phase, if the indoor temperature was higher than Tupper bound, the fan coil units
were turned on to high airflow volume (i.e., 100% of the rated air supply volume), and
if the indoor temperature was lower than Tlower bound, the fan coil units were turned off.
On the one hand, this setting can prevent the agent from ignoring indoor temperature to
obtain appropriate indoor relative humidity; on the other hand, it can also avoid damage
to HVAC equipment.

The settings for the other hyperparameters in the DQN algorithm used in this study
are listed in Table 3.

2.4. TRNSYS–Python Co-Simulation Platform Development

The agent must be trained to learn the control strategy. During training, the agent
must continuously receive information regarding the environment and output an action
to be executed. If an untrained DQN algorithm is deployed in an actual building HVAC
system, there is a risk of equipment damage and serious deviation of the indoor air from the
comfort range. Therefore, in this study, a virtual simulation environment was built in the
TRNSYS software for training the agent, testing, and evaluating the DQN algorithm. An
RL controller based on the DQN algorithm was implemented in Python, and the artificial
neural networks were built and trained in the free and open-source deep learning library
TensorFlow. TensorFlow is an open-source software library developed by Google for
various machine learning tasks in perception and language understanding.
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Table 3. Hyperparameter settings.

Hyperparameter Candidate Value Selected Value

k1 {1, 2, 5, 10} 5
k2 - 1
α {0.001, 0.01, 0.1, 0.3, 0.5, 0.9} 0.01
γ {0.01, 0.1, 0.3, 0.5, 0.9, 0.99} 0.1

εdecay {0.0001, 0.001, 0.01} 0.01
ε0 {0.1, 0.3, 0.5, 0.8, 1} 0.3

Memory size {32, 64, 128, 256} 256
Batch Size {32, 64, 128, 256} 256

Target network update {1 day, 3 days, 5 days, 7 days} 1 day
Number of hidden layers {1, 2} 1
Number of neural units in

hidden layer {32, 64, 128, 256} 128

Activation function
of hidden layer - Sigmoid

Activation function
of output layer - Linear

Number of inputs - 2
Number of outputs - 4

Optimizer - Adam

To achieve real-time interaction between TRNSYS and the RL controller, we used a
file-based data transfer method. Specifically, the RL controller writes a control action to the
.in file, TRNSYS reads the file and executes the corresponding action, and after reaching the
next simulation time step, TRNSYS writes information about the environment to the .out
file, which is read by the RL controller. The data transfer principle is illustrated in Figure 3.
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Based on the design of the DQN algorithm and the real-time interaction between the
TRNSYS software and the RL controller, the overall architecture of the TRNSYS–Python
co-simulation platform proposed in this study is shown in Figure 4.
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2.5. Algorithm Evaluation
2.5.1. Metric for Training Convergence

The agent training must be stopped at the appropriate time. If the training time
is overly short, the learning of the agent may be incomplete, and the reliability of the
experience learned by the agent may be insufficient. If the training time is overly long,
the artificial neural network may fall into the predicament of overfitting. Therefore, it
is necessary to set an appropriate metric to determine whether the training of the agent
should end. After repeated experiments, we select Stepwise Average Reward as the metric
for training convergence, as shown in Equation (8).

Stepwise Average Reward =
1
N

N

∑
i=1

ri (8)

where ri denotes the value of the reward in the i-th time step and N denotes the number of
time steps performed.

2.5.2. Comparison and Evaluation of Control Effects

To verify the effectiveness of the proposed RL controller for the joint control of indoor
temperature and relative humidity, we selected on/off and rule-based controllers commonly
used in various projects. The specific settings for these controllers are presented in Table 4.

Table 4. Controller settings.

Controller Indoor Temperature Air Supply Volume for Fan Coil Units

On/Off controller
tem ≥ 27 ◦C

I 50% of the rated air
volume

II 75% of the rated air
volume

III 100% of the rated air
volume

tem ≤ 25 ◦C 0

Elsewise Keep the air supply volume constant

Rule-based controller
tem ≥ 26.7 ◦C 100% of the rated air volume

tem ≤ 25.3 ◦C 0

Elsewise 75% of the rated air volume
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In this study, we selected the temperature satisfaction rate, relative humidity satis-
faction rate, and joint control satisfaction rate of temperature and relative humidity as
evaluation indices, which are calculated as shown in Equations (9)–(11).

φtem =
ntem

N
·100% (9)

φRH =
nRH

N
·100% (10)

φtem&RH =
ntem&RH

N
·100% (11)

where ntem is the number of indoor temperature points within the upper and lower limits;
nRH is the number of indoor relative humidity points within the upper and lower limits,
ntem&RH is the number of both indoor temperature points and relative humidity points
within the upper and lower limits, respectively; and N is the total number of points.

2.5.3. Sensitivity Analysis

To evaluate the sensitivity of the DQN algorithm, we analyzed the sensitivity of the
key parameters (i.e., learning rate α and discount factor γ) in Equation (1). First, the
discount factor γ was fixed, and joint control effects on temperature and relative humidity
based on the RL controller with different learning rates were compared. Subsequently, we
fixed the learning rate α and compared joint control effects on temperature and relative
humidity based on the RL controller with varying discount factors.

3. Case Study
3.1. Case Introduction

The building for the case study is a trade union activity room in an office building in
the Haidian District, Beijing, with an area of 116 m2. Its air-conditioning system comprises
fan coil units with a fresh-air system. The geometry of the building was modeled using
SketchUp software, as shown in Figure 5. A schematic diagram of the HVAC system
operation is shown in Figure 6. The virtual simulation environment of the entire building’s
HVAC system was built in TRNSYS software, as shown in Figure 7. The RL controller
regulates the air supply volume for the fan coil units to improve the joint control satisfaction
rate of indoor temperature and relative humidity. The thermodynamic parameters of the
office building envelope are listed in Table 5. The setting for the building envelopes is
based on actual engineering design drawings. The settings for the environmental thermal
disturbances in the office are listed in Table 6. The other HVAC system settings are listed in
Table 7. These settings refer to the Design Standards for Energy Efficiency of Public Buildings
and on-site investigation. It should be noted that the air conditioner is set to be turned
on one hour earlier than occupancy. This setting is to ensure that the indoor temperature
is within the appropriate range when the staff enters the room, improving the thermal
comfort of the staff.
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Table 5. Building envelopes.

Building Envelope Heat Transfer Coefficient
W/
(
m2·K

)
External wall

Cement slag mortar 20 mm

2.266Steel reinforced concrete 370 mm

Dali granite basalt 20 mm

Roof

Cement mortar 20 mm

0.804
Cellular concrete 200 mm

Steel reinforced concrete 130 mm

Cement mortar 15 mm

External window Glass 6 mm 1.46 (SHGC = 0.52)
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Table 6. Thermal disturbances.

Thermal Disturbance Value

Human body heat generation 66 W/p

Occupant density 0.1 p/m2

Human body moisture generation 0.109 kg/(h·p)
Light and equipment heat generation 2.586 W/m2

Occupancy
8:00–20:00 1

Elsewise 0

Table 7. Settings for the HVAC system.

Setting Items Value

Fresh-air volume 10% of total air volume

Indoor environmental control
objectives

Upper limit of indoor
temperature 27 ◦C

Lower limit of indoor
temperature 25 ◦C

Upper limit of indoor relative
humidity 60%

Lower limit of indoor relative
humidity 40%

Air conditioning on or off
7:00–20:00 On

Elsewise Off

Simulation time step 12 min

3.2. Simulation Results Analysis of the Reinforcement Learning Controller

In this study, we selected 0:00 on July 1 to 0:00 on July 15 as the training period, and
the stepwise average reward curve of the training process is shown in Figure 8.
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As shown in Figure 8, the stepwise average reward climbs rapidly during the first
300 steps when the agent constantly interacts with the environment and learning experi-
ences. After 300 steps, the agent initially completed learning and continued to interact
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with the environment and learn more experiences, and the stepwise average reward curve
fluctuated within a small range.

The trained model was tested from 0:00 on 1 August to 0:00 on 31 August, and the
simulation results during the test period were counted; the results are shown in Figure 9.
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In this study, we selected indoor-air state on a typical day (5 August) for drawing, and
the results are shown in Figure 10.
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Figure 10. Indoor air temperature and relative humidity on 5 August.

As shown in Figure 10, when the indoor temperature initially deviates from the
comfort range and the relative humidity is outside the comfort range, the RL controller
proposed in this study takes action to maintain the indoor temperature near the comfort
range and to avoid further deviation of the indoor temperature from the comfort range. This
ensures the normal operation of the HVAC equipment and avoids damaging the equipment.
When the indoor temperature is within the comfortable range, the RL controller can select
the air supply volume for the fan coil units to achieve better joint control satisfaction rate of
indoor temperature and relative humidity.
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3.3. Comparison and Analysis of Simulation Results for Different Controllers

To further verify control the effect of the reinforcement learning controller on the indoor
temperature and relative humidity, we selected the on/off and rule-based controllers for
simulation comparison. The simulation results of the indoor temperature and relative
humidity in different controllers are shown in Figures 11 and 12.
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From the temperature distribution shown in Figure 11, the center of distribution
of the indoor temperature is more biased toward 25 ◦C in the RL controller, rule-based
controller, and on/off controller I, while the center of distribution of indoor temperature is
more concentrated at 26 ◦C in the on/off controller II and on/off controller III. From the
distribution of relative humidity in Figure 11, the distribution of indoor relative humidity
deviates to a higher relative humidity in all five controllers. By analyzing the weather data,
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it was found that there were more cloudy and rainy days during the test period, and the
relative humidity of the outdoor atmosphere was higher during cloudy and rainy days,
thus increasing the indoor relative humidity.

As shown in Figure 12, for the indoor temperature satisfaction rate, the on/off con-
troller I has the best control effect, which is 85.78%, and the rule-based controller has the
worst effect, which is 70.17%. For the satisfaction rate of indoor relative humidity, the
control effect of the RL controller is the best, at 54.78%, and the effect of the on/off controller
III is the worst, at 34.50%. For the joint control satisfaction rate of indoor temperature and
relative humidity, the control effect of the RL controller is the best, at 48.94%, 9.5% higher
than that of the rule-based controller, and 12.66% higher than that of the on/off controller I.

3.4. Sensitivity Analysis

To evaluate the sensitivity of the DQN algorithm, the key parameters (i.e., learning
rate α and discount factor γ) in Equation (1) were quantitatively analyzed in this study.

Maintaining the discount factor γ = 0.1 constant, a result of comparing the joint
control effect on indoor temperature and relative humidity by the RL controller at different
learning rates is shown in Figure 13.
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As shown in Figure 13, the joint control effect on indoor temperature and relative
humidity by the proposed RL controller is relatively robust in the range of learning rate
α ≤ 0.01. When the learning rate α ≥ 0.01, the control effect of the controller is reduced
and oscillation occurs because with an increase in the learning rate α, the training of the
agent oscillates and converges with difficulty.

When the learning rate α = 0.01 is constant, the result of comparing the joint control
effect on indoor temperature and relative humidity by the RL controller at different discount
factors is shown in Figure 14.

As shown in Figure 14, the sensitivity of the proposed RL controller to the discount
factor γ is weaker than that of the learning rate α. The overall control effect of the controller
is more robust at different discount factors. However, for smaller discount factors γ ≤ 0.5,
the controller has a better joint control effect on indoor temperature and relative humidity.
This is because the input parameters of the DQN algorithm are the indoor temperature and
relative humidity at the same time, and no outdoor weather parameters are introduced. If
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we aim to achieve a better control effect, we need the agent to prefer immediate rewards;
that is, we need a relatively “short-sighted” agent, so the selection of the discount factor is
more suitable for a smaller value.
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4. Conclusions

In this study, an RL control method based on action intervention was proposed, and
its input parameters, reward function, and agent exploration and exploitation mechanism
were designed. Subsequently, this study considered fan coil units with a fresh-air system in
an office building in Beijing as the research object and developed a TRNSYS–Python co-
simulation platform to verify the control effect of the proposed method, and the following
conclusions were obtained:

(1) Using file-based data transfer, this study developed a TRNSYS–Python co-simulation
platform, which makes it easier to train the agent and test and evaluate the performance of
comprehensive RL algorithms in a simulation environment.

(2) The DQN algorithm based on action intervention can reduce the training time
computation cost in the training phase and increase the security of algorithm deployment
in the testing phase. From the simulation results of this study, the algorithm can achieve a
better joint control effect on indoor temperature and relative humidity in office buildings.
Specifically, the method can improve the joint control satisfaction rate of indoor temperature
and relative humidity by 9.5% and 12.66%, respectively, compared with the traditional
rule-based controller and on/off controller I.

(3) The setting of hyperparameters has a relatively significant impact on the control
performance of the algorithm, which is robust when the hyperparameters are in an appro-
priate range. Otherwise, the control effect of the algorithm is reduced, and there is a risk
of oscillation.

Therefore, the control method proposed in this study can achieve a better joint control
effect on indoor temperature and relative humidity in office buildings. This study provides
a new direction for indoor thermal comfort and environment control in office buildings,
and has engineering application value.

Deep reinforcement learning for optimization control of an HVAC system is a compli-
cated problem, and some limitations need to be improved and studied in the future. Firstly,
the HVAC system and control action in this study are relatively simple, not involving heat
and humidity transfer between multizones or excessive control actions. The stronger the
coupling and nonlinear relationship between control actions of the HVAC system, the more
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potent the RL will be. Applying RL to complicated HVAC systems is challenging work.
Furthermore, the RL controller proposed in this study is not deployed in an actual HVAC
system. In the future, it will be significant to deploy the RL controller in an actual building
and evaluate the practical control effect. Finally, the building in this case study is located
in Beijing, China. It is desirable to test the control effect of the proposed RL controller on
buildings in different climate zones.
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