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Abstract: With the extensive construction of ultra-high voltage (UHV) transmission lines, the fatigue
damage of steel tube members caused by vortex-induced vibration (VIV) in tubular towers has
received growing attention. Although some progress has been made in the research of the VIV of
steel tubes in uniform flow, there is still relatively scarce research on the VIV of steel tubes at various
inflow conditions. In this paper, a series of wind tunnel tests are conducted to investigate the VIV
of the steel tube subjected to uniform, turbulent, and oblique flows. Three turbulence intensities
(Iu = 5.9%, 9.7%, and 12.6%), and four yaw angles (α = 10◦, 20◦, 30◦, and 40◦) are considered. The
results show that the VIV response of the steel tube in the in-line (IL) direction is negligible compared
to that in the cross-flow (CF) direction. The displacement amplitude gradually decreases as the
turbulence intensity increases, accompanied by a more unstable response. For the inclined steel tube,
the VIV maximum amplitude almost remains constant when α ≤ 20◦, while it sharply decreased in
the case of α = 30◦ and α = 40◦. Furthermore, it was found that the so-called independent principle is
applicable for α ≤ 10◦.

Keywords: vortex-induced vibration; experiments; transmission tower; steel tube member;
turbulence flow; yawed cylinder

1. Introduction

Tubular towers are broadly and increasingly constructed in ultra-high voltage (UHV)
transmission lines due to their economic and technical advantages such as high-bearing
capacity and small wind pressure coefficient [1,2]. However, it was found that some steel
tube members with large slenderness ratios are susceptible to continuous vortex-induced
vibration (VIV) [2–4]. During the service period, long-term and high-frequency VIVs would
lead to bolts loosening and even fatigue failure of joints of steel tube members [4–6], which
may threaten the operational reliability and durability of the entire transmission lines. As a
result, it is of critical importance to investigate the VIV of steel tubes in transmission towers.

At present, the research methods for studying the VIV of steel tubes mainly include the
experiment and computational fluid dynamic (CFD) simulation. Although some promising
techniques such as unsteady RANS simulations [5] and large eddy simulation (LES) [6]
are increasingly used in the prediction of the VIV of steel tubes, they are still difficult
to override deficiencies, including the limited accuracy and reliability and troubles in
simulating high Reynold numbers and turbulent flows. In comparison, it is acknowledged
that experimental measurement is the most reliable way for studying the VIV of such
flexible structures. Deng et al. [2] conducted the first detailed experimental study of
VIV of steel tubes in transmission towers with typical joints. The effects of the main
structural parameters including the slenderness ratio, connection type, as well as well-
known mass-damping ratios on the VIV amplitude of steel tubes were investigated. For
steel tubes connected with C-joints, which are particularly vulnerable to the hazard of
VIV, Huang et al. [3] carried out a series of wind tunnel tests and investigated the main
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VIV characteristics of the tubes under uniform flow in terms of time-history response
and spectral properties. Furthermore, they proposed a semi-empirical formula for the
prediction of the VIV maximum amplitude of steel tubes under uniform flow.

Overall, the previous studies have mainly focused on the VIV of steel tube members
in a non-turbulent uniform flow, and additionally, the axis of the structure is exactly per-
pendicular to the flow direction. Nevertheless, in practice, the inflow conditions that steel
tube members experienced are actually turbulent. Generally, the influence of turbulence
flows is related to both turbulence intensity (Iu) and the ratio of turbulence scale to diam-
eter. In previous decades, extensive studies [7–13] have been conducted for both fixed
and elastically mounted circular cylinders under different Reynolds numbers (Re), and
turbulence levels. The results indicated that the free stream turbulence would affect both
mean and fluctuating pressure and Strouhal number (St), and also significantly influence
the VIV response. Pastò [13] performed a set of wind tunnel tests for elastically mounted
circular cylinders under different turbulence levels up to Iu = 13.5%. It was found that
the VIV response and length of the lock-in region significantly decrease as the turbulence
level increases. On the other hand, for the steel tubes in transmission towers, the flow
direction may not be strictly perpendicular to the axis directions of steel tube members.
Compared with the normal incident case, the inclined angle can significantly influence
the VIV response characteristics of both the elastically supported cylinder [14–19] and the
flexible cylinder [20,21]. Franzini et al. [18] experimentally investigated the VIV of the rigid
cylinder elastically mounted with five inclination angles (α = 0◦, 10◦, 20◦, 30◦, 40◦). The
test results show that the displacement amplitudes almost remain the same as that found
in normal-incidence ones for the inclined angles less than 20◦, whereas the amplitude
decreases obviously when the inclined angle is greater than 20◦. In general, researchers
have conducted extensive studies on elastic-supported cylinders and flexible cylinders
under turbulent and oblique flow conditions. However, so far there has been little research
on the VIV of steel tubes in transmission towers under turbulent and inclined incoming
flow conditions.

Therefore, in this paper, a series of wind tunnel tests were performed on VIV of steel
tubes in the transmission towers in the case of uniform, turbulent (Iu = 5.8%, 9.2%, 12.3%),
and oblique (α = 10◦, 20◦, 30◦, 40◦) inflow conditions. The remainder of this paper is as
follows. Section 2 presents the experimental setups and test methods. Section 3 investigates
the VIV response of the steel tube in uniform flow. The effects of flow turbulence and yaw
angle on the VIV of steel tubes are illustrated in Sections 4 and 5, respectively. Finally, some
conclusions are summarized in Section 6.

2. Experiment
2.1. Test Setups

Experiments were carried out in the wind tunnel laboratory of Chongqing University,
with a test section of 15 m in length, 2.4 m in width, and 1.8 m in height. The wind speed
in the laboratory could be continuously changed and the maximum attainable value is
35 m/s, which can satisfy the test needs. The test specimen was the steel tube connected
with the C-shaped joint that is commonly used in actual engineering, and its main physical
parameters are shown in Table 1. Considering the tube’s diameter and the range of average
wind speeds tested, the range of Re varies from 13,000 to 26,000.

Figure 1 shows the overall experimental setup. As shown in Figure 1a, the test tube
was bolted to two separate columns and the columns were fixed in the wind tunnel by
using adjustable supports. Herein, between the conflicting goals of ensuring the columns
stability and the blockage ratio, a moderate column size (diameter = 76 mm) was chosen,
yielding a moderate blockage ratio of 8.35% in the present test. To eliminate the effect of
columns on flow conditions, two circular end plates with a diameter of 800 mm and a
thickness of 6 mm were placed and fixed on both sides of the steel tube, as displayed in
Figure 1b. To measure the VIV response of the steel tubes, the laser displacement meter
(Type: IL-300, KEYENCE, Osaka, Japan) with a sampling frequency (fs) of 1000 Hz was
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used, which was layout in the center of the tube, and four accelerometers (fs = 1000 Hz)
were set at the 1/8, 1/4, 3/8, and 1/2 in the length direction to test the vibration along the
tube. Additionally, wind velocities and turbulence intensities were measured by the TFI
cobra, which sets in front of the cylinder at the same height. In each of the tested wind
speeds, the sampling duration was set as 60 s with a sampling frequency of 1000 Hz, and a
total of 60,000 data were recorded.

Table 1. Main physical parameters of the test tubes.

Terms Units Values

Diameter (D) m 0.042
Thickness (t) m 0.0012

Unit mass (m) kg/m 1.2
Length (l0) m 2.08

Frequency (fn) Hz 30.42
Mass ratio (M*) - 711

Damping ratio (ξ) - 0.0032
Notes: the frequency and damping ratio were determined by the decay test in the air. The mass ratio was
calculated as M* = 4m/πρD2, where ρ = 1.225 kg/m3 is the air density.
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2.2. Properties of Turbulent Flow

Turbulent flows were generated by uniform grids with various mesh sizes, as pre-
sented in Figure 2. Three uniform grids were placed in front of the test tube at the same
distance of 6 m, resulting in three different turbulent intensities and length scales. Based
on the wind speed data collected simultaneously during each vortex vibration test, the
turbulence intensity (Iu) can be calculated by the formula Iu = û/ū, where û and ū are the
standard deviation and mean of the flow velocity in the in-line (IF) direction. Additionally,
the turbulent length scale (Lu) was obtained by fitting the measured wind speed spectra
with the von-Karman spectrum [13] (as shown in Figure 3), in which the von Karman
spectrum can be formulated as

Suu( f ) = 4û · Lu/u[
1 + 70.8( f Lu/u)2

]5/6 (1)

where Suu(f ) and f are the longitudinal turbulence spectra and frequency (in Hz), respectively.
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Finally, the values of Iu and Lu can be obtained by averaging them for each case of
wind velocity, as presented in Table 2.

Table 2. Properties of turbulence flow.

Flow Iu (%) Lu/D

Uniform flow 0.4 -
Low turbulence (Grid1) 5.9 3.37

Medium turbulence (Grid2) 9.7 5.76
High turbulence (Grid3) 12.6 6.39

2.3. Definition of Yaw Angles

Figure 4 shows the setup of the testing tube with a yaw angle. As shown in Figure 4a,
the yaw angle (α) is defined as the angle between the axis of the tube with respect to the
incoming flow. The normalized reduced velocity (V*) is used to define the axial component
of the wind speed [18], which can be expressed as

V∗ = U∗cosα =ucosα/ fnD (2)

where U* is the reduced velocity, defined as U* = ū/fnD.
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Herein, four yaw angles (α = 10◦, 20◦, 30◦, 40◦) were considered, in which the typical
case for α = 30◦ is shown in Figure 4b.
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3. VIV of the Steel Tube in Uniform Flow
3.1. VIV Response

Figure 5 shows the variation in dimensionless amplitude A* (at the middle of the tube)
versus reduced velocity U* in both the cross-flow (CF) direction and inline (IL) direction,
in which A* = Amax/D, where Amax is the displacement amplitude of the response time
history. In general, the VIV response curve in the CF direction shows a classic pattern of
two branches [4], namely the initial branch and the lower branch, which is fairly similar to
the cylinder that has a comparable mass ratio and damping ratio [3,13]. Furthermore, it can
be seen that the VIV amplitude in the CF direction is significantly larger than that in the
IL direction, and in particular, the maximum amplitude in the IL direction only accounts
for around 20% of the CF direction. Consequently, the remainder of this paper will only
discuss the VIV of the steel tube in the CF direction. As shown in Figure 5, the maximum
dimensionless amplitude (A*max) of the steel tube is 0.00972, which is relatively smaller
than that in the previous measurement [2]. Such a discrepancy is mainly attributed to the
different structural configurations. In this test, the steel tube has twice as many bolts at
the connection points as the previous experimental specimens, which accordingly leads to
a smaller amplitude. Furthermore, it was found that the A*max here agrees well with the
results of 0.0086 obtained by the semi-empirical formula [3].
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Figure 6 presents the variation in the dimensionless frequency (f *) versus reduced
velocity U*, in which f * = fex/fn, where fex and fn are the vortex shedding frequency
and vibration frequency extracted from the spectrums of displacements, respectively. As
shown in Figure 6, the lock-in phenomenon, where the vibration frequency controls the
vortex shedding frequency (i.e., f * ≈ 1.0), occurs in the reduced velocity ranges from 4.5
to 5.0. The observed lock-in range is very close to that in the previous experiment [3],
whereas it is relatively earlier compared to the results (5.0 ≤ U* ≤ 5.5) performed by
Deng et al. [2]. Such a discrepancy may be caused by the experimental configuration and
is not exactly consistent, e.g., the uniformity of the wind field and the roughness of the
specimen. Furthermore, outside of the lock-in region, it can be seen that the vortex-shedding
frequency approximately follows the so-called Strouhal rule, i.e., fex = Stū/D. In this work,
the St is obtained as 0.21, which is similar to the results (0.20 ≤ St ≤ 0.21) found in the
previous experiment [2].
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Figure 7 shows the variation in the peak factor kp with U*, in which kp = Amax/Arms,
where Arms is the root mean square (RMS) of the response time history. Overall, kp decreases
first and then increases in the vicinity of the lock-in region, while it becomes relatively
stable outside the lock-in interval. It can be seen that kp reaches a minimum value of 1.63
at U* = 4.88, which approaches the theoretical value of kp = 1.414 of a single sinusoidal
process. When U* lies outside of the lock-in region, the peak factor increases significantly
to around 3.5 to 4.0. These values are very close to the typical values of random processes,
which indicates that the VIV response of the steel tube is similar to the random processes.
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3.2. Time-Frequency Analysis of VIV Response

In this work, the VIV responses of the steel tube at five typical reduced velocities (see
Figure 1) of 4.31, 4.70, 4.88, 5.05, and 5.18 in the vicinity of the lock-in region are further
analyzed. Figure 8 shows the time-frequency analysis of VIV displacement of the steel tube
at various U*. In each subgraph, the top, left and bottom parts represent the response time
history, power spectrum density (PSD), and time-varying frequency spectrum, respectively.
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As shown in Figure 8a, during the initial stage (U* = 4.31), the VIV response of the
steel tube is quite small and irregular in terms of time history and time-varying frequency
spectrum. It is clear in the PSD function that the frequency components of the vibration
include the separate vortex shedding frequency and first-order natural frequency, in which
the weight around the latter is greater than that of the former. According to Figure 8b, the
response is significantly increased in the rising stage (U* = 4.70), which shows a relative
regular fluctuation that is similar to the “beat”. In addition, it is clear that the vibration fre-
quency has controlled the vortex-shedding frequency (f * = 1), i.e., the lock-in phenomenon
occurs. Meanwhile, the energy around the first frequency becomes significantly concen-
trated, where the energy exhibits the typical narrow-band distribution. However, the
components of the spectrum are unstable throughout the entire period, as indicated by the
time-varying spectrum.
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As the wind velocity increases, the maximum VIV response of the steel tubes reaches
the maximum at U* = 4.88, as presented in Figure 8c. In this case, the response time
history and time-varying frequency become quite stable throughout time. Additionally,
the PSD function is more concentrated around the vibration frequency, and the energy
components at both the high and low frequencies are obviously reduced. As depicted in
Figure 8d, during the decreasing stage (U* = 5.05), the time-varying response in both the
time and frequency becomes unstable again. In terms of PSD, the response exhibits two
separated peak values, i.e., the vortex-shedding frequency and natural frequency, whereas
the spectrum still has obvious narrow-band characteristics. Finally, as depicted in Figure 8e,
the VIV response returns to a very tiny and irregular state, where no stable amplitude
was developed throughout the entire testing period. Moreover, it can be seen in the PSD
function that the frequency bandwidth of the energy distribution is dramatically expanded.

4. Effect of the Turbulence Intensity
4.1. Amplitude and Frequency

In the remainder of this paper, the turbulent flows are represented by their turbulence
intensities (Iu) for simplicity. Figure 9 shows the variation in the dimensionless amplitude
(A*) versus reduced velocity (U*) for different Iu. As depicted in Figure 9, the VIV response
gradually decreases as the turbulence intensity increases. Similar to the response in the
uniform flow (Iu = 0.4%), the VIV amplitude curve in the case of Iu = 5.9% exhibits the
classical two branches, i.e., the initial branch and lower branch, although peak amplitude
(0.00909) is slightly declined compared to the case of uniform flow (0.00915). However, the
maximum amplitude significantly decreases to 0.00722 and 0.00611 in the case of Iu = 9.7%
and Iu = 12.6%, respectively. This can be explained by the turbulent flow that would disturb
the formation and shedding of the vortex. Moreover, it can be observed that the response
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curve does not present any sharp jumps after the peak amplitude, which is similar to the
previous studies [2,13].
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Figure 10 shows the variation in the dimensionless frequency (f *) versus reduced
velocity (U*) for different Iu. Generally, the lock-in phenomenon occurs in all turbulence
flows investigated here. In low turbulence (Iu = 5.9%) flow, the reduced velocity range of
the lock-in region is approximately from 4.5 to 5.0, and the width and the onset velocity of
the lock-in region are almost identical to that in the uniform flow condition. However, with
further increases in turbulence, the widths of the lock-in region are significantly increased.
In the case of Iu = 9.7% and Iu = 12.6%, the reduced velocities of the lock-in range are from
4.43 to 5.01 and from 4.65 to 5.64, respectively. Similarly, an increase in the VIV lock-in
region of the steel tubes at high turbulence has been also observed in previous studies [2].
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Interestingly, according to Figures 9 and 10, it is found that the peak amplitude A*,
together with the lock-in region towards to the lower U* for Iu = 9.7%, shifts to the larger
U* in the case of Iu = 12.6%. The former may be due to the effect of turbulence, which
increases the Strouhal number (St) of the system [12], thereby affecting the vortex-shedding
frequency. This can be manifested in Figure 10 as a smaller onset wind speed of the lock-in
for the case of Iu = 9.7%, which is similar to the that observed in the prior experiments with
high turbulence (Iu = 10.2%) [2]. For the latter, it is observed in Figure 10 that the onset
wind speed is almost constant for Iu = 12.6%, and the higher critical wind speed in Figure 9
may be related to the widening of the lock-in region, as the critical wind speed generally
occurs in the middle of the lock-in region [3].

To further evaluate the effect of turbulence intensity on the VIV maximum amplitude,
Figure 11 presents the variation in declined coefficient β versus turbulence intensity (Iu),
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where β is defined as the ratio of the peak amplitude in turbulence flows with that in the
uniform flow. As shown in Figure 11, the β obtained in this work is very similar to that
observed in the related study [2]. Obviously, the variation tendency of β with Iu can be
reasonably fitted by the least-square method, namely

β(Iu) = −0.00258(Iu)
2 − 0.00143Iu + 1.005 (3)
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4.2. Response Characteristics

Figure 12 shows the variation in peak factor (kp) with U* at different Iu. It can be
observed that kp tends to increase as the turbulence intensity grows. Compared to the
uniform flow case, the minimum peak factor (kp,min) slightly grows from 1.64 to 1.80 and
1.88, in the case of Iu = 5.9% and Iu = 9.7%, respectively. In the case of Iu = 12.6%, kp,min
increased sharply to 2.60 and the variation curve has multiple extreme points, which
suggests that the high turbulence promotes the extreme levels of VIV response.
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Figure 13 compares the displacement time history and PSD for different turbulence
intensity (Iu) at the critical wind speed. As shown in Figure 13, in addition to the decline
in amplitude, it is obvious that the time history becomes more unstable as the turbulence
intensity increases. The PSD function shows that in low turbulence condition, the spectrum
is fairly concentrated around f * = 1, which is very similar to the case of uniform flow (see
Figure 8d). However, as the turbulence increases, the bandwidth around the fundamental
frequency is gradually increased, associated with more noise components over the whole
frequency range.
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Figure 13. Comparison of the dimensionless displacement time histories and PSD for different
turbulence intensity (Iu) at the critical wind speed. (a) Iu = 5.9% (U* = 4.86); (b) Iu = 9.7% (U* = 4.73);
(c) Iu = 12.6% (U* = 5.36).
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5. Effect of the Yaw Angle
5.1. Amplitude and Frequency

Figure 14 compares the variation in the dimensionless amplitude A* versus the nor-
malized reduced velocities V* at five yaw angles (α = 0◦, 10◦, 20◦, 30◦, 40◦). It should be
noted that the tests were conducted under approximately uniform flow conditions, where
the turbulence intensity Iu < 0.4%. As shown in Figure 14, in the case of α = 10◦ and α = 20◦,
the maximum amplitude almost remains the same as that observed in the normal-incidence
case (α = 0◦), indicating that the inclination of the steel tube may not cause any change in
displacement response in relatively small yaw angles (α ≤ 20◦). However, the VIV response
significantly decreases as the yaw angles increase to 30◦ and 40◦, where the maximum
amplitude reduces by 30% and 40%, respectively, compared to that in the normal-incidence
case. This can be attributed to the excessive axial velocity component of the flow, which
disturbs the regularity of the vortex-shedding. Similarly, this declined tendency of VIV
amplitude in large yaw angles was observed in the previous investigation [15–18]. Interest-
ingly, in the case of α = 40◦, the response curve obviously differs from the classical initial
and lower branch, where the large vibration is maintained within a relatively long wind
speed range.
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Figure 15 presents the variation in dimensionless frequency (f *) versus V* at different
yaw angles. As shown in Figure 15, the lock-in phenomenon was observed for all cases,
and the frequency response of the steel tube follows the Strouhal rule during the outsides
of the lock-in region. It is observed that the onset velocity (around V* = 4.67) of lock-in
regions is almost unchanged, whereas the length of the lock-in interval varies significantly
for different angles of inclination. Specifically, the width of the lock-in region gradually
becomes broader as the yaw angle increases, except in the case of α = 10◦.

Therefore, according to the above results, it can be concluded that when α ≤ 10◦, the
independence principle (IP) [21] is applicable for steel tubes in terms of both response
amplitude and frequency.

5.2. Response Characteristics

Figure 16 shows the variation in the peak factor (kp) versus V* at different yaw angles.
As shown in Figure 16, the minimum peak factor (kp,min) almost remains the same around
1.64 for small yaw angles (α ≤ 20◦), which increases slightly to 1.75 at α = 30◦ and sharply
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to 2.25 in the case of α = 30◦. In addition, it can be seen that the variation curve of the peak
factor tends to be irregular as the yaw angle increases, in which multiple extreme points
are observed in the lock-in region in the case of α = 40◦, which further indicates that the
displacement response of the steel tubes becomes more unstable as the yaw angle increases.
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Figure 16. The variation in kp versus V* for different α.

Figure 17 compares the dimensionless displacement time histories and PSD for differ-
ent angles at their critical wind speeds. It can be seen that the displacement time histories
in the case of α = 10◦ and α = 20◦ have a similar characteristic compared to that in the
normal-incidence case (see Figure 8a), which exhibits relatively stable amplitude in tested
periods. In the case of α = 30◦, the response time history becomes slightly non-stable, in
which the local peaks are more pronounced. As the yaw angle increased to 40◦, it can be
seen that the steel tube failed to develop a stable vibration and that the magnitude of the
response changed dramatically throughout the test period.
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6. Conclusions

A series of wind tunnel tests were performed to investigate the VIV of steel tubes in
transmission towers at various inflow conditions. The VIV response of the steel tube in the
uniform, turbulent (Iu = 5.9%, 9.7%, and 12.6%), and inclined (α = 10◦, 20◦, 30◦, and 40◦)
flow conditions were investigated. The main results are listed as follows.

(1) Compared to the VIV in the CF direction, the VIV response in the IL direction is
negligible. In particular, the VIV maximum amplitude of the steel tube in the IF
direction only accounts for about 20% compared to that in the CF direction.

(2) The VIV amplitude of the steel tube decreases significantly as the turbulence intensity
increases and the decreasing trends can be reasonably fitted by the quadratic function.
The width lock-in region was found to be wider in turbulence compared to that in
uniform flows.

(3) Compared with the normal-incidence case, the VIV maximum amplitude almost
remains constant in the case of α = 10◦ and α = 20◦, while it decreased sharply for α
= 30◦ and 40◦. Moreover, the width lock-in region gradually increases as the angle
of inclination increases, except for α = 10◦, while the onset velocities of the lock-in
region are similar for all cases.

(4) When α ≤ 10◦, the independence principle (IP) is applicable for inclined steel tubes in
terms of both response amplitude and frequency.
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