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Abstract: Most thermal researchers have solved thermal conduction problems (inverse or direct)
using several different methods. These include the usual discretization methods, conventional and
special estimation methods, in addition to simple synchronous gradient methods such as finite
elements, including finite and special quantitative methods. Quantities found through the finite
difference methods, i.e., explicit, implicit or Crank–Nicolson scheme method, have also been adopted.
These methods offer many disadvantages, depending on the different cases; when the solutions
converge, limited range stability conditions. Accordingly, in this paper, a new general outline of the
thermal conduction phenomenon, called (θ-scheme), as well as a gradient conjugate method that
includes strong Wolfe conditions has been used. This approach is the most useful, both because of
its accuracy (16 decimal points of importance) and the speed of its solutions and convergence; by
addressing unfavorable adverse problems and stability conditions, it can also have wide applications.
In this paper, we applied two approaches for the control of the boundary conditions: constant and
variable. The θ-scheme method has rarely been used in the thermal field, though it is unconditionally
more stable for θ∈ [0.5, 1]. The simulation was carried out using Matlab software.

Keywords: thermal conduction; inverse problem; θ-scheme; CG method; Wolfe conditions;
unconditionally stable

1. Introduction

In order to model a mathematical system that can solve a direct problem, it is necessary
to look for factors that control the response of the system to several basic and necessary con-
ditions. The latter are generally represented through: (1) The considered field engineering;
(2) The equations that govern this area; (3) All temporal and spatial conditions that govern
the area; (4) Properties of materials; and finally, (5) The sources that control and function
in the field of study. At some times, one or more of the previous data that are necessary
to solve the above direct problem are completely or partially absent. Thus, one can look
for the missing data, and then should move to solving the reverse problem according to
the theoretical data or find an analogous way to uncover the information related to the
system’s responses [1]. Generally, inverse problems are known problems that are more
difficult to solve compared to direct problems; they may also suffer from the lack of an
optimal selection, making them a complex problem. A lack of uniqueness and/or a lack of
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solutions, or an instability of the solution to small problems that are due to changes in the
provided data (disturbance) can lead to major problems with solutions [2].

To solve the problem of heat transfer through walls, Layal-Chahwane and al [3]
presented an inverse method that estimated their thermal properties by adopting the limited
difference method through the simspark environment program [4]. A good agreement was
found between the direct and the reverse methods [5]. Jingbo Wang and al [6] studied the
problems in evaluating parameters, rebuilding thermal history (including thermal flow
at the borders), and rebuilding the heat source. This work was conducted using the joint
probability distribution approach to determine the status of the conditional state (on the
data) of unknown quantities by multiplying the previous probability and distribution
functions. Bayesian hierarchical models were introduced to simplify earlier assumptions
about the unknown quantities. The presented methods are general and applied for a
number of inverse engineering problems.

A.S.A. Alghamdi [7] investigated the heat flow at the boundary; the inverse method
of the heat conduction model was used by developing a direct and inverse mathematical
model of a flat-panel probe that was subjected to time-dependent heat flow at one end while
keeping the other side isolated. In this paper, the inverse algorithm that used the Levenberg–
Marquardt method was applied. Thus, a satisfactory solution was found between the
measured and estimated features of heat flow. The experiments were undertaken at the
University of Ohio [8].

Solving “direct problems” allows the stimulation of physical phenomena in modeling,
and if the phenomenon is governed by partial differential equations, different digital tech-
niques can be used [9]. The most famous elements are finite, and finite differences are one
of the most recent methods of boundary elements [10]. This considers that, depending on
the endowment encountered in each process, many industrial studies require a solution to
“inverse problems” and not a solution to “direct problems” [11]. This applies, for instance,
to determining temperatures or contour flows according to internal measurements of the
body, such as ovens and space missions [12].The main advantage of using inverse methods
depends on various applications for problems that cannot be solved using other tradi-
tional methods. These include, for example, space shuttles, phase change materials, and
thermal ovens.

Since it is widely known that many inverse problems in the physical sciences are
ill-posed in the sense that the solution loses stability with respect to data perturbations
and even minor perturbations of data can change the solution drastically. Generally,
these types of perturbations come from measuring, rounding errors, and observation.
Thus, the numerical solutions of these inverse problems are extremely susceptible to
perturbations due to the poor posing of these problems [13]. For this reason, we’re interested
in considering the problem of heat transfer with noisy data. Therefore, the direct numerical
approaches are not applicable to computing an appropriate solution for this type of problem.
Regularization procedures should be used to solve an ill-posed problem with noisy data.

To extract valuable and relevant information from the model presented by heat trans-
fer, the numerical solution to these problems necessitates the application of discretization
strategies. This can be achieved in one of two ways: regularization-discretization (RD)
or discretization-regularization (DR). In this paper, we will adopt the second strategy.
In general, discretization methods treat linear or nonlinear ill-posed problems by trans-
forming these problems into finite-dimensional systems. This discretization gives rise
to ill-conditioned linear or nonlinear systems of algebraic equations. In most situations,
the obtained systems must be regularized to compute the best approximation solution
available [14].

The conjugate gradient method is known as one of the most powerful methods for
the optimization of both linear and non-linear algebraic systems. For this reason, the
conjugate gradient method is considered a regularized strategy for solving difficult linear
or non-linear algebraic systems.
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The explicit and implicit methods, as we all know, are strong tools for solving numer-
ical approximations to the solutions of time-dependent ordinary and partial differential
equations. These numerical methods are considered one of the most famous approximate
methods for solving well-posed problems because of their ease of application.

In this work, the discretization method is a θ-scheme method, which is a combination
of the previous methods. We then apply the conjugate gradient method as a strategy
of regularization.

Our contribution adopted solutions for the problem of inverse thermal conductivity
in a new, interesting, and accurate way (16 significant decimal digits) called (θ-scheme),
paired with a gradient correlated with strong Wolfe conditions, using (θ∈[0.5, 1]). On the
other hand, most thermal researchers used simple graphs to estimate the value (explicit
θ = 0, implicit θ = 1 and Crank–Nicolson θ = 0.5), with a simple conjugate gradient, and these
return several defects (stability and convergence state, limited application, etc.). Adding to
the current contribution, both approaches were used to control boundary conditions: the
inverse method, and fixed conditions where one capture was used. In the second approach,
multiple pickups were used. Two pickups were selected: one on the hot side and the other
on the cold side. Suggestions related to these terms are based on real data collected by
our research team members, affiliated to AERMASA_URAER. Ghardaia carried out on an
experimental platform that was implemented in the District buildings.

2. The Mathematical Procedure

In this paper, the work proposed addresses the heat transfer in a wall built from
stone, which is purely conductive and unidirectional as well as adiabatic at the top and the
bottom side (isolate), as shown in Figure 1a. With the objective of controlling the boundary
conditions of the wall, the study adopted two approaches: the first approach uses the
constant conditions and the second one uses the real conditions [15]. These conditions are
not chosen arbitrarily but are based on the real data drawn from several experiments on
a dwelling house of a functional nature within the Applied Research Unit for Renewable
Energies (URAER), Ghardaïa, Figure 1b [16]. Figure 2a,b show the inside and outside
temperature evolution in the study house for 29 June 2007 and 15 July 2007.It can be seen
the temperature can be exceed 40 ◦C and also the the comparison between the outside
temperature the calculation is satisfactory.
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Figure 1. (a) Thermocouple position in room [15,16], (b) radiometric station in Uraer [17]. Figure 1. (a) Thermocouple position in room [15,16], (b) radiometric station in Uraer [17].
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Figure 2. Real temperature evolution (experimental) (a) 29 June 2007; (b) 15 July 2007.

2.1. Validation of the Procedure

In this validation, the evolution of temperatures was compared in a wall made of
hard stone, determined by both direct and inverse methods, after the third iteration. The
obtained results are almost identical, Figure 3.

Buildings 2023, 13, 243 4 of 20 
 

  
(a) (b) 

Figure 2. Real temperature evolution (experimental) (a) 29 June 2007; (b) 15 July 2007. 

2.1. Validation of the Procedure 

In this validation, the evolution of temperatures was compared in a wall made of 

hard stone, determined by both direct and inverse methods, after the third iteration. The 

obtained results are almost identical, Figure 3. 

 

Figure 3. Validation of the inverse and analytical method. 

2.2. Direct Procedure 

To solve a direct problem in a mathematical system, it is necessary to look for the 

factors that control the system’s response to several basic and necessary conditions. The 

latter are generally represented by: (1) the geometry of the land considered. (2) The equa-

tions that govern this domain. (3) All the governing spatial-temporal conditions. (4) Prop-

erties of materials and finally the sources that control and work in the field of study. 

The problem treated in this study deals essentially with an unsteady thermal conduc-

tion, which is governed by the following unidirectional partial differential equation: 

𝑘
𝜕2𝑇

𝜕𝑥2
+ 𝑓0 = 𝜌𝐶𝑝

𝜕𝑇

𝜕𝑡
   (1) 

where 0 ≤ 𝑥 ≤ 𝑒 and 𝑓0 a heat sources. 

Figure 3. Validation of the inverse and analytical method.

2.2. Direct Procedure

To solve a direct problem in a mathematical system, it is necessary to look for the
factors that control the system’s response to several basic and necessary conditions. The
latter are generally represented by: (1) the geometry of the land considered. (2) The
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equations that govern this domain. (3) All the governing spatial-temporal conditions.
(4) Properties of materials and finally the sources that control and work in the field of study.

The problem treated in this study deals essentially with an unsteady thermal conduc-
tion, which is governed by the following unidirectional partial differential equation:

k
∂2T
∂x2 + f0 = ρCp

∂T
∂t

(1)

where 0 ≤ x ≤ e and f0 a heat sources.
In association with the previous equation, the examined wall is subject to the following

boundary and initial conditions:
T(x, t) = T0 or− k ∂T

∂x = q(x, t) at x = 0
T(x, t) = Te at x = e

T(x, t) = F(x) f or t = 0

Figure 4 shows the physical representation of the problem under consideration. The
stone wall was 0.4 m thick. Initially, the ambient temperature was 20 ◦C. The supposed
boundaries conditions are located at x = 0 m, where the hot temperature Tc = T0 = 40 ◦C,
and at x = 0.4 m, the wall was maintained at room temperature Tf = Te = 25 ◦C.
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Figure 4. Boundary conditions and direct problem position.

The thermos-physical properties of the stone used are [18]: ρ = 2000 kgm−3,
Cp = 1000 jkg−1k−1 and k = 2.3 wm−1k−1.

To determine the temperature evolution in the wall with the direct method, three
different schemes were adopted: explicit, implicit and the theta scheme.
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2.3. Explicit Form

One can discretize Equation (1) to determine the evolution of temperature T (t, x)
in the explicit form of the finite differences according to Figure 5, using the following

approximation: ∂T
∂t ≈

Tn+1
i −Tn

i
∆t and ∂2T

∂x2 ≈
Tn

i+1−2Tn
i +Tn

i−1
∆x2 .
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The discretization equation can be written in the following form:

Tn+1
i = DTn

i+1 + (1− 2D)Tn
i + DTn

i−1 (2)

where n = 0, 1, 2, . . . , M and i = 1, 2, . . . , N, D = α ∆t
∆x2 and α = k

ρCp
.

Equation (2) is the explicit form obtained using the finite differences method dis-
cretization. This form is stable when (1− 2D) ≤ 0. After the introduction of the boundary
conditions, this equation can be written in matrix form as follows:

Tn+1 = ATn + B (3)

where A =



γ D 0 · · · · · · 0

D γ D
. . . . . .

...

0 D γ D
. . .

...
...

. . . . . . . . . . . . 0
...

. . . . . . D γ D
0 · · · · · · 0 D γ


, B =



DT0
0
...
...
0

DTe


and γ = 1− 2D.

The calculation starts with n = 0. So, we calculate T1
i f or i = 1, . . . , N through

Equation (2). In this step, the instantaneous temperature is calculated based on the initial
temperature and the boundary conditions.

For the second step, we use n = 1 and calculate T2
i f or i = 1, . . . , N using the

temperatures calculated in the previous step.
This operation is repeated for each time step, until reaching a thermally steady state

defined by an invariant temperature profile (Figure 6). Figure 7 shows the obtained absolute
error using the finite difference method.



Buildings 2023, 13, 243 7 of 21

Buildings 2023, 13, 243 6 of 20 
 

𝑇𝑖
𝑛+1 = 𝐷𝑇𝑖+1

𝑛 + (1 − 2𝐷)𝑇𝑖
𝑛 + 𝐷𝑇𝑖−1

𝑛  (2) 

where 𝑛 = 0,1,2, … ,𝑀 𝑎𝑛𝑑 𝑖 = 1,2, … ,𝑁, 𝐷 = 𝛼 ∆𝑡

∆𝑥2
 and 𝛼 =

𝑘

𝜌𝐶𝑝
. 

Equation (2) is the explicit form obtained using the finite differences method discreti-

zation. This form is stable when (1 − 2𝐷) ≤ 0. After the introduction of the boundary 

conditions, this equation can be written in matrix form as follows: 

𝑇𝑛+1 = 𝐴𝑇𝑛 + 𝐵   (3) 

where 𝐴 =

[
 
 
 
 
 
𝛾 𝐷 0
𝐷 𝛾 𝐷
0 𝐷 𝛾

⋯ ⋯ 0
⋱ ⋱ ⋮
𝐷 ⋱ ⋮

⋮ ⋱ ⋱
⋮ ⋱ ⋱
0 ⋯ ⋯

⋱ ⋱ 0
𝐷 𝛾 𝐷
0 𝐷 𝛾 ]

 
 
 
 
 

, 𝐵 =

[
 
 
 
 
 
𝐷𝑇0
0
⋮
⋮
0
𝐷𝑇𝑒]

 
 
 
 
 

 and 𝛾 = 1 − 2𝐷.
 

The calculation starts with 𝑛 = 0. So, we calculate 𝑇𝑖
1 𝑓𝑜𝑟 𝑖 = 1,… ,𝑁 through Equa-

tion (2). In this step, the instantaneous temperature is calculated based on the initial tem-

perature and the boundary conditions. 

For the second step, we use 𝑛 = 1  and calculate 𝑇𝑖
2 𝑓𝑜𝑟 𝑖 = 1,… ,𝑁 using the tem-

peratures calculated in the previous step. 

This operation is repeated for each time step, until reaching a thermally steady state 

defined by an invariant temperature profile (Figure 6). Figure 7 shows the obtained abso-

lute error using the finite difference method. 

 

Figure 6. Temperature evolution using the explicit form of finite difference method. Figure 6. Temperature evolution using the explicit form of finite difference method.

Buildings 2023, 13, 243 7 of 20 
 

 

Figure 7. Absolute Error using the explicit form of finite differences method. 

2.4. Implicit Form 

To resolve the direct problem ,the implicit centered finite difference method was used 

to discretize the latter equation (1), (Figure 8). 

Using backward difference in time and second-order central difference of the space 

derivative, we obtain the implicit scheme as shown below: 

𝑇𝑖
𝑛+1 − 𝑇𝑖

𝑛

∆𝑡
= 𝛼

𝑇𝑖+1
𝑛+1 − 2𝑇𝑖

𝑛+1 + 𝑇𝑖−1
𝑛+1

∆𝑥2
 

 

Figure 8. Implicit scheme of finite difference discretization. 

After reorganization, we find 

−𝐷𝑇𝑖+1
𝑛+1 + (1 + 2𝐷)𝑇𝑖

𝑛+1 − 𝐷𝑇𝑖−1
𝑛+1 = 0 (4) 

where : 𝑛 = 0,1,2, … ,𝑀 𝑎𝑛𝑑 𝑖 = 1,2, … , 𝑁; 𝐷 = 𝛼
∆𝑡

∆𝑥2
 and 𝛼 =

𝑘

𝜌𝐶𝑝
 

The implicit scheme is unconditionally stable, so we can choose 𝑑𝑡 and 𝑑𝑥 inde-

pendently. After introduction of the boundary conditions, Equation (4) can be written in 

the following matrix form: 

𝐴𝑇𝑛+1 = 𝐵 (5) 

with 

𝐴 =

[
 
 
 
 
 
𝛾 −𝐷 0
−𝐷 𝛾 −𝐷
0 −𝐷 𝛾

⋯ ⋯ 0
⋱ ⋱ ⋮
−𝐷 ⋱ ⋮

⋮ ⋱ ⋱
⋮ ⋱ ⋱
0 ⋯ ⋯

⋱ ⋱ 0
−𝐷 𝛾 −𝐷
0 −𝐷 𝛾 ]

 
 
 
 
 

, 𝐵 =

[
 
 
 
 
 
𝑇1
𝑛 + 𝐷𝑇0
𝑇2
𝑛

⋮
⋮

𝑇𝑁−1
𝑛

𝑇𝑁
𝑛 + 𝐷𝑇𝑒]

 
 
 
 
 

 

and 

Figure 7. Absolute Error using the explicit form of finite differences method.

2.4. Implicit Form

To resolve the direct problem, the implicit centered finite difference method was used
to discretize the latter Equation (1), (Figure 8).

Using backward difference in time and second-order central difference of the space
derivative, we obtain the implicit scheme as shown below:

Tn+1
i − Tn

i
∆t

= α
Tn+1

i+1 − 2Tn+1
i + Tn+1

i−1
∆x2
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After reorganization, we find

− DTn+1
i+1 + (1 + 2D)Tn+1

i − DTn+1
i−1 = 0 (4)

where: n = 0, 1, 2, . . . , M and i = 1, 2, . . . , N; D = α ∆t
∆x2 and α = k

ρCp
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The implicit scheme is unconditionally stable, so we can choose dt and dx indepen-
dently. After introduction of the boundary conditions, Equation (4) can be written in the
following matrix form:

ATn+1 = B (5)

with

A =



γ −D 0 · · · · · · 0

−D γ −D
. . . . . .

...

0 −D γ −D
. . .

...
...

. . . . . . . . . . . . 0
...

. . . . . . −D γ −D
0 · · · · · · 0 −D γ


, B =



Tn
1 + DT0

Tn
2
...
...

Tn
N−1

Tn
N + DTe


and

γ = 1 + 2D

To determine the temperature evolution in the wall using the implicit method, it is
necessary to solve the algebraic system obtained by Equation (5). In this study, we have
adopted the Thomas algorithm (tri-diagonal matrix algorithm) [18–20]. The obtained results
are plotted in Figure 9 at different times. The absolute error was plotted in Figure 10. It can
be seen that the implicit form of the finite difference method exhibited faster convergence
than the explicit form.
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2.5. Crank–Nicolson Form

The Crank–Nicolson method is a special case of the so-called θ-scheme (θ = 0.5),
which can be briefly defined as an implicit and unconditionally stable approximation
(Figure 11). It considers the second order in time and space [21,22].

1
α

Tn+1
i − Tn

i
∆t

=
1

∆x2

[
θ
(
Tn

i−1 − 2Tn
i + Tn

i+1
)
+ (1− θ)

(
Tn+1

i−1 − 2Tn+1
i + Tn+1

i+1

)]
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After rearrangement and setting θ = 0.5, we find:

− DTn+1
i+1 + (1 + 2D)Tn+1

i − DTn+1
i−1 = DTn

i+1 + (1− 2D)Tn
i + DTn

i−1 (6)

where n, i, α and D are n = 0, 1, 2, . . . , M, i = 1, 2, . . . , N,D = 2 α∆t
∆x2 , α = k

ρCp
.

After boundary conditions are introduced, Equation (6) can be written in the following
algebraic equations system, and Equation (7) in matrix form:

ATn+1 = BTn + C (7)

where

A =



γA −D 0 · · · · · · 0

−D γA −D
. . . . . .

...

0 −D γA −D
. . .

...
...

. . . . . . . . . . . . 0
...

. . . . . . −D γA −D

0 · · · · · · 0 −D γA


, B =



γB D 0 · · · · · · 0

D γB D
. . . . . .

...

0 D γB D
. . .

...
...

. . . . . . . . . . . . 0
...

. . . . . . D γB D

0 · · · · · · 0 D γB


, C =



2DT0

0
...
...
0

2DTe


,

γA = 1 + 2D and γB = 1− 2D.

Figures 12 and 13 show the temperature evolution and absolute error using the Crank–
Nicolson form of the finite difference method. It can be seen that the three methods seem
stable, but the stability of the explicit method is present at a well-defined interval [0, 0.5]. On
the other hand, the two other methods (implicit and Crank–Nicolson) are unconditionally
stable. On the convergence side, the Crank–Nicolson method is the fastest convergence
method (after 145 iterations) and the implicit method (after 150 iterations), but the explicit
method converges only after 300 iterations (Table 1).

Table 1. Summary of some results for the three methods.

Methods Explicit Form Implicit Form Crank–Nicolson Form

Elapsed time (s) 0.671737 0.501063 0.567344
iteration of convergence 300 150 145
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2.6. Inverse Procedure of θ-Scheme

Inverse problems in general are known problems that have been poorly posed and are
more difficult to solve compared to direct problems. In case one or more of the previous
data required to solve the direct problem mentioned above are totally or partially missing,
and we are looking for the missing data return, then we need to tackle the reverse problem
to solve it according to the method used to find the information (theoretical or analogous)
linked to the responses of this system. The lack of an optimal selection for a bad problem,
either as a lack of uniqueness and/or solutions, or when the instability of the solution to
small problems of change in the presented data (disturbance) lead to major issues with
the solutions.
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• Approach 1.

The unknown boundary conditions are constant, Figure 14;

k
∂2T
∂x2 = ρCp

∂T
∂t

, f or 0 < x< e, t >0 (8)

with 
T(0, t) = T0 =?, x = 0, t > 0, unknown boundary
T(e, t) = Te =?, x = e, t > 0, unknown boundary
T(x, 0) = F(x), 0 < x < e, t = 0, intial condition
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where 𝐷 =
𝑘Δ𝑡

𝜌𝐶Δ𝑥2
. 

We note that: 

• For θ = 0, the θ-scheme (8) gives the explicit scheme. 

• For θ = 1, the θ-scheme (8) leads to the implicit scheme. 

• If θ = 0.5, the θ-scheme (14) gives the Crank-Nicolson scheme. 

The θ-scheme (8) is unconditionally stable for θ ∈ [0.5, 1], and it can be written in 

matrix form as follows: 

𝐴𝜃𝑇
𝑛+1 = 𝐵𝜃𝑇

𝑛 + 𝑌 (10) 

The relation thus gives the solution sought: 

𝑇𝑛+1 = 𝐶𝜃𝑇
𝑛 + 𝐴𝜃

−1𝑌 (11) 

where 𝐶𝜃 = 𝐴𝜃
−1𝐵𝜃. 

The solution of the conduction problem (10) with unknown boundary conditions 
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The use of the θ-scheme leads to the following relations:
(1 + 2Dθ)Tn+1

1 − DθTn+1
2 = −(1− 2D(1− θ))Tn

1 + D(1− θ)Tn
2 + DT0

−DθTn+1
i−1 (1 + 2Dθ)Tn+1

1 − DθTn+1
i+1 = D(1− θ)Tn

i−1−
(1− 2D(1− θ))Tn

1 + D(1− θ)Tn
i+1 f or i = 2, . . . , N − 1

−DθTn+1
N−1 + (1 + 2Dθ)Tn+1

N = D(1− θ)Tn
N−1 − (1− 2D(1− θ))Tn

N + DTe

(9)

where D = k∆t
ρC∆x2 .

We note that:

• For θ = 0, the θ-scheme (8) gives the explicit scheme.
• For θ = 1, the θ-scheme (8) leads to the implicit scheme.
• If θ = 0.5, the θ-scheme (14) gives the Crank–Nicolson scheme.

The θ-scheme (8) is unconditionally stable for θ ∈ [0.5, 1], and it can be written in
matrix form as follows:

AθTn+1 = BθTn + Y (10)

The relation thus gives the solution sought:

Tn+1 = CθTn + A−1
θ Y (11)

where Cθ = A−1
θ Bθ .

The solution of the conduction problem (10) with unknown boundary conditions
T0 and Te is an inverse heat conduction problem. The objective of this method is to find
the boundary conditions T0 and Te which allow the reproduction of the temperature
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evolution Tmes
j =

(
T1,m

j , T2,m
j , . . . , TM,m

j

)T
to be determined experimentally at the location

of coordinates xj.
The solution of this inverse heat conduction problem for estimating the vector

Q = (T0, Te)
T is based on the minimization of the least-squares norm:

J(Q) = ‖Tmes
j − Tj‖2 =

M

∑
i=1

(
Ti,m

j − Ti
j

)2
(12)

where Tj = (∑N
k=1 Cj,kTn−1

k + A−1
j,1 DT0 + A−1

j,N DTe)
T

n = 1, . . . , M;

Tmes
j = (T1,m

j , T2,m
j , . . . , TM,m

j )
T

.
So, to recover the vector Q, we solve the following optimization problem:

min
Q∈R2

J(Q) where J(Q) : R2 → R (13)

Many mathematical methods are adopted to solve minimization problems (12). The
conjugate gradient (CG) method is one of the optimization methods often used in applied
works such as the optimization problem (12). It is noted that J is a smooth nonlinear
function, and its gradient is denoted by g(Q) = ∇J(Q).

To solve (12), the conjugate gradient method uses the following iterative formula:

Qk+1 = Qk + αk × dk k = 1, 2, . . . (14)

where Qk is the current iteration point and αk > 0 is the step size obtained by some line
search method, and dk is the search direction defined by:

dk =

{
−gk k = 1
−gk + βk × dk−1 k ≥ 2

(15)

where βk is a scalar and gk = g(Qk).
One of the most common and popular approaches of the inaccurate online research

technique is the so-called Wolfe line search.
The strong Wolfe line search introduced two conditions as follows:J

(
Qk+1

)
≤ J
(

Qk
)
+ c1αkgT

k dk∣∣∣gT
k+1dk

∣∣∣ ≥ −c2gT
k dk

0 < c1, c2 < 1 (16)

Different formulas for the coefficient βk determine different conjugate gradient (CG)
methods. In [3,4], the coefficient βk = βPRP

k is given by:

βPRP
k =

gT
k (gk − gk−1)

‖gk−1‖2 (17)

Generally, the problem of finding the best approximate solution to the inverse problem
(7) is ill-posed because even minor perturbations of data can change the solution drastically
and therefore the problem of finding the best solution is an unstable solution. The question
is how to find a stable solution? The answer is simple: it depends on its regularization. To
regularize an ill-posed problem, one needs to replace it with another approximate problem
that is well posed so that the error made is offset by the gain in stability.

For the inverse ill-posed problems and to compensate for the information on
the boundary conditions T0 and Te, we assume that the temperatures

Tmes,δ
j = (T1,m

j + δ1, T2,m
j + δ2, . . . , TM,m

j + δm)
T

are given at an interior point xj with the ad-
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dition of measurement noise δ = (δ1, δ2, . . . , δm)
T . In this case, the following optimization

problem is solved as follows:

min
Q∈R2

Ĵ(Q) where Ĵ(Q) : R2 → R (18)

with  Ĵ(Q) = ‖Tmes,δ
j − Tj‖2

2 =
M
∑

i=1

((
Ti,m

j + δi

)
− Ti

j

)2

Tmes,δ
j = Tmes

j + δ× randn
(

size
(

Tmes
j

))
Observation: in our case the matrix is reversible and well placed.
The results grouped in Table 2 present and prove the reliability of this regular in-

verse method for the given problems, especially alongside unknown thermal problems
(undetermined conditions).

Table 2. Summary of some results of regular inverse problems.

Epsilon Initial Temperature Inverse Regulated Inverse Inverse Error Regulated Inverse
Error

E = 0.0000001
T0 input

4 ◦C
40.0000 40.0000 0.0000000638 0.0000000166

Te input 25.0000 25.0000 −0.0000003608 −0.0000001838

E = 0.0001
T0 input

10 ◦C
40.0000 40.0000 −0.0000000216 −0.0000157

Te input 25.0000 25.0002 0.0000001495 0.0002190

E = 0.001
T0 input

5 ◦C
40.0000 39.9999 −0.0000000216 −0.0000924

Te input 25.0000 24.9993 0.0000001495 −0.0007431

Table 3 presents the results of a test for comparison with the reverse method (method
applied to a wall with two sides, one hot and the other cold). These obtained results indicate
the speed of the method used in the resolution; wich parformed with great precision.

Table 3. Comparison between the results of inverse problems on the hot and cold sides at
different iterations.

Number of
Iterations

Temperature Hot
Inverses

Temperature Cold
Inverses Absolute Error

2 39.9999563 24.9998974 1 × 10−5 (0.0423,0.7978)

50 39.9999987 24.9999998 1 × 10−5 (0.0956,−0.6285)

100 40.0000001 25.0000003 1 × 10−5 (−0.0381,0.2515)

150 40.0000000 25.0000000 1 × 10−6 (0.1404,−0.9407)

200 40.0000000 25.0000000 1 × 10−6 (0.1423,−0.9518)

250 40.0000000 25.0000000 1 × 10−5 (0.0533,−0.3558)

300 40.0000000 25.0000000 1 × 10−7 (−0.1730,0.1357)

In Figure 15a–e, it can be observed that the estimated graphs of the θ-scheme method
converge and tend to move to the exact solution quickly, which clearly proves the power
of this new θ-scheme method at different values of θ and different time steps. Note that
the graphs of the exact solutions are identical to the inverse solutions. Therefore, the
usefulness of this method easily converges to precise and stable solutions following the
second or the third iteration in the interval [0.5, 1]. Meanwhile, in Figure 15f, we note that
the scheme is unstable since we enter the interval of the explicit scheme (] 0, 0.5 [); the latter
is conditionally stable.



Buildings 2023, 13, 243 15 of 21

Buildings 2023, 13, 243 13 of 20 
 

Table 2. Summary of some results of regular inverse problems. 

Epsilon 
Initial 

Temperature 
Inverse 

Regulated In-

verse 

Inverse 

Error 

Regulated Inverse 

Error 

Ε = 0.0000001 
T0 input 

4 °C 
40.0000 40.0000 0.0000000638 0.0000000166 

Te input 25.0000 25.0000 −0.0000003608 −0.0000001838 

Ε = 0.0001 
T0 input 

10 °C 
40.0000 40.0000 −0.0000000216 −0.0000157 

Te input 25.0000 25.0002 0.0000001495 0.0002190 

Ε = 0.001 
T0 input 

5 °C 
40.0000 39.9999 −0.0000000216 −0.0000924 

Te input 25.0000 24.9993 0.0000001495 −0.0007431 

Table 3 presents the results of a test for comparison with the reverse method (method 

applied to a wall with two sides, one hot and the other cold). These obtained results indi-

cate the speed of the method used in the resolution; wich parformed with great precision. 

Table 3. Comparison between the results of inverse problems on the hot and cold sides at different 

iterations. 

Number of Itera-

tions. 

Temperature 

Hot Inverses 

Temperature 

Cold Inverses 

Absolute 

Error 

2 39.9999563 24.9998974 1x10-5 (0.0423,0.7978) 

50 39.9999987 24.9999998 1x10-5 (0.0956,−0.6285) 

100 40.0000001 25.0000003 1x10-5 (−0.0381,0.2515) 

150 40.0000000 25.0000000 1x10-6 (0.1404,−0.9407) 

200 40.0000000 25.0000000 1x10-6 (0.1423,−0.9518) 

250 40.0000000 25.0000000 1x10-5 (0.0533,−0.3558) 

300 40.0000000 25.0000000 1x10-7 (−0.1730,0.1357) 

In Figure 15a–e, it can be observed that the estimated graphs of the θ-scheme method 

converge and tend to move to the exact solution quickly, which clearly proves the power 

of this new θ-scheme method at different values of θ and different time steps. Note that 

the graphs of the exact solutions are identical to the inverse solutions. Therefore, the use-

fulness of this method easily converges to precise and stable solutions following the sec-

ond or the third iteration in the interval [0.5, 1]. Meanwhile, in Figure 15f, we note that the 

scheme is unstable since we enter the interval of the explicit scheme (] 0, 0.5 [); the latter 

is conditionally stable. 

  
(a) (b) 

Buildings 2023, 13, 243 14 of 20 
 

  
(c) (d) 

  
(e) (f) 

Figure 15. Temperatures evolution in different cases of θ-scheme; (a) θ=0.50; (b) θ=0.65; (c) θ=0.75; 

(d) θ=0.85; (e) θ=1; (f) θ=0.40. 

• Approach 2. 

Figure 16 shows the unknown boundary conditions are variables: 

𝑘
𝜕2𝑇

𝜕𝑥2
= 𝜌𝐶𝑝

𝜕𝑇

𝜕𝑡
, 𝑓𝑜𝑟 0 < 𝑥 < 𝑒, 𝑡 > 0 (19) 

with 

{

𝑇(0, 𝑡) = 𝑞𝑐(𝑡), 𝑥 = 0, 𝑡 > 0, 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

𝑇(𝑒, 𝑡) = 𝑞𝑓(𝑡), 𝑥 = 𝑒, 𝑡 > 0, 𝑢𝑛𝑘𝑛𝑜𝑤𝑛 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦

𝑇(𝑥, 0) = 𝐹(𝑥), 0 < 𝑥 < 𝑒, 𝑡 = 0, 𝑖𝑛𝑡𝑖𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

 

 

Figure 15. Temperatures evolution in different cases of θ-scheme; (a) θ = 0.50; (b) θ = 0.65; (c) θ = 0.75;
(d) θ = 0.85; (e) θ = 1; (f) θ = 0.40.



Buildings 2023, 13, 243 16 of 21

• Approach 2.

Figure 16 shows the unknown boundary conditions are variables:

k
∂2T
∂x2 = ρCp

∂T
∂t

, f or 0 < x< e, t >0 (19)

with 
T(0, t) = qc(t), x = 0, t > 0, unknown boundary
T(e, t) = q f (t), x = e, t > 0, unknown boundary
T(x, 0) = F(x), 0 < x < e, t = 0, intial condition
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Using the implicit scheme, Equation (18) leads to the following algebraic system:
(1 + 2D)Tn+1

1 − DTn+1
2 = Tn

1 + Dqn+1
c

−DTn+1
i−1 + (1 + 2D)Tn+1

i − DTn+1
i+1 = Tn

i
−DTn+1

N−1 + (1 + 2D)Tn+1
N = Tn

N + Dqn+1
f

f or i = 2, . . . , N − 1 (20)

where D = k∆t
ρCp∆x2 n = 1, . . . , M− 1.

The matrix form of the system (19) is given by the relation:

ATn+1 = Tn + DYn+1 (21)

The matrix form (20) can be written as:

Tn+1 = BTn + DBYn+1

with
B = A−1

The solution of the heat conduction problem (18) with the unknown boundary
conditions qc and q f is an inverse heat conduction problem. To compensate for the
information on the boundary conditions qc and q f , we assume that the temperatures

Tmes
j = (T1,m

j , T2,m
j , . . . , TM,m

j )
T

are given at l interior points xj, j = 1, . . . , l.
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The solution of this inverse heat conduction problem for the estimation of the vectors
Qc = (q1

c , q2
c , . . . , qM

c )
T and Q f = (q1

f , q2
f , . . . , qM

f )
T is based on the minimization of the

least-squares norm:

J
(

Qc, Q f

)
=

l

∑
j=1
‖Tmes

j − Tj‖2 =
l

∑
j=1

M

∑
i=1

(
Ti,m

j − Ti
j

)2
(22)

where
Tn+1

j = ∑N
k=1 Bj,kTn

k + (D× B)j,1qn+1
c + (D× B)j,Nqn+1

c f

Tmes
j = (T1

j , T2
j , . . . , TM

j )
T j = 1, . . . , l.

So, to recover the vector Q =
(

Qc, Q f

)T
= (q1

c , q2
c , . . . , qM

c , q1
f , q2

f , . . . , qM
f )

T , we solve
the following optimization problem:

min
Q∈R2M

J(Q) where J(Q) : R2M → R (23)

To solve the optimization problem (22), we use the conjugate gradient method defined
by (13), (14), (15), and (16) in Approach 1.

To calculate the gradient of J(Q) given in (21), we use k = 1, 2, . . . , 2M to find the
relation:

∂

∂qk
J(Q) =

∂

∂qk

l

∑
j=1

M

∑
i=1

(
Ti,m

j − Ti
j (Q)

)2
=

l

∑
j=1

M

∑
i=1
−2

∂

∂qk
Ti

j (Q)
(

Ti,m
j − Ti

j (Q)
)

(24)

where Q = (q1
c , q2

c , . . . , qM
c , q1

f , q2
f , . . . , qM

f )
T

= (q1, q2, . . . , qM, qM+1, qM+2, . . . q2M)T . By

simple calculation, we have the first derivative ∂
∂qk

Ti
j (Q) of Ti

j (q1, q2, . . . , q2M) for all
k = 1, . . . , 2M,

∂

∂qk
J(Q) =


l

∑
j=1

M
∑

i=1
−2Cj(k, i)(Ti,m

j − Ti
j (Q)) if k = 1, 2, . . . , M

l
∑

j=1

M
∑

i=1
−2Ej(k, i)(Ti,m

j − Ti
j (Q)) if k = M + 1, . . . , 2M

where Cj = D×


Bj1 0 · · · 0

(B2)j1 Bj1 · · · 0
...

. . . . . .
...

(BM)j1 · · · (B2)j1 Bj1

 and Ej = D×


BjN 0 · · · 0

(B2)jN BjN · · · 0
...

. . . . . .
...

(BM)jN · · · (B2)jN BjN


Therefore, the gradient of the function J(Q)is given by

∇J(Q) = (
∂

∂q1
J(Q),

∂

∂q2
J(Q), . . . ,

∂

∂qM
J(Q), . . . ,

∂

∂q2M
J(Q))

T

Numerical Results

All computations were carried out in Matlab with about 16 significant decimal digits.
In these examples, we chose:

ε = 10−2; Q1 = m× (1, 1, . . . , 1)T m = 1, 2, . . . ; c1 = 10−3, c2 = 10−4 and l = 2.

Example:

In this example, let

ρ = 2000; c = 1000; λ = 2.3; L = 0.4 and t f inal = 12, 000
T(x, 0) = F(x) = 20; r1 = 5, r2 = 45, N = 50; M = 40.
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And let

qc(t) =


25/12, 000× t + 35 i f 0 < t ≤ 4800
−12.5/12, 000× t + 50 i f 4800 < t ≤ 9600
40 i f 9600 < t ≤ 12, 000

q f (t) =


15/12, 000× t + 35 i f 0 < t ≤ 2400
25 i f 2400 < t ≤ 9600
−15/12, 000× t + 35 i f 9600 < t ≤ 12, 000

Figures 17 and 18 show that the perturbations exist only in the beginning and at the
end of the graphs. Despite the boundary conditions, they are variable. All this demonstrates
the reliability and the power of convergence of this method. We can also see that the graphs
are similar for exact solutions and estimation.
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The new method is illustrated by the following algorithm, Figure 19:
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3. Conclusions

The use of the new method (θ-scheme combined with CG method under strong
Wolfe line search) in thermal phenomena offers several advantages and a wide scope of
applications. It solves many complex problems that cannot be addressed by conventional
methods. The method offers extraordinary details (up to 16 digits after the decimal point),
and convergence of faster solutions.

In the case of perturbed data, the direct resolution of the θ-scheme will be unstable,
therefore this scheme must be regularized.

The conjugate gradient method is a well-known method to alleviate instability by
replacing the θ-scheme with an approximate well-posed problem. That is to say, the
approximate solution of the θ-scheme is defined as the unique minimizer of the least-
squares problem.

The method adopted in this study is therefore a combination of two methods, one for
approximation and the other for regularizing the solution.

This procedure can be used to solve direct or inverse problems with total stability of
the solutions, especially in the interval θ∈]0.5, 1[. The combination of the scheme and the
gradient combined with the strong Wolfe conditions give better solutions within a short
time period.

The results of the solution of inverse thermal conduction problems by the scheme
technique combined with the conjugate gradient and strong Wolfe conditions compared to
the solution of the direct problem of the same stick provide good accuracy and convergence
with fast stability and consistent graphics.
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The results show that this procedure gives good solutions, namely the constant and/or
variable boundary conditions.

The previous results clearly demonstrate the efficacy and reliability of this technique
in solving these types of problems. Using this technique, time and space are independent of
each other. And above all, this method makes it possible to identify and estimate parameters
with high precision in very difficult places, such as the initial properties of materials in the
middle of high-temperature ovens or in the middle of freezers. It can also be helpful for
surfaces that are difficult to measure, such as in health problems (diseases), free surfaces,
parameters in movable surfaces and volumes, and two- and three-phase phenomena (such
as smart materials and phase change materials). It also allows for tracking fine trajectories,
such as viruses, celestial galaxies, satellite accidents, and climate changes, in addition to
predictions and micron distance parameters such as nano, etc.
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R.D.; Writing—original draft, D.L. All authors have read and agreed to the published version of
the manuscript.
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Nomenclature

θ: real number
T: temperature (◦C)
t: temps (s)
x: distance (m)
∆t: time step
∆x: location step
e or L: wall thickness (m)
n: time index
k: thermal conductivity (w/(m*k))
ρ: volumic mass (kg/m3)
Cp: specific heat (J/(kg*K))
α: thermal diffusivity (m2/s)
Tc, qc: hot side temperature (◦C)
Tf , q f : cold side temperature (◦C)
CG: gradient conjugate
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