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Abstract: The assessment of infrastructure integrity is considered paramount to verify its structural
health and to build its resilience. In this study, a monitoring strategy, consisting of a pre-developed
microcontroller-based data acquisition system (DAQ) hardware and a software program for post
processing built on LabVIEW platform, was conducted to assess the structural behavior of an
arch-and-tie pedestrian bridge located in Haidari, Greece, following its construction phase. This
endeavor aimed to delineate its systemic state and to verify the fulfillment of comfort criteria stated
by EN1990, HIVOSS and SETRA guidelines. To this end, four trademark Bridge Diagnostic Inc.
(BDI) triaxial accelerometers were meticulously deployed along the bridge expanse to scrutinize
the structure’s response toward a spectrum of induced perturbations. The established framework
effectively compiled the acquired acceleration time domain then employed a Butterworth bandpass
filter to derive the bridge eigenfrequencies, eigenmodes, and damping ratios. The resultant findings
conclusively indicate that the bridge response towards pedestrian crossing conforms to the established
specifications and thus does not necessitate the installation of dampers. The bridge maintains
comfortable structural integrity for pedestrian traversal up to an upper frequency limit of 3.67 Hz,
substantiating its ability to absorb the dissipated energy generated by pedestrian movement.

Keywords: structural health monitoring; bridge assessment; comfort level characterization; damping;
eigenfrequency; LabVIEW

1. Introduction

In pursuit of meeting architectural requirements, engineers often aim to design
elongated-spanned pedestrian bridges, and to adopt lightweight yet high-strength materi-
als [1]. This innovation considerably lowers the eigenfrequency of the footbridge, which
in return renders the structure more vulnerable to oscillations, resulting in the discomfort
of pedestrians when crossing the bridge [2]. Nonetheless, the amount of reported bridge
harm has dramatically escalated, along with increased complaints about the deterioration
state, following the expansion of service duration and the high traffic loads bridges are
subjected to [3]. In such a situation, it becomes crucial to give priority to any infrastructure
for renovation and restoration depending on its assessed health [4].

Ongoing development in bridge design and construction, coupled with advancements
in assessment techniques, has highlighted the importance of monitoring its performance
from the construction phase through operation and maintenance for safety and comfort
characterization [5]. Therefore, assessing a bridge’s health has emerged to prevent any
adverse event that may befall the structure [6–11]. In their 2001 research, Peeters et al.
classified the aspects that could harm a bridge, such as metal corrosion and material aging,
resulting in strength loss. Furthermore, any externally induced disturbance has a significant
impact on the vibrational evaluation of bridges. Among these, the system can be stimulated
by the crowd standing atop the structure, the force of the wind, and the vibrations induced
at the base of the structure [12]. Consequently, dynamic assessment is conducted to evaluate
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vibrational properties intending to certify its design safety, analyze the health state, and
detect any harmful deterioration [13–16]. The most crucial vibrational characteristics to
assess are eigenfrequencies, eigenmodes, and damping ratios [17,18]. Pirskawetz and
Schmidt, in 2023, evaluated the structural response of a prestressed concrete bridge located
in Germany after being exposed to acoustic emission through destructive tests to detect
wire breakage [19]

As a result, modal analysis is established in assessing the dynamic behavior of struc-
tures [20–23]. Thus, operational modal analysis (OMA) is particularly employed in health-
monitoring strategies, deemed to evaluate modifications in the framework vibrational
measurements [24,25]. Gonzalez et al., in 2023, proposed a power spectral density-based
algorithm for bridge monitoring purposes within vehicle measurements. It was able to
identify, localize, and assess single cracks on a 15 m span simply supported bridge [26]. In
this study, we have adopted an operational modal testing procedure to estimate the dy-
namic measurements of a pedestrian bridge by inducing perturbations at various positions
along the bridge.

The operational lifespan of a pedestrian bridge is intricately tied to the influence of
individuals traversing it, mainly the number of people crossing, their activities, and the
duration of their presence on the bridge [27], resulting in modifications to its dynamic
aspect and modal attributes. Generally, pedestrians exhibit a proclivity for coordinated
interactions while crossing a bridge in order not to intersect. Therefore, this human–
human interface results in modifying their paths. Accordingly, neighbor pedestrians
adjust their walking cadence to harmonize with those around them [28]. Furthermore,
the human–structure interface may generate a discomfort for pedestrians when crossing a
bridge, since their walking frequencies tend to match with the bridge’s motion causing a
resonance oscillation state. Dallard et al. referred to this encounter impact as the “lock-in
phenomenon” ([29], p. 413).

Pedestrian bridges experience not only vertical vibrations caused by dynamic forces
induced by crowd movement, but also significant lateral vibrations, as exemplified by
the unexpected lateral oscillations that arose in the London Millennium Footbridge [30].
These movements were triggered by a significant lateral loading effect, a factor that was
not initially foreseen during the design phase and had received limited prior investigation.

In the realm of bridge dynamics, evaluating the system response toward an induced
stimulation indicates that the bridge oscillation may reach an uncomfortable state for
pedestrians, and so it becomes imperative to implement a vibration absorbent framework
for the undesirable bridge motion.

Passive damping mechanisms such as tuned mass dampers (TMDs) are adopted
on structures that are vulnerable to oscillation, such as pedestrian bridges, stadiums, or
high-rise building constructions. When it comes to the advancement of damping systems,
bridges, regardless of their specific design, offer a fascinating area of investigation [31].
TMDs have proven valuable not only in the design of new structures, but, also, they are
implemented on existing ones. Moreover, they come with a decent maintenance price [32].
Caetano et al. [33,34] conducted a study on the Pedro e Inés bridge in Coimbra, Portugal,
focusing on the structure oscillation caused by pedestrians while crossing the bridge. Their
research involved extended monitoring to analyze the bridge dynamic behavior and the
implementation of tuned mass dampers (TMDs) to mitigate vertical and lateral vibrations.

In this study, a monitoring methodology was conducted, aiming to assess the structural
behavior and verify the fulfillment of the comfort criteria of the Haidari pedestrian bridge
located in Greece after the completion of its construction.

2. Comfort Level of Pedestrian Bridges

In the present work, the emphasis on pedestrian comfort is gaining significant con-
sideration in both the design and functionality evaluations of footbridges. Prioritizing
the comfort of individuals when crossing a footbridge is of utmost importance, given
the multifaced challenge this issue may present. The comfort of individuals traversing a
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pedestrian bridge is influenced by a range of subjective factors, among them the ambient
noise, traffic volume on the bridge, bridge elevation from the ground, and the aspect of the
people crossing themselves. In 2016, Tubino at al. carried out an extensive experimental
study on two well-utilized footbridges located Italy. The design objectives were set in
accordance with the bridge owner’s specifications, focusing on achieving both the average
and the ultimate comfort stage [35].

It is widely acknowledged that vibrational acceleration stands as the primary influ-
encing factor affecting pedestrian comfort [36]. In previous investigations, researchers
primarily focused on the impact of vibrational magnitude and velocity on experienced
comfort [37–39]. Nevertheless, as research has progressed in examining human experiences
in their surroundings, there is a consensus among scholars that this comfort is chiefly
governed by the dynamic acceleration experienced over time, rather than velocity. In their
2017 study, Dey et al. assessed various design protocols using data obtained from tests
conducted on two real-time pedestrian bridges. Their findings indicated that the protocol
typically defines comfort thresholds based primarily on acceleration [40].

ISO 2631-1 [41] categorized the pedestrians’ comfort limits into six distinct groups
aligned with various acceleration amplitudes, and several recent studies have embraced
this comfort partition [42]. Similarly, alternative standards, such as the European HIVOSS
guideline from 2008 [43] and the French guideline Sétra from 2006 [44], have outlined
acceleration associated with specific comfort levels, as highlighted by Van Nimmen et al. in
2014 [45].

This research presents the evaluations of the vibrational performance of the Haidari
pedestrian bridge, with the goal of characterizing its structural condition and emphasizing
the pedestrian’s comfort. This approach is grounded in the correlation between pedestrians’
comfort and the highest acceleration experienced on the footbridge.

3. Case Study

A monitoring strategy was conducted aiming to assess the structural behavior and the
comfort of Haidari pedestrian bridge located in Greece after the completion of construction.
The structure is an arch-and-tie bridge with a span length of 44.6 m and width of 2.74
m. Along one side, the arch stands in an eccentrical position connected to six PFEIFER
type PV115 wire cables, as shown in Figure 1. The concrete deck is supported by steel
girders-cantilevers of variable trapezoidal profile sections which are connected to the arch
element. The bridge rests on two pedestals situated atop piles. The measured total dead
weight of the bridge is 152 tons.
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Figure 1. Cross-section of Haidari pedestrian bridge.

Four triaxial BDI accelerometers were strategically placed along the bridge to monitor
time-varying oscillations. A predefined sensor placement was suggested in accordance
with the areas on the deck expected to experience the most significant disturbances, deemed
as the optimal sensor placement. Specifically, two sensors were deployed at the midpoint of
the bridge, one on the cantilever section, and one adjacent to the bow. The remaining two



Buildings 2023, 13, 3053 4 of 16

sensors were positioned at the quarter-span, near the edge of the cantilever, as illustrated
in Figure 2. These sensors recorded accelerations in the vertical (z), longitudinal (x),
and transversal (y) directions along the bridge deck. Subsequently, the sensor data were
transmitted via wiring to a control unit located outside the bridge structure. The spatial
arrangement of these sensors in a top–down view is illustrated in Figure 3. The sensor
network was connected to a data acquisition system in order to process and evaluate the
recorded vibrational signals collected by the accelerometers.
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The adopted DAQ system was designed and validated by El Dahr et al. in 2022 [46]. It
is a microcontroller-based, accurate, and low-cost acquisition framework that facilitates the
aggregation and analysis of gathered data, relying on a Teensy 4.1 digital microcontroller
of a resolution of 32 bits to execute these operations. Along with its PC computer, it was
employed to receive the data and calculate the output through a programming software
such as MATLAB or LabVIEW.

In this study, the results were computed using a LabVIEW programming platform
developed by El Dahr et al. in 2023 [47]. LabVIEW, which stands for Laboratory Virtual
Instrument Engineering Workbench, is a graphical user interface-based programming
tool predominantly employed for data acquisition and structural assessment. One of the
primary advantages of this approach is its well-defined conceptual framework, enabling the
calculation of modal properties and reducing computational complexity while facilitating
its versatile application in various projects, such as bridges, towers, and tall structures.
Furthermore, its network of sensors and topological architecture ensures superior precision
in data collection and an optimized strategy for analysis when compared to other data
acquisition (DAQ) methodologies.

4. Experimental Procedure

The aim of the study was to observe how the system responds to various external
disturbances in order to estimate the dynamic characteristics of the bridge under scrutiny,
characterizing the comfort level experienced by pedestrians when crossing the bridge.
Therefore, the investigations were conducted in two distinct phases.

The first phase was intended to calculate the bridge eigenfrequencies, damping ratios,
and eigenmodes. This was achieved through the application of controlled excitations, with
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a particular focus on inducing vertical and lateral oscillations. These disturbances were
initiated by both cases, an individual and a group of people, who, through rhythmical
bouncing actions, excited the bridge within its natural frequency spectrum. These jumping
events predominantly occurred at positions corresponding to 1/2 and 1/4 of the bridge’s
length. Rhythmic activities encompassed an impact vertical jump with landing on two
feet, and hops from one leg to the other were performed to induce vertical and horizontal
oscillations, respectively. The pedestrians complied with the rhythm of a tone generator.
The frequency of foot-to-foot jumps was 3.67 Hz, which from preliminary measurements
had given the first vertical eigenfrequency of the bridge, with 2.0 Hz corresponding to
normal walking. The jumps stopped abruptly after reaching a level of oscillations and the
free response of the carrier until rest was measured. The set of Stage 1 tests is presented in
Table 1.

Table 1. Protocol of imposed stimulations of Phase 1 tests.

Pedestrian: Mass [Kg] Position Type/Frequency

A: 80.9 Kg
B: 94.8 Kg

C: 103.6 Kg

0.5 L Impact Jump
0.5 L 3.67 Hz foot to foot
0.5 L 2 Hz foot to foot
0.25 L Impact Jump
0.25 L 3.67 Hz foot to foot
0.25 L 2 Hz foot to foot

Six Pedestrians: 543.1 Kg

0.5 L Impact Jump
0.5 L 3.67 Hz foot to foot

0.25 L Impact Jump
0.25 L 3.67 Hz foot to foot

The second phase of testing was aimed at assessing whether the pedestrian bridge
conformed to the requisite standards for oscillation comfort during pedestrian transit. Data
acquisition involved recording the movements of one pedestrian and a crowd of nine
people walking on a predefined path for specific frequencies.

The traffic on the bridge is classified between very light and light according to HIVOSS
guidelines [43] and SETRA [44], since the bridge is located in an urban area that can be
occasionally loaded, with a pedestrian density of 0.1–0.2 pedestrian/m2.

Three different types of gait characteristics of walking, running, and random walking,
where each pedestrian walked at their own pace, were tested for the intentional stimulation
of the subject. The recording of accelerations in all crossings started 10 s before the beginning
of pedestrian movement on the bridge deck and ended 20 s after they stopped. The set
of examined crossings for one pedestrian and for a group of nine pedestrians is given in
Table 2.

Table 2. Protocol of imposed stimulations of Phase 2 tests.

Pedestrian: Mass [Kg] Type/Frequency Path

A: 80.9 Kg 2.0 Hz Walk
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5. Results and Interpretation
5.1. Acceleration Calculation

The DAQ system and the BDI accelerometers have a sampling frequency of 200
Hz. Accelerometers along the bridge were recording raw data in response to external
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disturbances. The LabVIEW code was employed to compute and eliminate the mean
value from the recorded acceleration, thereby mitigating the offset inherent in the raw
acceleration–time graph. The removal of this offset is crucial to minimize potential sources
of error. To derive the corrected acceleration–time domain, the mean value is subtracted
from the raw acceleration–time domain. The structure is designed to experience a maximum
acceleration of 0.7 m/s2 in the vertical direction and 0.2 m/s2 in the lateral direction.

An evaluation of pedestrian A leaping at the bridge’s midpoint is provided in the
paragraphs that follow. Figure 4 shows the corrected acceleration time domain collected
by accelerometer A recording the structural response toward pedestrian A disturbing the
bridge with an impact jump at the mid-length of the bridge. The results are presented in the
vertical direction. The mean value was determined to be 9.8049 m/s2 and was subtracted.
The highest acceleration recorded was 0.92 m/s2 reported at 8.15 s when the bridge was
disturbed. The acceleration is higher than the maximum allowable acceleration in the
vertical direction of 0.7 m/s2 that the bridge is originally designed to experience, causing a
discomfort feeling for a 1 s period of time.
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Figure 5 shows the corrected acceleration time domain collected by accelerometer A
recording the structural response toward pedestrian A disturbing the bridge with an impact
jump at the mid-length of the bridge. The results are presented in the lateral direction.
The mean value was determined to be −0.27864 m/s2 and was retrieved. The highest
acceleration recorded was 0.16 m/s2, reported at 8.15 s when the bridge was disturbed.
The acceleration is lower than the maximum allowable acceleration in the lateral direction
of 0.2 m/s2, which the bridge is originally designed to experience.
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Figure 6 shows the corrected acceleration time domain collected by accelerometer A
recording the structural response toward the six pedestrians disturbing the bridge with
an impact jump at the mid-length of the bridge. The results are presented in the vertical
direction. The highest acceleration recorded was 0.6 m/s2 reported at 13.3 s when the
bridge was disturbed. The acceleration is lower than the maximum allowable acceleration
in the vertical direction of 0.7 m/s2, which the bridge is originally designed to experience.

Figure 7 shows the corrected acceleration time domain collected by accelerometer A
recording the structural response toward the six pedestrians disturbing the bridge with
an impact jump at the mid-length of the bridge. The results are presented in the lateral
direction. The highest acceleration recorded was 0.25 m/s2 reported at 13.3 s when the
bridge was disturbed. The acceleration is higher than the maximum allowable acceleration
in the lateral direction of 0.2 m/s2, which the bridge is originally designed to experience,
causing a discomfort feeling for a 1 s period of time.
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5.2. Natural Frequencies 
Determining the eigenfrequencies of a pedestrian bridge is useful to inspect its sen-
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5.2. Natural Frequencies

Determining the eigenfrequencies of a pedestrian bridge is useful to inspect its sensi-
tivity to oscillations during pedestrian crossing. Indeed, if a structure’s eigenfrequencies
are close to the eigenfrequencies of pedestrian traffic, there is a risk of resonance. The
critical eigenfrequency intervals according to the EN 1990 standard [48] and the SETRA [44]
and HIVOSS [43] guidelines are given in Table 3.

Table 3. Frequency ranges with resonance risk.

Frequency [Hz]

Vertical Oscillations Lateral Oscillations

Coordination Risk EN 1990 HIVOSS SETRA EN 1990 HIVOSS SETRA

Negligible >5 <1.25
>4.6

<1.0
>5.0 >2.5 <0.5

>1.2
<0.3
>2.5

Small

<5 1.25–4.6

2.6–5.0

<2.5 0.5–1.2

1.3–2.5

Medium 1.0–1.7
2.1–2.6

0.3–0.5
1.1–1.3

Big 1.7–2.1 0.5–1.1

The eigenfrequencies calculated in the designed phase (with contribution of the pedes-
trians mass with an estimation of 0.6 pedestrian/m2, for testing purposes, considering a
pedestrian to be 0.8 kN) are as follows: 3.042 Hz, 7.76 Hz, and 10.28 Hz.

The frequency domain is obtained after performing power spectral density (PSD)
function on the corrected acceleration time domain of accelerometer A in the vertical
direction. The signal from PSD is evaluated to find the peaks in terms of natural frequencies

in (Hz) and their respective power in
[
(m/s2)2

Hz

]
(Figure 8). It reports three eigenfrequencies,

respectively, at 3.67 Hz, 7.62 Hz, and 10.22 Hz (Figure 9).
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The frequency domain is obtained after performing the power spectral density (PSD)
function on the corrected acceleration time domain of accelerometer A in the lateral direc-
tion. The signal from PSD is evaluated in Figure 10 and reports three eigenfrequencies,
respectively, at 3.67 Hz, 6.24 Hz, and 7.62 Hz (Figure 11).
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Figure 11. Power spectral density with numerical inquiry of the system eigenfrequency in lat-
eral direction.

The eigenfrequencies of the first two eigenmodes in the vertical and transverse direc-
tions, as well as their evaluation in terms of resonance risk, are given in Table 4.

Table 4. Bridge frequencies and comparison with resonant risk specifications.

Eigen
Frequency

Frequency [Hz] Coordination Risk

Vertical Lateral
Vertical Lateral

EN 1990 HIVOSS SETRA EN 1990 HIVOSS SETRA

1st 3.67 6.18 Intermediate Intermediate Small Negligible Negligible Negligible

2nd 7.62 7.62 Negligible Negligible Negligible Negligible Negligible Negligible

3rd 10.22 10.22 Negligible Negligible Negligible Negligible Negligible Negligible

5.3. Damping

The damping ratio was determined by LabVIEW through Hilbert transform for the
eigenfrequencies of the bridge in both directions. It is estimated to be a maximum of 5% as
per the original bridge design.

For the first eigenfrequency, a second-order Butterworth bandpass filter was applied
on the corrected acceleration–time domain data of accelerometer A in the vertical direction,
with cutoff frequencies between 3.61 and 3.73 Hz. According to the Hilbert transform, the
damping ratio is 2.25% (Figure 12).
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Figure 12. LabVIEW graph showing the acceleration–time domain of accelerometer A with envelopes
for the first eigenfrequency in the vertical direction calculated by Hilbert transform.

For the second eigenfrequency, a second-order Butterworth bandpass filter was ap-
plied on the corrected acceleration–time domain data in the vertical direction, with cutoff
frequencies between 7.56 and 7.68 Hz. According to Hilbert transform, the damping ra-
tio is 1.45%. Same for the lateral direction, for the first eigenfrequency, a second-order
Butterworth bandpass filter was applied on the corrected acceleration–time domain data,
with cutoff frequencies between 6.1 and 6.2 Hz. According to the Hilbert transform, the
damping ratio is 1.93%. For the second eigenfrequency in the lateral direction, a second-
order Butterworth bandpass filter was applied on the corrected acceleration–time domain
data, with cutoff frequencies between 7.56 and 7.69 Hz. According to Hilbert transform,
the damping ratio is 1.14%. All four acceleration–time domains with envelopes for both
eigenfrequencies in vertical and lateral directions calculated by Hilbert transform showed
similar shapes.

Table 5 shows the system damping ratios for both eigenfrequencies in both directions.

Table 5. Damping ratios of the first 2 eigenfrequencies.

Eigenfrequency
Damping Ratio [%]

Vertical Direction Lateral Direction

1st 2.25 1.93

2nd 1.45 1.14

The calculated damping ratios for the first and second eigenfrequencies in both direc-
tions satisfy the specified criteria, as they fall below the maximum allowable damping for
which the bridge has been designed.

5.4. Eigenmodes

Acceleration is proportional to displacement [49] since a double integration is needed
to calculate displacement. Therefore, the mode shapes of the bridge can be pictured by
reporting the filtered acceleration for each eigenfrequency.

For the first eigenfrequency, in the vertical direction the three accelerations delineated
in blue dots along the bridge length (outlined in white) synchronize, having the same
phase at a specific moment with a different altitude. From the reported data of the second
eigenfrequency, both accelerometers installed on the quarter edges of the bridge share the
same phase, yet the accelerometer mounted on the mid-length of the bridge is shifted by
π/2. The amplitude of the accelerometers indicates the displacement aspect at each sensor
location, revealing the two consecutive mode shapes of the bridge (represented in red) in
Figures 13 and 14.
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Likewise, for the first eigenfrequency in the lateral direction, the three accelerations
delineated in blue dots along the bridge length (outlined in white) synchronize, having the
same phase at a specific moment with a different altitude. From the reported data of the
second eigenfrequency, both accelerometers installed on the quarter edges of the bridge
share the same phase, yet the accelerometer mounted on the mid-length of the bridge is
shifted by π/2. The amplitude of the accelerometers indicates the displacement aspect at
each sensor location, revealing the two consecutive mode shapes of the bridge (represented
in red) in Figures 15 and 16.
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In conclusion, it may be said that the analysis of the dynamic behavior of the tested
pedestrian bridge after the completion of construction showed three eigenfrequencies of
3.67, 7.62, and 10.22 Hz for the vertical direction. A damping of 2.25% for the first and 1.45%
for the second eigenfrequency were found. For the lateral direction, the three detected
eigenfrequencies were 6.18, 7.62, and 10.22 Hz. And a damping of 1.93% for the first and
1.14% for the second eigenfrequency were found. For each eigenfrequency, a distinct mode
shape was found.

5.5. Comfort Level

The second phase referred to finding the comfort levels for one pedestrian and a group
of nine people. The activities of pedestrian A (80.9 Kg) and the group of nine pedestrians
(791.2 Kg) were recorded when crossing the bridge through a predetermined path for a
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2 Hz walk and a 3.67 Hz run and a random walk in both lateral and vertical directions.
The comfort feeling was observed in pedestrians for all activities in the lateral and vertical
directions. When crossing the bridge at 3.67 Hz, for the activity of one pedestrian, the
comfort limits were touching the limit in the vertical direction, as is shown in Figure 17,
but they were not surpassed. However, for the lateral direction, the pedestrian did not feel
any structural movement causing their discomfort, as shown in Figure 18. Same for the
activity of a group of pedestrians, the comfort limits were touching the limit in the vertical
direction, as is shown in Figure 19, but they were not surpassed. However, for the lateral
direction, the pedestrian did not feel any structural movement causing their discomfort, as
shown in Figure 20.
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The comfort standards are outlined in terms of maximum acceleration in EN 1990,
A2.4.3.2 [48], and are as follows:

1. For vertical vibrations, 0.7 m/s2.
2. For horizontal vibrations resulting from typical use, 0.2 m/s2.

Comfortability does not have to reduce the bridge safety regulations, since damping
calculations indicate and affirm having a safe structure. However, the movement of bridge
is due to its capability of absorbing the energy produced by the pedestrian using it.
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5.6. Spatial Distribution of Maximum Accelerations

A comprehensive investigation of the spatial distribution of peak accelerations along
the longitudinal and lateral dimensions of the bridge can be ascertained from the depictions
in Figures 21 and 22. These figures illustrate the maximum recorded acceleration values
obtained from each sensor (accelerometers A and C at L/2, B at L/4, and D at 3 L/4, where
B, C, and D are located at mid-width, and A is located at the cantilever side) during the
three different crossings (normal walk at 2 Hz, random walk, and normal run at 3.67 Hz)
exerted by pedestrian A and a group consisting of nine pedestrians. It is shown that for the
case of pedestrian A, accelerometer C was recording the most intensified response while
disturbing the bridge with the three different frequencies in both directions, revealing a
symmetric response for sensors at quarter-edges with respect to the sensors at mid-length.
Conversely, for the case of the nine pedestrians, it is shown that accelerometers B and
D record higher acceleration than accelerometer C, as shown in the results of a random
run scenario in the vertical direction. Moreover, the results of only one of the quarter-
edge sensors can exceed that of the mid-length, addressing an asymmetric response, as
is shown in the result of a random walk scenario in the lateral direction. This is due
to unsynchronized footsteps of numerous pedestrians taking more time to adjust their
movement with their neighbors while crossing the bridge. Then, the whole crowd readjust
their pace to harmonize with the that of the bridge. For both cases of one and nine
pedestrians and at any disturbance frequency, accelerometer C always records a higher
acceleration intensity than accelerometer A. It is noteworthy that, in the vertical direction,
a maximum acceleration of 1.5 m/s2 was reported for both cases of one pedestrian and
a crowd.
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5.7. Comfort Level Control

The level of comfort is assessed by comparing the maximum recorded accelerations on
different crossings with the limits of the regulation and by directly recording the subjective
feeling of the test participants.

Table 6 presents the limit values of accelerations as defined by EN 1990–A2 [48], and
the SETRA [44] directives based on which level of comfort, in the pedestrian bridge under
study, was evaluated.
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Table 6. Maximum allowable accelerations based on specifications.

Comfort Level Degree of Comfort

Acceleration [m/s2]

Vertical Direction Lateral Direction

EN 1990 SETRA EN 1990 SETRA

1 Maximum

0.7

<0.5

0.2

<0.1

2 Medium 0.5–1.0 0.1–0.3

3 Minimum 1.0–2.5 0.3–0.8

4 Not acceptable >2.5 >0.8

Figure 23 compares the maximum accelerations recorded by one individual and group
pedestrian crossings for each type of walk. The differences in accelerations between people
for almost all crossings are evident in both directions. However, there is no apparent
ratio between pedestrian weight and deployed acceleration, leading to the conclusion
that the amount of acceleration recorded when pedestrians cross depend on other biomet-
ric characteristics.

The limit values for accelerations, as defined in the specifications, are also indicated in
the same figure. It should be noted that for all passages, the developing accelerations are
classified at the maximum comfort level on the basis of specifications in both vertical and
lateral directions. The exceptions are the crossings of pedestrian A and the group of nine
pedestrians running with a frequency equal to the first vertical frequency of the 3.67 Hz
bridge where vertical accelerations are at medium comfort levels.
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6. Conclusions

In conclusion, this paper presented the use of a computer-based data acquisition
system and an automated coding software, LabVIEW, for structural health monitoring
and system identification of a real-time pedestrian bridge located in Haidari, Greece, after
the completion of construction. It calculated its dynamic properties, and characterized its
comfort level.

Dynamic properties were found to have three eigenfrequencies of 3.67, 7.62, and
10.22 Hz in the vertical direction, with a damping of 2.25% for the first and 1.45% for the
second eigenfrequency. For the lateral direction, the three detected eigenfrequencies were
6.18, 7.62, and 10.22 Hz. And a damping of 1.93% for the first and 1.14% for the second
eigenfrequency were found. For each eigenfrequency, a distinct mode shape was found.

As safety was proven, the comfort level was tested as pedestrians crossed according
to EN 1990, A.2.4.3.2 [48]. The results demonstrated comfort in crossing the bridge in both
directions until a limit of 3.67 Hz running activity was reached, where the bridge absorbed
the dissipated energy from the pedestrians by vibrating for seconds to finally restore to its
initial posture.

It is concluded that the bridge excitations during pedestrian crossing are within the
specifications and do not require the installation of dampers. But it is recommended to
avoid malicious use of the bridge.
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