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Abstract: Soil transverse isotropy results in different stiffness characteristics in horizontal and vertical
directions. However, the effect is usually neglected in seismic motion analysis. In this study, an
equivalent linear anisotropic soil model was established based on the finite element method, and
we investigated the impact of anisotropic parameters on ground motion at the site under various
seismic wave inputs. It was found that the anisotropic parameters have a more significant effect
on seismic waves, with the dominant frequency being closer to the fundamental frequency of the
site. As an example, the soil dynamic parameters in Shanghai Yangshan Port were calibrated by a
series of bending elements, resonance columns, and cyclic triaxial tests. The influences of anisotropy
on the peak ground acceleration (PGA) and response spectrum were studied for Yangshan Port.
Additionally, the standard design response spectra considering the soil anisotropy were provided.
A comparison reveals that the existing isotropic design response spectrum may lead to dangerous
seismic design for the structures at Yangshan port.

Keywords: transverse isotropy; ground motion characteristics; standard design response spectrum

1. Introduction

To improve the seismic design of structures, it is necessary to conduct a site-specific
seismic motion analysis to understand the characteristics of ground motion at the site.
Earthquakes have resulted in significant economic losses and casualties. Earthquakes have
the potential to inflict significant destruction upon various types of structures, encompass-
ing inland buildings [1], hydraulic structures [2], and subterranean constructions [3]. One
of the important causes of the structural damage caused by earthquakes is soil amplification.
This is illustrated in damage assessments of buildings in the countries of Turkey [4–6],
Greece [7], Iran [8], Mexico [9], Korea [10], Pakistan [11], and Nepal [12]. Numerous schol-
ars have extensively researched the seismic resilience of engineering structures [13–16]. The
analysis of structures for seismic resistance utilizes a range of methodologies, encompassing
response spectrum analysis, the base shear method (quasi-static method), and time history
analysis. The response spectrum method is extensively utilized as the predominant seismic
analysis approach in engineering practice. The response spectrum is obtained by calibrating
ground motion characteristics at the specific site. Consequently, numerous scholars have
researched the seismic design of structures based on the seismic motion characteristics at
the site [16–18].

Soil dynamic constitutive models can be categorized into total stress models and
effective stress models, considering the aspects of stress transmission and inter-particle
contact [19]. The effective stress model offers superior capability in addressing the issue
of seismic liquefaction [20–22]. Regarding the issue of seismic ground motion response,
researchers commonly employ the total stress model for analysis. The total stress models
include the elastic–plastic model [23–30], nonlinear model [22,31,32], and equivalent linear
model [33]. Traditional elastoplastic models such as the Mohr–Coulomb model [34] and the
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Drucker–Prager model [35] can be integrated with the boundary interface theory [25–27],
kinematic hardening theory [23,24], and nested yield surface theory [29,30] to account for
the effects of cyclic loading. Although the elastoplastic model theory effectively describes
the hysteresis characteristics and nonlinearity of soils, its computational complexity and
significant workload make it inconvenient for engineering applications. Researchers em-
ploy nonlinear models [31,32] based on the Masing criteria to depict the nonlinearity and
hysteresis characteristics of soils. While these nonlinear models simplify the workload
associated with elastoplastic models, they still entail a certain level of complexity. The
linear model offers the advantages of a low workload and low complexity, allowing for
the consideration of soil nonlinearity and hysteresis characteristics through the application
of an equivalent concept. Hence, the most widely utilized approach at present is the
equivalent linear model, which has evolved from linear models. Schnabel [33] initially
pioneered the development of the frequency domain equivalent linear model within the
SHAKE program. Idriss et al. [36] modified the expression of damping in the SHAKE
program and developed the SHAKE91 program. With the development of commercial
software, the SHAKE and SHAKE91 programs have been integrated into software such as
EERA 1998 and DEEPSOIL v7.0.33. The SAHKE program demonstrates limited proficiency
in effectively addressing anisotropic challenges.

Soil anisotropy has aroused great interest in recent years. Zhang et al. [37,38] and
Teng [39] investigated the impact of soil anisotropy on excavation-induced effects in exca-
vations. Wei et al. [40], Soe et al. [41], and Zhang et al. [42] investigated the impact of soil
anisotropy on tunnel design and construction. Peric et al. [43] and Ai et al. [44,45] investi-
gated the impact of anisotropy on the design of pile foundations. It has been found that
there is anisotropy in the soil under small strain conditions. Bentil [46] has delved into the
anisotropy of the small-strain shear modulus by conducting bending element experiments.
The consideration of soil anisotropy in the seismic response analysis of soil layers has been
scarce among scholars, primarily due to the complexities involved in studying anisotropy,
seismic loads, and their associated intricacies. Considering the lack of relevant research
and to maintain the coherence and rigor of scientific inquiry, this study investigates the
impact of anisotropy on the seismic response of the site using a finite element method with
an anisotropic time-domain equivalent linear model.

2. Soil Dynamic Characteristics
2.1. Linear Viscoelastic Model

The viscoelastic Kelvin model (a spring connected in parallel with a sticky pot) is used
to reflect the hysteresis of the soil under cyclic loading. The stress–strain relationship is
described by Equation (1):

τ = Gγ + ηG
.
γ (1)

where G is the shear modulus; τ is the shear stress; γ is the shear strain; and ηG is the shear
viscosity coefficient, as given in Equation (2):

ηG =
2GD

ω
(2)

where D is the damping ratio and ω is the circular frequency.

2.2. Modulus and Damping Models

The key to the effective linearization method is to determine the relationship between
the shear modulus ratio and the damping ratio with the shear strain. Hyperbolic models
are widely used to describe nonlinear soil behavior under cyclic loading, such as the Pyke
model and the Stokoe model [47]. In this study, the improved Stokoe model is selected to fit
the relationship between the shear modulus ratio and shear strain, as given in Equation (3):

Gnorm =
G

Gmax
=

1
1 + (r/rr)

α (3)
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where Gnorm is the normalized shear modulus, rr is the reference strain, and α is the fitting
parameter; the definition of rr is different from the Harden–Drnevich model
(rr = τmax/Gmax).

Zhang et al.’s [48] formula is adopted to describe the relationship between D and
Gnorm as follows:

D = K1G2
norm + K2Gnorm + K3 (4)

where K1, K2, K3 are the model fitting parameters.

2.3. Effects of Anisotropy

The notation for an anisotropic material used herein is the y-axis (the vertical direction)
represents the direction of the anisotropy, and the x, z-plane is the plane of isotropy. The
stress–strain increment equation for an anisotropic material can be written as follows
(5) [49]. 

δεx
δεy
δεz

δγxy
δγyz
δγzx


=



1
Eh

− vvh
Ev
− vhh

Eh
0 0 0

− vhv
Eh

1
Ev

− vhv
Eh

0 0 0
− vhh

Eh
− vvh

Ev
1

Eh
0 0 0

0 0 0 1
Ghv

0 0
0 0 0 0 1

Gvh
0

0 0 0 0 0 1
Ghh
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

δσx
δσy
δσz
δσxy
δσyz
δσzx


(5)

where Ev and Eh are Young’s moduli in the vertical and horizontal directions, respec-
tively; Vhh and Vvh are Poisson’s ratios for horizontal strains from a horizontal and vertical
strain, respectively; Vhv is Poisson’s ratio for vertical strains from a horizontal strain; Gvh
and Ghv are the shear moduli in the vertical plane; and Ghh is the shear modulus in the
horizontal plane.

The anisotropy ratios ARG and ARE for the shear modulus and Young’s modulus are,
respectively, defined as:

ARG =
Ghh
Gvh

(6)

ARE =
Eh
Ev

(7)

Under the undrained condition, these Poisson’s ratios [50] need to satisfy the ad-
ditional relationships (vvh = 0.5, vhh + vhv = 1). Therefore, one can further obtain the
following equations [50]:

vhh = 1− vhv = 1− ARE · vvh (8)

vhv =
Eh
Ev
· vvh = ARE · vvh (9)

Ghh =
ARE · Ev

2(2− ARE · vvh)
(10)

Gvh = Ghv =
1

ARG

ARE · Ev

2(2− ARE · vvh)
(11)

3. Simulation of Time-Domain Equivalent Linear Model for Anisotropic Soil Layers

This study takes the actual recorded seismic waves as input conditions, degenerates
the model to isotropy, and compares it with EERA for verification. This study focuses
on exploring the ground motion response of anisotropic sites with different sedimentary
characteristics (different anisotropic parameters).
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3.1. Input Ground Motion and Finite Element Model

In Eurocode 8 [51], sites are classified according to the average shear wave velocity
in the upper 30 m thick soil profile. Therefore, the soil layer thickness is selected as 30 m.
Also, three seismic waves are chosen: the Ei-Centro Wave, Shanghai Wave, and Kobe Wave.
The amplitudes of these seismic waves were adjusted to have a peak acceleration of 0.1 g.
Figure 1 illustrates the three seismic waves. As shown in Figure 2, a two-dimensional plane
strain soil finite element model is established based on ABAQUS 6.14. The type of the finite
element is CPE4, and the estimated size of the mesh is 1 m × 1 m. The mesh size meets
the requirement of less than 1/10 wavelength. The boundary adopts the infinite element
boundary, and seismic waves are input to the base. Therefore, the wave vibrates in the x
direction and propagates in the y direction.
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Figure 1. Seismic wave time history curve. Figure 1. Seismic wave time history curve.
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Figure 2. Finite element model.

3.2. Isotropic Soil Layer

This subsection is used to verify the validity of the established finite element method
with an anisotropic time-domain equivalent linear model in the isotropic case studies. The
shear modulus model chosen here is the Seed–Idriss mode [52], and the damping curve
model used is the Idriss mode [36]. Table 1 presents the model parameters. The properties
of the soil layers are shown in Table 2.

Table 1. Model parameters.

γγ (10−4) α K1 K2 K3

5.87 0.93 0.26 −0.51 0.26
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Table 2. Isotropic soil example.

Seismic Wave Thickness (m) Vs (m/s) ρ (g/cm3)

EI-Centro;
Shanghai;

Kobe
30

100
150
200
300

2

Figure 3 illustrates the comparison of the peak ground acceleration (PGA) with depth,
considering three seismic records, namely the Ei-Centro Wave, Shanghai Wave, and Kobe
Wave, along with four soil conditions. They exhibit good agreements with the results
obtained from the classical seismic analysis code EERA.
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Figure 3. Comparison of results for homogeneous soil layer with isotropic: (a) Shanghai; (b) Kobe;
(c) Ei-Centro.

3.3. The Influence of Anisotropic Parameters

It should be noted that this study assumes a consistent relationship between Gvh − γ
and Ghh− γ. Diffserent anisotropic parameter (ARE = 1.00, 1.30, 1.60; ARG = 1.05, 1.30, 1.55,
1.80, 2.05) were selected for a 30-meter-thick layer of soft soil with a shear wave velocity of
150 m/s. Detailed parameters are listed in Table 3.
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Table 3. Example parameters.

Seismic
Wave ARE ARG

Thickness
(m) Vs (m/s) ρ (g/cm3)

EI-Centro;
Shanghai;

Kobe

1.00;
1.30;
1.60;

1.05;
1.30;
1.55;
1.80;
2.05;

30 150 2

PGAaniso/PGAiso is the ratio between the peak ground acceleration obtained at an
anisotropic site and that obtained at an isotropic site. Figure 4 shows that, with ARE
increasing, PGAaniso/PGAiso gradually decreases. Conversely, as ARG increases, PGA has
an obvious increase. Especially when inputting the Kobe wave, the PGA of anisotropic
conditions exceeds that of isotropic conditions up to 14% with ARG increasing. Conse-
quently, it is considered that soil anisotropy is essential in analyzing site conditions for
seismic response.

Buildings 2023, 13, x FOR PEER REVIEW 7 of 18 
 

1.0 1.2 1.4 1.6 1.8 2.0
0.9

1.0

1.1

1.2

1.3

ARG

 ARE=1.0

 ARE=1.3

 ARE=1.6 

P
G

A
a
n

is
o
/P

G
A

is
o

Shanghai

 
1.0 1.2 1.4 1.6 1.8 2.0

0.9

1.0

1.1

1.2

1.3

ARG

 ARE=1.0

 ARE=1.3

 ARE=1.6 

P
G

A
a
n

is
o
/P

G
A

is
o

Kobe 

 
(a) (b) 

1.0 1.2 1.4 1.6 1.8 2.0

0.9

1.0

1.1

1.2

1.3

ARG

 ARE=1.0

 ARE=1.3

 ARE=1.6 

P
G

A
a
n

is
o
/P

G
A

is
o

Ei-Centro

 
(c) 

Figure 4. Normalized peak ground acceleration scatter plot: (a) Shanghai; (b) Kobe; (c) Ei-Centro. 

To assess the impact of anisotropy on the seismic response, the dominant frequency 

of the seismic waves and the fundamental frequency of the site are further discussed as 

listed in Table 4, where the fundamental frequency of the site is calculated using Equa-

tion (12) [53]: 

1

1
/ 4

n

g Si ii
g

f V H
T =

= =   
(12) 

where the symbol “𝑓𝑔” represents the fundamental frequency of the site; “𝑇𝑔” refers to 

the site’s characteristic period; and the variable “𝐻𝑖” denotes the thickness of individual 

soil layers, whereas “𝑉𝑆𝑖” represents the shear wave velocity specific to each respective 

soil layer. 

Table 4. Site fundamental frequency and seismic wave dominant frequency. 

Seismic Wave Dominant Frequency of Seismic Wave (Hz) 𝒇𝒈 (Hz) 

Shanghai 0.92 

1.25 Kobe 1.2 

Ei-Centro 1.16 

As shown in Figure 4, the Ei-Centro and Kobe waves have significant influences on 

the 𝑃𝐺𝐴𝑎𝑛𝑖𝑠𝑜/𝑃𝐺𝐴𝑖𝑠𝑜, while the Shanghai wave has a relatively slight effect. From Table 4, 

compared with the dominant frequency of the Shanghai wave, those of the Kobe wave 

Figure 4. Normalized peak ground acceleration scatter plot: (a) Shanghai; (b) Kobe; (c) Ei-Centro.

To assess the impact of anisotropy on the seismic response, the dominant frequency
of the seismic waves and the fundamental frequency of the site are further discussed
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as listed in Table 4, where the fundamental frequency of the site is calculated using
Equation (12) [53]:

fg =
1
Tg

= VSi/4∑n
i=1 Hi (12)

where the symbol “ fg” represents the fundamental frequency of the site; “Tg” refers to
the site’s characteristic period; and the variable “Hi” denotes the thickness of individual
soil layers, whereas “VSi” represents the shear wave velocity specific to each respective
soil layer.

Table 4. Site fundamental frequency and seismic wave dominant frequency.

Seismic Wave Dominant Frequency of
Seismic Wave (Hz) fg (Hz)

Shanghai 0.92
1.25Kobe 1.2

Ei-Centro 1.16

As shown in Figure 4, the Ei-Centro and Kobe waves have significant influences on
the PGAaniso/PGAiso, while the Shanghai wave has a relatively slight effect. From Table 4,
compared with the dominant frequency of the Shanghai wave, those of the Kobe wave
and Ei-Centro waves are closer to the fundamental frequency of the site. The waves with
dominant frequencies closer to the fundamental frequencies of the sites may result in
having a more significant effect in terms of anisotropy. Therefore, detailed investigations
on the effects of the soil anisotropy on the seismic response of the Shanghai Yangshan Port
site are conducted as an example.

4. Seismic Response of Shanghai Yangshan Port
4.1. Input Seismic Wave

The seismic characteristics of Yangshan Port are examined in this study through the
analysis of artificial seismic wave data from Shanghai. According to the site classification
method specified in the “Code for Seismic Design of Buildings” (GB 50011-2010) [54], the
Yangshan Port area belongs to the fourth category of site. Based on the linear elastic soil
layer, the ground acceleration time history is inverted to bedrock to obtain the bedrock
acceleration time history [55].

4.2. Calculation Model and Parameters of Soil Layer

Most of the topsoil in Yangshan port is soft clay [56], and there is sand soil in the
lower layer. Through the geological investigation, the site of Yangshan Port consists of
four typical soil layers: clay layer, silty clay layer, muddy silty clay, and sand soil layer.
According to Hou [57], the ARE values for this area range from 1.6 to 2.40. Li [58] reported
ARG values ranging from 1.08 to 1.39 for Shanghai soil, while Ng [59] stated that the values
were between 1.07 and 1.38. Detailed borehole data for the soil layers are provided in
Table 5.

Table 5. Soil layer information of Yangshan port.

Number Soil Bottom Depth (m) Vs (m/s) ρ (g/cm3)

1 Muddy silty clay 17.6 140
1.82 Clay 21.6 180

3 Silty clay 31.2 230

4 Sand 43.2 290 2

Resonance column and cyclic triaxial tests were conducted to obtain Gnorm − γ and
D− γ curves for clay, silty clay layer, muddy silty clay, and sand. The design confining
pressures are 150 kPa, 200 kPa, and 250 kPa for clay, silty clay layer, and muddy silty clay.
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The design confining pressures are 200 kPa, 250 kPa, and 300 kPa for sand. Figure 5 shows
the details of the cyclic triaxial test and the resonant column test. The experimental results
pertaining to silty clay are specifically analyzed in this study. Figure 6 illustrates the S-wave
output signals of the bending element in the silty clay specimen subjected to a confining
pressure of 150 kPa across different input frequencies. Furthermore, the G0 value derived
from the bending element tests is approximately 1.1 to 1.2 times greater than the results
obtained from the resonant column tests, which aligns with the outcomes reported by Yang
et al. [60] and Gu et al. [61,62]. The reason behind this is that the results of the bending
element tests specifically relate to the localized stiffness of the shear wave propagation
path, while the resonant column offer insights into the overall stiffness characteristics of the
specimens [60–62]. This confirms the accuracy of the resonant column test. Simultaneously,
Yang et al. [60], Gu et al. [61,62], and Youn et al. [63] propose to determine G0 based on the
resonant column test.
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The cyclic triaxial experiments were performed employing strain control. To mitigate
the influence of cyclic loading on subsequent tests, the number of cycles for each loading
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stage was limited to six. Figure 7 depicts the outcomes of the cyclic triaxial tests conducted
on the silty clay. The modulus degrades as the strain increases, while it amplifies with
the elevated confining pressure. Through fitting analysis, we obtained the Gnorm − γ and
D− γ curves for clay in the Yangshan Port site. Figure 8 depicts the curve of best fit for
the silty clay specimen. For the other soil layers, the model parameters calibrated from the
resonance column and the cyclic triaxial tests are also provided in Table 6.
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Table 6. The soil parameters of the Yangshan Port site.

Soil γγ (10−4) α K1 K2 K3

Clay 8.1 1.28 0.16 −0.32 0.19
Silty Clay 7.17 1.27 0.14 −0.29 0.18

Muddy silty
Clay 7.32 1.31 0.10 −0.26 0.18

sand 6.09 1.07 0.12 −0.26 0.16

4.3. Results

Taking into account the previous discussion regarding the suppressive effect of ARE
and the enhancing effect of ARG on PGA performance, we initially selected a value of 1.6 for
ARE and a value of 1.4 for ARG to simulate the unfavorable conditions. In this case, study,
the Shanghai wave is adjusted to have peak ground acceleration of 0.1 g. Figures 9 and 10
show the changes in peak acceleration along the depth and the ground peak acceleration
spectrum, respectively. It is evident that when the proposed calculation model reduces to
the isotropic scenario, it aligns well with the results obtained from EERA. However, when
considering soil anisotropy, the PGA increases by 19.70%; the peak value of the ground
response spectrum undergoes a significant increase of 28.82% at 1 Hz.

Buildings 2023, 13, x FOR PEER REVIEW 11 of 18 
 

for 𝐴𝑅𝐸 and a value of 1.4 for 𝐴𝑅𝐺 to simulate the unfavorable conditions. In this case, 

study, the Shanghai wave is adjusted to have peak ground acceleration of 0.1 g. Figures 9 

and 10 show the changes in peak acceleration along the depth and the ground peak ac-

celeration spectrum, respectively. It is evident that when the proposed calculation model 

reduces to the isotropic scenario, it aligns well with the results obtained from EERA. 

However, when considering soil anisotropy, the PGA increases by 19.70%; the peak val-

ue of the ground response spectrum undergoes a significant increase of 28.82% at 1 Hz. 

40

35

30

25

20

15

10

5

0
0.05 0.10 0.15 0.20

Peak Acceleration(g)

D
e
p

th
(m

)

 Isotrypic(EERA)  

 Isotropic(This Study)

 Anisotropic(This Study)

 

 
 

Figure 9. Peak acceleration along depth. 

0 1 2 3 4 5 6
0.0

0.1

0.2

0.3

0.4

A
m

p
lit

u
d

e
(g

/s
)

Frequency(Hz)

 Isotropic(EERA)  

 Isotropic(This Study)

 Anisotropic(This Study)

Shanghai 

 
0 2 4 6 8 10

0.0

0.1

0.2

0.3

0.4

A
m

p
lit

u
d

e
(g

/s
)

Frequency(Hz)

 Isotropic(EERA)  

 Isotropic(This Study)

 Anisotropic(This Study)

Kobe

 
(a) (b) 

0 1 2 3 4 5 6
0.0

0.1

0.2

0.3

0.4

A
m

p
lit

u
d

e
(g

/s
)

Frequency(Hz)

 Isotropic(EERA)  

 Isotropic(This Study)

 Anisotropic(This Study)

Ei-Centro

 
(c) 

Figure 10. Ground Fourier acceleration spectrum: (a) Shanghai; (b) Kobe; (c) Ei-Centro. 

In order to discuss the influence of anisotropy on the ground acceleration frequen-

cy, the ground motion response of the Ei-Centro waves and Kobe waves input at Yang-

shan port is calculated. The result can be seen in Figure 10. It can be found that anisotro-

py has little influence on the frequency position of the ground Fourier acceleration spec-

trum peak. 

Figure 9. Peak acceleration along depth.

In order to discuss the influence of anisotropy on the ground acceleration frequency,
the ground motion response of the Ei-Centro waves and Kobe waves input at Yangshan
port is calculated. The result can be seen in Figure 10. It can be found that anisotropy has
little influence on the frequency position of the ground Fourier acceleration spectrum peak.

To further explore the design response spectrum of Yangshan Port, the ground motion
responses of the site under different seismic intensities (0.1 g, 0.15 g, 0.2 g, 0.25 g, 0.3 g)
are studied. Based on the 5% damped ground acceleration response spectrum of different
intensities, the least squares method by Andreotti [64] et al. was used to calibrate the design
response spectrum. The shape function of the design response spectrum by Chinese code
“GB 51247-2018” is as follows [65]:

β(T) =


1 + (βmax − 1) T

T0
0 ≤ T ≤ T0

βmax T0 ≤ T ≤ Tg

βmax

(
Tg
T

)χ
Tg ≤ T ≤ Tm

(13)
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where T0 is the period associated with the initial inflection point, established at 0.1 s.
Tg signifies the characteristic period. Since this study focuses on a certain soil layer in
Yangshan Port, the characteristic period (Tg) can be calculated according to Equation (12),
which is 0.92 s. Tm is the cutoff period, χ represents the attenuation index, and βmax denotes
the plateau value.
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As well as that given in Equation (13) (termed as “Shape Function One”), another two
typical commonly used shape functions shown in Figure 11 are also collected for calibrating
the design response spectrum for Yangshan Port. Shape Function Two was provided by
Deoda and Adhikary (2020) [66], where TD is defined as the value defining the beginning
of the constant displacement response range of the spectrum. Shape Function Three is
employed by both NZS 1170.5 [67] and Eurocode 8 [51].

The gray lines in Figure 11 are the ground response spectrums at different intensities
with consideration of soil anisotropy. The upper and lower bounds of the gray area are
the 16th to 84th percentiles, respectively, showing the region with a probability range of
16% to 84% for the occurrence of seismic events. The red line represents the average of the
response spectrum curve. Utilizing Shape Function One, the 5% damped design response
spectrum for Yangshan Port is calibrated and represented by the blue line. The design
response spectrums based on Shape Function Two and Three are depicted as the magenta
and orange lines, respectively.

For Shape Function One suggested by GB 51247-2018, the plateau value (β) is 2.97,
and the attenuation index (χ) is 0.5. The Pearson correlation coefficient (r value) is 0.63.
Additionally, utilizing Shape Function Two results in a plateau value (β) of 3.00 and an
attenuation index (χ) of 0.5. This yields a Pearson correlation coefficient (r value) of 0.57.
Similarly, when employing Shape Function Three, the plateau value (β) is 3.00, while
the attenuation index (χ) is 0.5, with a significantly higher Pearson correlation coefficient
(r value) of 0.71. Three shape functions provide a similar plateau value (β), but Shape
Function Three exhibits a better overall fitting performance.
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Figure 11. The 5% damped design response spectrum for Yangshan Port (ARE = 1.60, ARG = 1.40).

To further investigate the influence of anisotropy on ground response spectra, a series
of cross-parameter studies were conducted focusing on anisotropy-related parameters
(elastic modulus ratio ARE = 1.60, 2.00, 2.40; shear modulus ratio ARG = 1.10, 1.25, 1.40),
resulting in a total of nine combinations. Following the method illustrated in Figure 11,
Figure 12 presents nine average response spectrum curves. Utilizing the mean values of
these spectrums, the root mean square error (RMSE) across the entire period range for the
nine response spectrum curves was calculated and is depicted by the gray line in Figure 12.
It is observed that the maximum RMSE among the nine response spectrum curves reaches
34.5% at lower frequencies.
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Figure 12. The 5% damped design response spectrum for Yangshan Port (different anisotropic pa-
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Finally, the proposed 5% damped standard design response spectrum for Yangshan
Port has been developed from the previously described nine combinations of anisotropic pa-
rameters and five seismic intensity levels. The design response spectrum for the anisotropic
site is refined using Shape Function Three, which is depicted as an orange line in Figure 13.
This calibration involves a plateau value (β) of 3.00 and an attenuation index (χ) of 0.50.
When compared to the isotropic spectrum, the anisotropic spectrum demonstrates a notably
elevated design response spectrum. Factoring in anisotropy has led to an increase of 18%
in the plateau value (β) for the standard design response spectrum. Consequently, utilizing
the isotropic design response spectrum for the seismic design of structures at Shanghai
Yangshan Port may result in dangerous results.
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Figure 14 illustrates the application of the response spectrum for a single-degree-of-
freedom frame model. When utilizing the response spectrum, two key aspects must be
contemplated. Firstly, the fundamental frequency ( f = 2π

√
m/k) is derived from the

concentration of mass and lateral stiffness. Secondly, the design base shear is computed
through F = mβ× PGA.
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For instance, let us consider a single-story frame with a total seismic weight of 980 kN
and a total column lateral stiffness k of 6 MN/m. The structure has a damping ratio of 5%.
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The basic acceleration (PGA) by design is 0.1 g. For the conventional response spectrum,
the design base shear amounts to 250 kN. However, when the response spectrum is applied
with consideration of anisotropy, the design base shear amounts to 294 kN, marking an
increase of 18%.

5. Conclusions

This study establishes an equivalent linear ground motion model for anisotropic
sites to analyze the ground motion response characteristics for layered soils with various
anisotropy parameters. Further investigations were conducted to study the ground motion
response features of anisotropic sites when subjected to different seismic wave inputs. It
was found that the anisotropy ratios for the shear modulus (ARG) have a promoting effect
on the peak ground acceleration (PGA), while the anisotropic ratio of undrained Young’s
modulus (ARE) has an inhibitory effect on peak ground acceleration (PGA) in the site
earthquake response problem. The impact of anisotropy on the ground motion of the site
becomes more significant when seismic waves have dominant frequencies closer to the
fundamental frequencies of the sites. In the ground motion response problem, anisotropy
cannot be ignored when the dominant frequencies of the seismic waves are closer to the
fundamental frequencies of the sites.

This study further takes the Yangshan Port site as an example to calibrate the seismic
motion parameters (G − γ and D − γ) of the Yangshan Port soil layer based on cyclic
triaxial tests and resonant column tests. The results show that the combination of the
resonant column test and cyclic triaxial test can better describe the dynamic characteristics
of soil from small strains (10−6~10−3) to large strains (10−3~10−1). Based on the calibrated
dynamic parameters, the ground motion characteristics of the anisotropic site of Yangshan
Port were studied. It was found that the consideration of site anisotropy leads to significant
increases in both the peak ground acceleration (PGA) and the peak ground Fourier acceler-
ation spectrum for the Yangshan Port site. Anisotropy has little influence on the frequency
position of the ground Fourier acceleration spectrum peak. The frequency region where the
amplitude of the ground Fourier acceleration spectrum increases significantly is close to the
site fundamental frequency (1 Hz). This demonstrates that site anisotropy can potentially
lead to a severe underestimation of the acceleration response in regions proximate to the
site’s fundamental frequency.

A series of cross-parameter studies regarding anisotropic parameters were also con-
ducted to investigate the influence of anisotropy on ground response spectra. When taking
site anisotropy into account, the calibrated design response spectrum plateau value (β)
is 3.00. Conversely, when anisotropy is not considered, the calibrated design response
spectrum plateau value (β) stands at 2.55. The design response spectrum calibrated for an
anisotropic site surpasses that for an isotropic site. Thus, when performing the seismic
design of buildings, utilizing the design response spectrum derived from isotropic site
ground motion response calibration might present higher risks.
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