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Abstract: Examining the clustering characteristics and fluctuations within urban areas during peak
hours through the lens of bike-sharing is of utmost importance in the optimization of bike-sharing
systems and urban transportation planning. This investigation adopts the principles of urban spatial
interaction network construction and employs streets as the fundamental units of analysis to model
bike-sharing activities during morning and evening peak hours within Beijing’s six central districts.
Subsequent to this, a comprehensive analysis of the network’s structural attributes was carried out.
A Walktrap method, rooted in modularity analysis, was introduced to discern and scrutinize the
clustering patterns and characteristics of communities within the network across different temporal
intervals. Empirical findings reveal a predominant usage pattern of shared bicycles for short-distance
travel during both morning and evening peak hours. Notably, distinctive community structures
manifest during these periods, characterized by two large communities and multiple smaller ones
during the morning peak, while the evening peak showcases a single large community alongside
several medium-sized and smaller ones. Moreover, the extended interaction radius points to an
expanded geographic range of interactions among streets. These findings bear significant implica-
tions for the management of urban transportation, bike-sharing enterprises, and urban residents,
proffering valuable insights for the optimization of bike-sharing schemes and transportation strate-
gies. These research findings not only contribute to enhancing urban transportation planning and
bike-sharing systems but also provide robust guidance for advancing more efficient and sustainable
urban transportation solutions, thereby fostering the sustainable development of cities.

Keywords: spatial interaction network; community detection; bike-sharing; urban mobility; Walktrap
method

1. Introduction

In recent years, urban bike-sharing has undergone significant development and has
emerged as a prominent sustainable and convenient mode of transportation in cities glob-
ally [1]. The rapid expansion of urban bike-sharing programs has resulted in a substantial
increase in the proliferation of bike-sharing stations and users [2]. This expansion has
yielded positive effects, encompassing the reduction of traffic congestion, curbing carbon
emissions, fostering healthier lifestyles, and affording urban residents access to afford-
able and adaptable transportation alternatives [3]. Nonetheless, concomitant with the
widespread adoption of bike-sharing systems, an array of challenges and concerns have
surfaced, impinging on their operational efficiency and overall efficacy. These challenges
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encompass imbalanced bike distribution among stations, the overutilization of popular
stations leading to bike shortages, incomplete coverage within specific communities, as well
as considerations concerning bike maintenance and parking [4,5]. As a nascent manifesta-
tion of internet-based transportation, bike-sharing systems are conventionally furnished
with positioning devices capable of real-time location recording, thereby furnishing an
abundance of invaluable data amenable to analysis [6]. To surmount these challenges and
optimize bike-sharing systems, a multitude of investigations have concentrated on compre-
hending the behavior and patterns characterizing bike-sharing travel. Within this context,
the present study aims to comprehensively investigate the clustering characteristics and
patterns of bike-sharing travel within the urban core sub-regions, utilizing an established
foundation of existing research. Employing spatial interaction network analysis techniques,
this study delves into the travel patterns of bike-sharing during the morning and evening
peak hours. The ultimate objective is to provide recommendations for urban transportation
planning, bike-sharing operations, and residents’ travel preferences.

The utilization of bike-sharing among urban residents has resulted in diverse levels of
spatial interactions spanning various areas within the city, constituting what is termed as
spatial interactions [7]. The scrutiny of this phenomenon is approached by constructing a
spatial interaction network encompassing urban zones, grounded in the principles of com-
plex network theory [8–10]. The realm of network science has undergone rapid advance-
ments since the 1970s [11]. As posited by the complex network theory, individuals’ travel
behaviors between regions can be harnessed to establish a prototypical two-dimensional
weighted spatial network, recognized as the spatial interaction network. In this network
framework, regions are represented as nodes, travel activities as edges, and edge weights
denote the magnitude of travel between points, abstracting the overarching travel interac-
tions among all regions. Once the network is meticulously constructed, structural network
metrics and statistical models can be applied to qualitatively and quantitatively assess the
interplay between travel behavior and regions, thereby evaluating the spatial interconnec-
tions between these regions. Numerous researchers have harnessed the tenets of complex
network theory for relevant inquiries. To illustrate, Beck et al. devised a bicycle network to
probe the interrelationship between environmental characteristics and cycling behavior [12].
Liu et al. evaluated the accessibility of dockless bike-sharing from a network vantage point,
proffering decision-making support for urban planners, policymakers, and bike-sharing
providers to fine-tune bike-sharing systems [13]. Hu et al. delved into the travel patterns of
bike-sharing by constructing a spatial interaction network and juxtaposed the disparities
between weekdays and weekends [14]. While prior investigations have predominantly
centered around comprehensive analyses and examinations of bike-sharing travel patterns,
scant research has ventured into the clustering characteristics and systematic attributes of
bike-sharing travel regions. To bridge this research lacuna, this study leverages community
detection methodologies rooted in complex network theory to scrutinize the clustering
attributes of bike-sharing travel regions, subsequently investigating clustering patterns
grounded in modularity analysis.

Community structure is an essential and distinctive feature within the realm of com-
plex networks [15]. Investigating and discerning community structures from a network-
oriented perspective facilitates an in-depth comprehension of the clustering patterns inher-
ent in the network. This process, in turn, unveils the intricate interconnections interwoven
among distinct sub-regions within urban environments, thereby unraveling the intricate
tapestry of travel patterns. Such an investigation holds profound ramifications for the
judicious deployment of bike-sharing initiatives, the efficacy of urban transportation man-
agement, and the formulation of strategic travel plans for urban inhabitants. Within the
intricate fabric of complex network theory, the subject of community detection has enjoyed
a longstanding position of prominence [16]. In the context of urban settings, a multitude of
scholars have embarked on probing the spatiotemporal clustering phenomena through the
prism of community identification methodologies. For instance, the work of Chen W and
Wei C leverages the Infomap algorithm to delineate urban agglomerations and economic re-
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gions within city networks [17,18]. Fangyu and colleagues advance the field by harnessing
an improved BBO algorithm, specifically tailored to unearth community structures inherent
in intelligent city network systems [19]. Similarly, Gao P et al. harness the efficacy of the fast
greedy algorithm to partition functional domains within the urban agglomeration of the
middle reaches of the Yangtze River [20]. Parallel to these methodologies, a cadre of classic
community detection algorithms, such as the GN algorithm [21], the Label Propagation
Algorithm (LPA) [22], the Louvain algorithm [23,24], and the Walktrap algorithm [25,26],
stand as cornerstone tools for such research endeavors. Nonetheless, despite these scholarly
advancements, the existing landscape of community detection research predominantly
gravitates towards urban agglomerations, leaving a perceptible gap in our understanding
of community clustering dynamics within the nucleus of cities’ core functional regions.
The core areas within urban centers constitute vital components that prominently reflect
urban characteristics. Presently, numerous urban planning and transportation studies
have designated the urban core regions as focal points of their investigations [27–30]. This
underlines the pressing need for studies that uncover and elucidate community structures
within these essential urban zones.

Furthermore, the classification of urban traffic based on its temporal distribution
yields distinct categories: daily traffic (weekday traffic), weekend traffic, and other types of
traffic [31]. Among these categories, weekdays stand out as a prominent temporal segment
characterized by an extensive duration, a significant volume of travel, and pronounced
travel attributes, thus warranting the highest degree of attention and research scrutiny [32].
Investigating weekday traffic bears the potential to yield a profound comprehension of
urban residents’ habitual travel behaviors and travel patterns. The morning and evening
peak hours on weekdays exhibit the most concentrated travel flow within a day. This
heightened concentration of travel during peak periods imparts distinct characteristics to
travel patterns, rendering them more reflective of actual travel behaviors. Consequently,
these patterns hold significant research implications and value. Within this particular traffic
category, individuals often confront a myriad of tasks, including work, education, and
shopping, resulting in a complex and dynamic interplay of demands and usage patterns
within the transportation system [33]. A substantial body of research has already unveiled
the peak travel times [34], primary travel attributes [35], and popular travel destinations [36]
associated with weekday traffic. These research findings form pivotal cornerstones for
urban transportation planning and management, offering crucial underpinnings to alleviate
congestion, enhance transportation efficiency, and ameliorate the overall travel experience
of urban inhabitants [37].

Currently, urban vitality research extensively employs multi-source urban data, yet
the analysis units often revolve around blocks or parcels. However, residents’ economic,
social, and cultural activities primarily congregate around streets and their proximate
areas [38]. By evaluating the urban vitality of streets, the quality of urban streets can be
enhanced, thereby infusing urban areas with vibrancy and livability, fostering organic
urban renewal and driving sustainable development [39]. In this study, streets are adopted
as the fundamental analytical units, and the travel OD flow of shared bicycles between
streets during morning and evening peaks is extracted and distributed. The Walktrap
community detection algorithm is employed to explore street clustering characteristics,
and an analysis and summary of clustering patterns are conducted based on modularity
changes. Furthermore, a comparative analysis of the differences between the morning
and evening peak periods is undertaken. By employing streets as the analytical units,
the study aims to reveal the intricate spatial patterns of shared bicycle travel aggregation
within streets while identifying correlations between streets and shared bicycle travel. This
approach provides recommendations and references for urban transportation planning,
shared bicycle operations, and residents’ travel choices [39,40].

The remainder of this paper is organized as follows. Section 2 describes our study
area and data. Section 3 introduces the Walktrap community detection algorithm and the
steps for modularity analysis. Section 4 explores the regional clustering characteristics and
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patterns from the perspective of urban bike-sharing travel during the morning and evening
peak hours. Section 5 discusses the paper’s findings. Section 6 provides a concise summary
of the paper.

2. Study Area and Data
2.1. Research Data Study Area

This study centers on exploring the central area of Beijing, encompassing Dongcheng
District, Xicheng District, Haidian District, Fengtai District, Shijingshan District, and
Chaoyang District. Known as the heart of the city, this region boasts a dense population,
accounting for approximately 60% of Beijing’s total inhabitants, and hosts nearly 70% of its
industrial establishments. Its strategic location and economic significance make it a hub of
activity, resulting in high volumes of pedestrian traffic, especially during peak hours. In
addition to the bustling foot traffic, shared bicycles play a crucial role in the transportation
landscape within this area.

The focus of our investigation lies in the intersection of the operational area of shared
bicycles with Beijing’s central region. By narrowing our scope to this specific area, we
aim to uncover valuable insights into the spatiotemporal dynamics of shared bike usage
in an environment characterized by heavy pedestrian movement and economic activity.
Analyzing the patterns and trends of shared bike utilization within this context will offer
significant implications for urban transportation planning and management. For clarity
and reference, Figure 1 provides a visual representation of the study area’s geographical
extent within Beijing. This visualization aids in understanding the spatial context and
serves as a vital reference point for subsequent analyses.

Buildings 2023, 13, x FOR PEER REVIEW 4 of 18 
 

travel aggregation within streets while identifying correlations between streets and 
shared bicycle travel. This approach provides recommendations and references for urban 
transportation planning, shared bicycle operations, and residents’ travel choices [39,40]. 

The remainder of this paper is organized as follows. Section 2 describes our study 
area and data. Section 3 introduces the Walktrap community detection algorithm and the 
steps for modularity analysis. Section 4 explores the regional clustering characteristics and 
patterns from the perspective of urban bike-sharing travel during the morning and 
evening peak hours. Section 5 discusses the paper’s findings. Section 6 provides a concise 
summary of the paper. 

2. Study Area and Data 
2.1. Research Data Study Area 

This study centers on exploring the central area of Beijing, encompassing Dongcheng 
District, Xicheng District, Haidian District, Fengtai District, Shijingshan District, and 
Chaoyang District. Known as the heart of the city, this region boasts a dense population, 
accounting for approximately 60% of Beijing’s total inhabitants, and hosts nearly 70% of 
its industrial establishments. Its strategic location and economic significance make it a hub 
of activity, resulting in high volumes of pedestrian traffic, especially during peak hours. 
In addition to the bustling foot traffic, shared bicycles play a crucial role in the 
transportation landscape within this area. 

The focus of our investigation lies in the intersection of the operational area of shared 
bicycles with Beijing’s central region. By narrowing our scope to this specific area, we aim 
to uncover valuable insights into the spatiotemporal dynamics of shared bike usage in an 
environment characterized by heavy pedestrian movement and economic activity. 
Analyzing the patterns and trends of shared bike utilization within this context will offer 
significant implications for urban transportation planning and management. For clarity 
and reference, Figure 1 provides a visual representation of the study area’s geographical 
extent within Beijing. This visualization aids in understanding the spatial context and 
serves as a vital reference point for subsequent analyses. 

 
Figure 1. The study area in Beijing. 

2.2. Data Sources and Preprocessing 
This study utilizes shared bicycle data from the central area of Beijing, collected 

during a continuous and complete period of five consecutive working days, specifically 
from 26 July to 30 July 2021. The data comprise real-time location point data for all shared 
bicycles at the current moment. The data include the timestamp of data collection, an ID 
number, and location information. It is important to note that different bicycles do not 
share the same ID number, as illustrated in Table 1. The data collection intervals 

Figure 1. The study area in Beijing.

2.2. Data Sources and Preprocessing

This study utilizes shared bicycle data from the central area of Beijing, collected during
a continuous and complete period of five consecutive working days, specifically from 26
July to 30 July 2021. The data comprise real-time location point data for all shared bicycles
at the current moment. The data include the timestamp of data collection, an ID number,
and location information. It is important to note that different bicycles do not share the
same ID number, as illustrated in Table 1. The data collection intervals correspond to the
morning and evening peak hours on weekdays, which are defined as 6:00 to 9:00 and 17:00
to 20:00, respectively. Defining the data intervals in this manner allows for the inclusion of
a broader range of trips, preventing potential extensions of peak periods due to exceptional
circumstances. It also ensures consistency in the duration of both morning and evening
peak periods. Therefore, data are collected within two specific time intervals each day: 6:00
to 9:00 and 17:00 to 20:00.
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Table 1. Table of data elements.

Data Name Data Size Data Field Content Data Field Name

Bicycle Sharing Data Points 370,000 entries

Data Collection Time TIME
Bicycle ID number BICYCLE_ID

Latitude/◦ LATITUDE
Longitude/◦ LONGITUDE

After data collection, it is essential to proceed with data cleaning and preprocessing.
Initially, data anomalies, such as duplicates or other irregularities arising from data acqui-
sition, should be removed. Subsequently, the data in CSV format will be converted into
the Shapefile format, consistent with zoning data, to facilitate spatial intersection with the
zoning data.

In this investigation, the time frame from 6:00 to 9:00 was established as the commence-
ment and conclusion of the morning peak period, whereas the interval spanning 17:00 to
20:00 was designated as the initiation and culmination of the evening peak period. The
spatial alignment of bicycle location data with street zoning data was performed for every
timestamp, facilitating the identification of the specific streets harboring bicycles during
both the morning and evening periods. Subsequently, a linkage between data points for
each timestamp was established through the unique bicycle ID number, culminating in the
generation of an origin-destination (OD) matrix delineating bicycle trips amidst streets.

The OD matrix represents the flow of bicycle trips between streets, where the rows and
columns correspond to the origin and destination street indices, respectively. The values in
the matrix represent the number of bicycle trips between each origin and destination pair.
The analysis of the OD matrix allows us to understand the spatial distribution of bicycle
usage during the specified time periods and identify key routes and patterns of travel
within the city. By associating the bicycle location data with the street zoning information,
we can gain valuable insights into the utilization patterns of the bicycle-sharing system and
its impact on urban transportation dynamics.

3. Methodology
3.1. Community Detection in Complex Networks

Complex networks provide a powerful abstraction for understanding real-world sys-
tems, encompassing a diverse range of actors or entities and their intricate relationships [14].
In these networks, individual entities are represented as nodes, while the connections or
interactions between them are captured by edges. Owing to the varying degrees of in-
terconnectivity among nodes, complex networks often exhibit a phenomenon known as
community structure or clustering. Communities refer to cohesive subgraphs of nodes
within the network, wherein nodes within the same subgraph are tightly interconnected,
while nodes in different subgraphs have weaker connections [41]. Figure 2 presents an
illustrative example of a simple network with a visible community structure.

Complex networks serve as a robust conceptual framework for comprehending in-
tricate real-world systems, encompassing an array of actors or entities and their intricate
relationships [14]. Within these networks, individual entities are symbolized as nodes,
while the connections or interactions between them are encapsulated by edges. Due to
the varying degrees of interconnectivity among nodes, complex networks frequently
manifest a phenomenon termed as community structure or clustering. Communities de-
note cohesive subsets of nodes within the network, wherein nodes in the same subset are
closely interconnected, while nodes in distinct subsets possess weaker connections [42].
Figure 2 provides an illustrative instance of a basic network displaying a discernible
community structure.

This concept of community structure holds significant relevance across various
fields, including social networks, biological systems, and technological infrastructures.
It aids in uncovering latent patterns, functional modules, and inherent organizations
within complex systems. Researchers utilize various algorithms and methods to identify
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and analyze community structures, contributing to a deeper understanding of system
dynamics and behaviors. This concept’s applications extend to enhancing informa-
tion dissemination strategies, identifying key nodes for targeted interventions, and
optimizing network design for improved efficiency and resilience. Consequently, the in-
vestigation of community structures within complex networks remains a crucial pursuit
with broad interdisciplinary implications.
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3.2. Walktrap Community Detection Algorithm

With the development of complex network theory, researchers have proposed various
methods for community detection, including the Walktrap algorithm introduced by Pons
and Latapy [29]. This algorithm is based on the concept of random walks and utilizes the
analysis of transition probabilities of node-to-node jumps within the network to achieve
community detection. Random walks tend to become trapped within subgraphs formed by
densely connected nodes, which correspond to communities, and this entire process forms
a Markov chain. The algorithm establishes a distance metric to quantify the structural
similarity between nodes or communities. This metric aids in evaluating the relationships
between different elements within the network. The distance from node i to node j is
computed using Equation (1):

rij =

√√√√
∑n

k=1

(
Pt

ik − Pt
jk

)2

d(k)
(1)

In the equation, rij represents the distance from node i to node j, t is a given time, d(k)
denotes the degree of node k, and Pt

ik represents the probability of reaching node k from
node i within t steps. The calculation formula for Pt

ik is as follows:

Pij =
Aij

d(k)
(2)

In this context, Aij represents the value in the adjacency matrix A. Equation (3) cal-
culates the distance from community C to node j. |C| represents the number of nodes in
association C. The calculation in Equation (3) is as follows:

Pt
Cj =

1
|C| ∑

i∈C
Pt

ij (3)
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Equation (4) calculates the distance from community C1 to community C2. The total
community distance is obtained by calculating the square sum of the square roots between
nodes from different communities. The calculation in Equation (4) is as follows:

rC1C2 =

√√√√
∑n

k=1

(
Pt

C1k − Pt
C2k

)2

d(k)
(4)

After the initiation of the random walk, each node is initially considered as a separate
community. The distances between adjacent nodes (communities) are computed, and
two communities C1 and C2, are selected for merging into a single community based on
minimizing the value of ∆σ(C1, C2). The calculation formula for ∆σ(C1, C2) is given by
Equation (5).

∆σ(C1, C2) =
1
n
|C1||C2|
|C1|+ |C2|

r2
c1c2

(5)

This process iterates continuously until all nodes are merged into a single community.
The optimal community partitioning involves minimizing the distance within communities
while maximizing the distance between communities.

3.3. Evaluation Methods for Community Detection

Modularity (Q) is an evaluation metric proposed by Girvan and Newman [42] for
measuring the quality of community structures. It serves as a measure to assess the
effectiveness of community detection in a network. A higher value of modularity indicates
a better community structure, where nodes within communities are more densely connected.
Conversely, a lower value of modularity suggests a weaker community structure with
fewer internal edges. The calculation formula for modularity Q is given as follows:

Q =
1

2m∑ij

(
Aij −

didj

2m

)
δ
(
Ci, Cj

)
(6)

In the context of directed networks, the modularity calculation takes into account both
the out-degree and in-degree of nodes. Let A be the adjacency matrix, di and dj represent
the degree of nodes i and j, respectively, and let m be the total number of edges in the
network. To assess whether nodes i and j belong to the same community, the Kronecker
delta function δ

(
Ci, Cj

)
is utilized. When nodes i and j belong to the same community,

δ
(
Ci, Cj

)
equals 1; otherwise, δ

(
Ci, Cj

)
is 0. The calculation formula for modularity in

directed networks is as follows:

Q =
1
m∑ij

(
Aij −

dIn
i dOut

j

m

)
δ
(
Ci, Cj

)
(7)

In this context, dIn
j and dOut

i represent the in-degree of node j and the out-degree of
node i, respectively. The maximum value of modularity usually falls within the range
of 0.3 to 0.7. A modularity value approaching 1 signifies a more favorable outcome in
community detection.

It is important to note that the modularity value can be influenced by the overall
scale of the network and the number of communities detected. For smaller networks
or networks with only a few communities, the modularity value may be lower due to
the limited structural complexity. Conversely, in larger networks with a higher number
of communities, the modularity value might be higher due to the increased likelihood
of finding more distinct communities. In summary, modularity is a valuable tool for
assessing the effectiveness of community detection algorithms and provides insights into
the underlying organizational principles of complex networks. Researchers aim to achieve
high modularity values by optimizing the community detection process, as this corresponds
to a more accurate and informative representation of the network’s community structure.



Buildings 2023, 13, 2446 8 of 17

The Walktrap algorithm possesses unique characteristics in community detection
distinct from other methods: the number of communities progressively decreases as the
algorithm proceeds. Consequently, the results of each community detection can be subjected
to modularity calculations, utilizing the numerical variations in modularity to reflect the
evolving patterns of community changes throughout the algorithmic process.

The algorithm starts by constructing the network structure using nodes and edges.
Initially, each node is considered as a separate community based on the Walktrap algorithm.
Then, the algorithm proceeds by iteratively merging the closest communities into larger
ones while calculating the modularity score at each step. This process continues until
all nodes are merged into a single community, marking the end of the algorithm. The
flowchart of the algorithm is depicted in Figure 3.
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4. Results
4.1. Construction and Analysis of Shared Bicycle Spatial Interaction Networks

The shared bicycle network is represented as a directed weighted network, consisting
of three fundamental elements: “nodes,” “directed edges,” and “weights of directed edges”.
In this study, the “nodes” are represented by streets within the core area of the capital city.
The “directed edges” of the network are defined by travel behavior between streets, indi-
cating the direction of bicycle movement. The “weights of directed edges” are determined
by the volume of bicycle usage, providing information on the intensity of travel between
streets. Firstly, shared bicycle data for departure and arrival times were initially acquired
and subsequently converted into SHP format. Following this, the streets where the bicycles
were located were determined by spatially intersecting the data with administrative district
data. Subsequently, by utilizing unique ID numbers, the shared bicycle data for departure
and arrival times were linked, thereby providing the starting and ending street information
for each bicycle. Lastly, trips with identical starting and ending points were aggregated,
resulting in a collection of travel information organized by street as travel nodes.

According to the principle of network construction, the shared bicycle travel network
is built based on data from two different periods: the morning peak and the evening
peak. To construct the spatial interaction network for the core area of the capital, we
employed ArcGIS 10.8 software for network visualization (Figure 4). The network consists
of 135 nodes, with each node representing a street block. Figure 4 illustrates the differences
in network structures between the morning peak and the evening peak, where flow strength
is represented by the thickness of the edges: the wider the blue lines, the higher the flow
strength, while narrower blue lines indicate weaker flow strength. This representation
method provides an intuitive depiction of traffic volume, facilitating the analysis of travel
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characteristics and patterns. Table 2 provides information on the origin and destination of
the top travel activities with high flow volume during the morning and evening peaks.
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Table 2. Traffic details and levels.

Periods Origin Direction Destination Flows Level

Morning period

Xincun Street ←→ Huaxiang District Office I
Nanyuan District Office ←→ Changxindian Town I

Lugouqiao Street ←→ Lugouqiao District Office I
Wangjing Development Street ←→ Zuojiazhuang Street I

Taipingqiao Street ←→ Lugouqiao District Office II
Dougezhuang District Office ←→ Pingfang District Office II

Evening period

Xincun Street ←→ Huaxiang District Office I
Lugouqiao Street ←→ Lugouqiao District Office I

Nanyuan District Office ←→ Changxindian Town II
Wangjing Development Street ←→ Zuojiazhuang Street II

Taipingqiao Street ←→ Lugouqiao District Office II
Dougezhuang District Office ←→ Pingfang District Office II

Based on the information obtained from Figure 4 and Table 2, several characteristics
of the travel network can be summarized. Firstly, during both morning and evening
peak hours, a significant portion of the shared bicycle trips takes place between adjacent
street blocks, suggesting that shared bicycles are predominantly utilized for short-distance
travel within the study area. Secondly, the flow of trips shows a concentration in specific
areas, with notable travel activities observed between certain street blocks. For instance,
considerable flow occurs between Huaxiang District Office and Xincun Sub-district Office,
as well as between Lugouqiao Sub-district and Lugouqiao District Office, during both
morning and evening peak periods. Among these, Huaxiang Street Office is a street known
for its concentrated residential areas, while Xincun Street accommodates some enterprises
and companies. Lugouqiao Sub-district and Lugouqiao District Office, similarly, are two
adjacent streets that, respectively, concentrate residential and office areas. These regions
appear to be popular destinations or origins for shared bicycle users, leading to intensified
bicycle movements between these locations.

There are noticeable differences in the network structure between the morning and
evening peak hours. The morning peak exhibits a higher level of flow concentration, with
large-flow trips being more tightly clustered. In contrast, the evening peak shows a rela-
tively lower level of flow concentration, and there are only two locations with significant
flow. This analysis indicates that the morning peak trips are characterized by a higher
level of purposefulness and concentration. The areas with high-flow edges in the network
structure during weekdays are often associated with workplaces, indicating that the major-
ity of trips during weekdays are related to commuting. Therefore, the street blocks with
high-flow edges tend to be locations with more businesses or employment units, making
them prominent destinations for commuters.

On the other hand, during the evening peak, people’s trip destinations exhibit a
higher degree of diversity, leading to a more scattered flow pattern. This suggests that
people engage in more leisure activities after work, and their travel destinations are more
influenced by personal preferences and varied interests. Furthermore, the distribution of
workplaces within the study area appears to be more concentrated, while the distribution
of residential areas is relatively more dispersed. This spatial pattern may be a reflection of
the urban development and land-use characteristics, where workplaces tend to cluster in
specific areas, whereas residential areas are more widely distributed.

4.2. Analysis of Modularity Calculation Results

This study investigates the community detection of the spatial interaction network
using the Walktrap method based on the concept of random walks. This method effec-
tively groups closely connected nodes into communities, enabling the analysis of inherent
relationships between streets. Since modularity can be employed to reflect the quality of
the current community detection results, calculating modularity continuously throughout
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the process of changing the number of communities can intuitively illustrate community
aggregation patterns. The evolution of modularity values during the random walk process
is computed in this research, as illustrated in Figure 5. According to the principles of the
Walktrap community detection algorithm, the number of communities decreases gradually
during the random walk process, eventually resulting in a single community that includes
all nodes. The modularity values gradually increase as the number of communities de-
creases, with the morning period showing a faster increase in modularity compared to the
evening period. Specifically, when there are 14 communities, the modularity value for the
morning period reaches 0.3, and, when there are 7 communities, the modularity value for
the evening period reaches 0.3.
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The analysis reveals that the spatial interaction network during the morning period
exhibits stronger community structures, indicating a higher level of aggregation between
streets. In other words, during the morning period, people tend to travel with more specific
purposes between streets within the same community, resulting in a higher volume of intra-
community travel and a lower volume of inter-community travel. This finding highlights
the significant community structure in the morning period’s spatial interaction network.
The Walktrap community detection approach used in this study proves effective in uncov-
ering underlying community structures within the spatial interaction network, shedding
light on the characteristics of travel patterns and street connections during different time
periods. The results contribute to a better understanding of urban mobility dynamics and
can inform targeted urban planning and transportation management strategies.

4.3. Analysis of Community Detection Results

The visualization of the community detection results for 7 and 14 communities is
presented in this study. Table 3 provides information about the number of communities
and the corresponding number of streets in each community. The spatial visualization
of the results of the community testing is shown in Figure 6. Within Figure 6, streets are
represented as nodes located at the centers of street clusters, and each node is labeled with
a unique street identifier, totaling 135 nodes. Different colors are employed to indicate their
respective community affiliations.
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Table 3. Community detection results.

Type of Community/Unit: Number
Morning Period Evening Period

14 COMM 7 COMM 7 COMM

1© 68 1 68 91
2© 49 1 52 23
3© 3 1 4 14
4© 2 1 3 2
5© 2 1 3 1
6© 1 1 2 1
7© 1 1 1 1

Notably, there are significant differences in the community structures between the
morning and evening periods. During the morning peak, the spatial interaction network
exhibits the formation of two large communities along with multiple small communities
(Figure 6a,b). In contrast, the evening peak reveals the identification of one large community,
two medium-sized communities, and several small communities, with the majority of
streets belonging to the large community (Figure 6c).

The results indicate distinct patterns in the spatial distribution of community for-
mations during different time periods. The morning peak shows a more fragmented
community structure, with several smaller communities interacting with each other, while
the evening peak presents a more integrated community structure, with fewer but larger
communities encompassing multiple streets. This finding suggests that travel behaviors
and patterns during the morning and evening periods differ significantly, reflecting the
varying travel purposes and destinations at different times of the day.
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The findings from the community detection analysis reveal characteristics of the spatial
interaction network during different time periods. Specifically, during the morning period,
the presence of two large communities and several small communities indicates that certain
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streets have stronger connections and are closely associated with each other. However,
the lack of distinct geographical boundaries within these communities suggests that the
interactions between streets are not solely determined by their physical proximity. Instead,
it is likely influenced by the travel behavior of residents who commute to work areas.
The high flow volume between certain street blocks can be attributed to the concentrated
movement of commuters between residential and work areas, leading to the formation of
cohesive communities.

In contrast, the evening period exhibits a different pattern, with a single large com-
munity and a few medium-sized and small communities. Although the communities lack
geographical boundaries, there is a higher degree of interconnectivity among the streets
compared to the morning period. This suggests that, during the evening, more streets are
engaged in reciprocal interactions with each other, leading to a broader range of travel
purposes. Leisure and social venues within the study area are characterized by a wide
and scattered distribution. The increased diversity in destinations during the evening
period indicates that people are engaged in various activities, such as leisure and social
engagements, which may result in a more scattered flow of shared bicycle trips.

The longer interaction radius observed in both the morning and evening periods
suggests that the influence of certain streets extends over a wider geographical scope.
This implies that the spatial interactions between streets are not confined to a limited
area but rather encompass larger regions within the study area. The broader scope of
interactions has implications for urban planning and transportation management, as it
indicates the importance of considering the connectivity between different areas when
designing bike-sharing systems and transportation infrastructure.

The Walktrap community detection method proves to be effective in revealing the
underlying structure of the spatial interaction network and provides valuable insights into
the travel patterns and street connections during different time periods. The observed
differences in community detection shed light on the dynamics of urban mobility and the
factors influencing travel behavior. The research contributes to a better understanding of
urban transportation systems and offers valuable information for optimizing bike-sharing
schemes and urban planning strategies.

5. Discussion

Urban streets, when viewed through the lens of bike-sharing, exhibit distinct clustering
tendencies and adhere to clustering patterns. By constructing a street-level spatial interac-
tion network from the perspective of bike-sharing, it has been observed that shared bicycles
are primarily utilized for short-distance trips within the study area. The flow of trips is con-
centrated among specific streets, with a higher degree of concentration during the morning
peak period compared to the evening peak. This phenomenon may be attributed to the fact
that the primary purpose during the morning peak is work commuting, and the streets with
concentrated flow are often located near areas with a higher concentration of businesses
or employment centers. In contrast, the evening peak exhibits a more diversified set of
destinations, as workplaces are more centrally distributed within the urban region while
residential areas tend to be more dispersed. Through community detection analysis within
the network, it has been revealed that the spatial interaction network exhibits stronger
community structure during the morning period, with more dispersed community con-
figurations. Several community clusters interact with each other. Conversely, the evening
period demonstrates more cohesive community structures, characterized by fewer but
larger communities. Based on the above conclusions, recommendations are provided for
urban transportation authorities, bike-sharing companies, and city residents.

For urban transportation authorities: Strengthen traffic flow monitoring and man-
agement during morning and evening peak hours: Given the observed differences in
community structures during these periods, transportation authorities should focus on
monitoring and managing traffic flow, especially in areas with concentrated commuting
trips, to allocate traffic resources more efficiently and alleviate congestion. Optimize trans-
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portation planning and bike-sharing deployment strategies: Utilizing the outcomes of
community detection, transportation authorities can strategically adjust the deployment
and planning of bike-sharing services. In contrast to conventional dispatching strategies
based solely on the usage volume at distinct locations, our research primarily emphasizes
the provision of a universal framework for the analysis and scheduling of bike-sharing
trips. This approach offers macro-level guidance for bike-sharing dispatching, which can
be applicable to other urban core areas.

For bike-sharing companies: Increase the availability of bikes during morning and
evening peak hours: In response to the unique travel patterns observed during these
periods, bike-sharing companies can increase bike availability to cater to the commuting
demand, thereby improving bike utilization rates. Enhance services in social and leisure
areas during evening hours: As the research indicates a diversified travel pattern during
evenings, bike-sharing companies can augment bike services, particularly in social and
leisure areas, to fulfill the varied travel demands of residents during nighttime.

For city residents: Make informed choices for travel modes: Considering the suitability
of bike-sharing for short-distance travel during morning and evening peak hours, city
residents can prioritize bike-sharing for short trips to avoid traffic congestion. Explore
diverse travel destinations: With a diverse range of travel destinations observed during
evening hours, residents can choose travel destinations based on their preferences and
needs, enjoying the rich nightlife and recreational activities in the city.

Overall recommendations: By formulating reasonable transportation planning and
bike-sharing deployment strategies based on research results, urban transportation authori-
ties can optimize traffic flow and resource utilization. Meanwhile, bike-sharing companies
can offer more flexible and customized services according to different time periods and
community characteristics, catering to the diverse travel needs of residents. City residents
should make informed choices for travel modes and actively participate in and enjoy the
diverse transportation and leisure activities in the city.

6. Conclusions

This study adopts streets as the research unit and builds a spatial interaction network
for shared bicycles in the core area of the capital city. The research employs a random walk
community detection method based on weighted modularity to explore and analyze the
community structures within the urban area. Modularity values are utilized to assess the
quality of community detection, thereby evaluating the regional community characteristics.
The community detection results are further employed for street clustering analysis, facili-
tating the exploration of travel patterns. The experimental results indicate that the morning
period’s spatial interaction network exhibits stronger community structures, consisting of
two large communities with higher street aggregation. Residents’ travel during this period
is predominantly for commuting purposes, showing a higher level of purposefulness. In
contrast, the evening period comprises a single large community, with most streets interact-
ing with each other in pairs, suggesting a broader range of travel purposes for residents
compared to the morning period. Both time periods demonstrate characteristics of long
interaction radii and wide interaction scopes.

The findings of this study provide decision-making assistance to relevant authorities.
During the morning period, shared bicycle operators can strategically deploy bicycles
to streets near locations where interactions between streets within the same community
are likely to occur. In the evening period, due to the extensive usage of shared bicycles,
transportation management departments should focus on regulating their usage to avoid
traffic issues caused by overcrowding.

For future work, several research directions are suggested: expanding the representa-
tion of urban network nodes by including more representative urban areas, such as urban
transportation hubs; exploring various community detection methods and investigating
their impacts on community detection results; and enriching the types of travel data to en-
hance the universality of research on urban population travel patterns. Furthermore, in the
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theoretical methods section, further research and expansion are needed. More community
detection methods can be integrated with evaluation methods to adapt to a wider range of
application scenarios.
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