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Abstract: For the surface defects inspection task, operators need to check the defect in local detail
images by specifying the location, which only the global 3D model reconstruction can’t satisfy.
We explore how to address multi-type (original image, semantic image, and depth image) local detail
image synthesis and environment data storage by introducing the advanced neural radiance field
(Nerf) method. We use a wall-climbing robot to collect surface RGB-D images, generate the 3D global
model and its bounding box, and make the bounding box correspond to the Nerf implicit bound.
After this, we proposed the Inspection-Nerf model to make Nerf more suitable for our near view
and big surface scene. Our model use hash to encode 3D position and two separate branches to
render semantic and color images. And combine the two branches’ sigma values as density to render
depth images. Experiments show that our model can render high-quality multi-type images at testing
viewpoints. The average peak signal-to-noise ratio (PSNR) equals 33.99, and the average depth error
in a limited range (2.5 m) equals 0.027 m. Only labeled 2% images of 2568 collected images, our
model can generate semantic masks for all images with 0.957 average recall. It can also compensate
for the difficulty of manual labeling through multi-frame fusion. Our model size is 388 MB and can
synthesize original and depth images of trajectory viewpoints within about 200 m2 dam surface range
and extra defect semantic masks.

Keywords: surface inspection; view synthesis; neural radiance field; scene labeling

1. Introduction

Dams are the most critical water conservation project and will result in significant
loss of life and property if it fails. China had 98,002 reservoirs in December 2011, with a
combined storage capacity of around 930 billion m3. Dam quality and overtopping caused
the failure of 3498 dams between 1954 and 2006 [1].

Due to long-term scouring, the spillway surface of the Three Gorges Dam has many
defects shown in Figure 1. The traditional manual observations approach can identify and
estimate the type and size of defects and record location information. During the manual
inspection, operators will take some defect images in specific locations for subsequent
confirmation and analysis. However, due to the spillway’s low accessibility, it is difficult
to achieve sufficient detection and recording of all sidewall surface information manually.
Some researchers use more automatic solutions like drones to collect 2D images and multi-
view geometry methods to convert 2D images to 3D models. Khaloo’s [2] study used the
structure from motion (SFM) method to make a general 3D dam model. By resolving better,
surface flaws can be found that are as small as a millimeter [3]. Khaloo uses Hue space
color to determine how gravity dams structure changes [4]. Angeli gives operators an easy
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way to mark defects by building a dense point cloud on the dam’s surface [5]. And some
researchers only used images and the set calibration facilities to build the overall point
cloud model of the dam [6,7]. Image stitching can also be used for the part of the dam
that is downstream, for re-creating images of the dam’s sidewalls, and for the part of the
dam that is underwater [8,9]. In our past work, we used the SLAM method to reconstruct
cracks in the sidewalls of drift spillways [10]. In addition to monitoring through the global
model, technicians must repeatedly verify the designated area’s precise local images, not
only confirming the position and type of defects.

Corresponding global models to detailed local images is a mapping from 3D to 2D,
which is the reverse of 3D model reconstruction. To address this reverse procedure, we
apply the Nerf method, a state-of-the-art 2D image synthesis method, and propose our
Inspection-Nerf approach to adapt to the inspection task. After specifying the local view-
point position, the corresponding local multi-type images can be rendered, including depth
images, semantic label images, and original images. The specific contents of the chapters
are as follows. Section 2 introduces works related to concrete surface inspection and Nerf.
Section 3 introduces collecting image data and building a global point cloud model using a
wall-climbing robot. Section 4 introduces the Inspection-Nerf method. Section 5 presents
the experimental tests on the surface of the Three Gorges Dam’s spillways. Section 6
provides a summary and outlook for future research. The contribution of our work can be
summarized as follows:

• We propose a double-branches multilayer perceptron (MLP) Nerf structure, which
can render multi-type images of all local viewpoints of inspection trajectory. And as
we know, we are the first research to introduce radiance fields to big concrete surface
scene inspection areas;

• When there are enough training images in a single scene, our model can also be used
as a scene storage container, and the main information of 200 m2 of surface data can
be retained using only 388 MB of storage space;

• We propose a ranged semantic depth error to measure the depth accuracy of semantic
information within a defined distance during multitask rendering.

(a) (b) (c) (d)

Figure 1. Dam spillway environment and surface image collection. (a) shows the top view of
draft spillway in Three Gorges Dam. (b) shows the image collection status using climbing robot.
(c,d) shows typical surface defect collection pictures by climbing robot.

2. Related Works
2.1. Global Concrete Surface Inspection Related Approaches

The large concrete surface inspection research mainly focuses on the semantic segmen-
tation of defects and environment reconstruction. For semantic segmentation studies of
defects, AlexNet is used by Yeum et al. to detect post-disaster collapse, spalling, building
column, and facade damage [11]. Gao diagnoses spalling, column, and shear damage with
VGG and Transfer learning [12]. Li et al. detect cracks and rebar exposure using Faster
R-CNN [13]. Gao section tunnel fractures and leaks utilizing Faster R-CNN and FCN [14].
Tunnel spalls and cracks are segmented using Inspection-Net [15]. Hong looks for a better
Inspection-Net loss function [10]. Zhang employs YOLO and FCN for quick crack, spalling,
and rebar segmentation [16]. Several studies have established datasets related to concrete
defects. Azimi and Eslamlou et al. outline defect detection and segmentation datasets [17],
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and Yang creates a semantic segmentation datasets of concrete surface spalling and cracks
(CSSC) [15]. Environment reconstruction methods are divided into 2D image stitching and
3D reconstruction methods. Image stitching is an option for re-creating images of the dam’s
sidewalls and for the part of the dam that is underwater [8,9]. But most researchers use 3D
approaches. Jahanshahi reconstructs the 3D point cloud of flaws on walls using the method
of keyframes paired with SFM to create a surface semantic model of concrete buildings [18].
Yang performs a 3D semantic reconstruction of the tunnel surface by connecting the CRF
fusion method to the semantic segmentation model using the TSDF between keyframes [19].
This mesh model is helpful for the subsequent defect measuring and assessment. In our
earlier work, we built a 3D model of the dam surface using ORB-SLAM2 [20] for localiza-
tion and mapping and neural networks for crack segmentation. Insa-Iglesias develops a
remote real-world monitoring system for tunnel inspection using SFM in conjunction with
virtual reality [21]. Hoskere et al. propose a framework using a non-linear finite element
model to create a virtual visual inspection testbed using 3D synthetic environments that
can enable end-to-end testing of autonomous inspection strategies [22].

However, global model-based methods do not achieve a reverse generation from global
to local detail images. On the other hand, the inference time of segmentation will increase
with the addition of the image sequence length. For multi-class defects, the segmentation
accuracy cannot reach the level of manual labeling. And most of the research for defect
segmentation needs to construct its own environment dataset. To this end, we propose the
Inspection-Nerf method, which only needs to manually label 2% (59/2568) of the typical
images in the long sequence. After that, the depth, semantics, and original images of all
sequence images can be rendered through training, providing convenience for technicians
in the post-inspection, such as defect recheck out and measurement.

2.2. Neural Radiance Field

The Nerf method [23] synthesizes 2D images from different viewpoints of a given
object by inputting multiple images. Nerf effectively makes 3D viewpoints correspond to
2D images, and many outstanding improvement methods and practical applications have
been produced by modifying the encoding method, sampling method, and output type.
Yu proposes Plenoctrees [24] to improve image rendering speed by converting the implicit
radius field to an explicit representation and uses spherical harmonics(SH) to present the
RGB values at a location. NeuS [25] describes a better 3D geometric representation of the
scene by replacing the original density value with the signed distance field (SDF) value and
deriving the corresponding sampling equation. Nerf-wild [26] constructs multiple MLP
networks and variance loss functions to cull transient objects in the scene. NGP [27] by
hashing the multi-resolution grid in 3D space, the training speed of the scene is greatly
improved. Semantic-Nerf [28] renders a scene with labels by adding semantic output
parallel to density values. Mip-Nerf [29] improves the fineness of the rendered image by
re-encoding and sampling the frustum, not rays. Mega-nerf [30] divides the 2D image
collection of a large scene into different regions and then uses multiple small Nerf networks
to train each part separately.

To efficiently synthesize multi-type images (original, semantic, and depth images)
of the dam surface from different viewpoints, we proposed Inspection-Nerf methods
based on the NGP and semantic Nerf. We present a multi-branches(semantic and color
heads) structure to render designated viewpoint semantic and color images. After that,
we combine two branch density outputs by a linear layer to synthesize corresponding
consistent depth images.

3. Data Collection and Preparation

Three steps need to be completed to obtain a local image of a specified viewpoint.
First, a stable, precise, close-up image of the spillway sidewall surface is acquired. Then,
build a global 3D model of the environment. Finally, ensure the global coordinates can map
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to the input position-encoded coordinates of the neural radiation field model, as shown
in Figure 2.

Dam surface 

image data collection

Global  Explicit Model

Reconstruction

Local Image Rendering 

Using Implicit Field

Coordinate Mapping

ORB-SLAM

Inspection-Nerf

Figure 2. Flowchart of the proposed global-to-local view synthesis.

3.1. Data Collection by Climbing Robot

There are many ways to obtain information on 3D surfaces, including RGB-D cameras,
stereo, time-of-flight, structured light cameras, and LiDAR-based method. We use wall-
climbing robots to obtain stable close-up surface information. For outdoor light and
moving robot conditions, the use of structured light cameras and time-of-flight cameras
is not considered. Stereo requires subsequent point cloud registration, and the algorithm
cost required to generate a dense 3D point cloud is greater than that of an RGB-D camera.
LiDAR is the first choice for obtaining accurate three-dimensional information in most
outdoor conditions. But image information is also needed for Nerf rendering, and it is
necessary to equip a monocular, which puts more pressure on the load capacity of the
wall-climbing robot. For this reason, using lightweight RGB-D cameras is a better choice
for wall-climbing robots to obtain three-dimensional and color information on the wall.

We use a negative-pressure adsorption wall-climbing robot as shown in Figure 1b,
carrying an Realsense D435i RGB-D camera, Intel, Santa Clara, CA, USA (the color and
depth images’ resolution is 480 × 848 and the frame rate is 30 frames per second), to stably
crawl on the surface of the sidewall of the Three Gorges Dam’s drift spillways. The robot
is secured by a safety rope and powered by a power cord. We operate the robot move on
the dam’s vertical surface and collect sequence images through the robot operation system
(ROS). We choose some typical images with multi-class defects and label them as shown
in Figure 3.

3.2. Global Model Generation

Following our previous research [10], we use the ORB-SLAM method to extract
keyframes from the acquired color and depth images and obtain the pose transform
matrices of all images. Then, a dense environment point cloud model is generated by
bundle adjustment. If the input color image has a class label, the corresponding color of the
label can be registered in the point cloud model.
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(a)

(b)

Figure 3. Image collection and labeling. The collection’s original images are shown in the first and
third columns. Labeled images are shown in the second and fourth columns. (a) shows the original
images themselves, (b) the second row shows zoom-in visualization of the first row in the blue
box. Labeled defects include cracks in red, patched areas in ochre, erosion in purple, and spots in
nattier blue.

3.3. Global-to-Local Coordinate Mapping

The spatial encoding of Nerf input is continuous, and the boundary can be set manually.
Usually, the 3D’s range of the position encoding of the neural radiation field is set to
[−lbound, lbound]. For the neural network using the normalized device coordinates (NDC),
lbound equals 1.0. The global point cloud model is discrete, corresponding to the world
coordinate system, and has no boundary restrictions. We need to set the boundary for the
global point cloud model and then perform the corresponding transform to convert the
points’ coordinates from the global to the implicit local model.

Therefore, after obtaining the global 3D point cloud, the minimum bounding box Bobb
is obtained by the oriented bounding box (OBB) method [31]. Then, Bobb is transformed
into axis-aligned bounding box Baabb. Next, obtain the center coordinate taabb

c of Baabb and
direction lengths lx, ly, lz along each axises, move the origin to taabb

c . Finally, calculate
the ratio sd between the longest axis and the set implicit neural field bound value lbound,
and scale the bounding box of the 3D point cloud to the implicit model within limits.
As shown in Figure 4, the final coordinate transform from the 3D point cloud to the
boundary range of the neural radiation field is expressed as the Equation (1). Robb

global present

the rotation transform from global point cloud to OBB coordinate, Raabb
obb present the rotation
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transform from OBB coordinate to AABB coordinate. pglobal represents the point coodinate
in the real world from the beginning.

plocal = sd · (Raabb
obb · R

obb
global · p

global − taabb
c ), (1)

World

 Coordinate

Neural Radiance 

Field Bound

obb
globalR

aabb
obbR

aabb
ct

Manual Labeling

Camera

ORB-SLAM 

Generate 

Pointcloud

Pose Generation 

by SLAM

Global-to-local

Coordinate Mapping

Points on pixel ray

RGB Supervised

Figure 4. Global-to-local coordinate mapping. Establish our global-to-local inspection methods.
After collecting surface RGB-D images, we label surface defects as shown in the right column using
the same color as Figure 3. Using ORB-SLAM to generate images pose and global point cloud and
register labeled images to point cloud. After that, use Equation (1) to transform points from the global
coordinate to AABB coordinate. Finally, scale the AABB box to the neural radiance field bounding
box. (The coordinate origins of OBB box and AABB box are coincident. For the convenience of
observation, they are drawn separately in the figure).

4. Methods
4.1. Nerf Principle

The input of Nerf are points position on image pixel rays and corresponding ray
direction vector (x, θ), x denotes the 3D sample point’s position, and θ is a unit vector
representing the sample ray’s direction. The outputs render RGB images from different
viewpoints. Then, the Nerf can present a 5D scene as a MLP network FΘ : (x, θ)→ (c, σ)
as shown in Figure 5. σ present the volume density and c present the volume RGB color.
After supervised training to optimize its weight Θ, Nerf can map each input 5D coordinate
to its corresponding density and directional color. The implementation of Nerf comprises
three parts: position encoding, sampling strategy, and color rendering equation. The color
rendering equation is the core, as shown in Equation (2). The predicted color is obtained by
weighting the color of the sampling points along the ray direction. The weight value of
the sampling point ωi = Ti(1− exp(−σiδi)) is represented by the density difference in the
sampling interval δ.

Ĉ(r) =
N

∑
i=1

Ti(1− exp(−σiδi))ci, where Ti = exp

(
−

i−1
∑

j=1
σjδj

)
(2)

The position encoding is divided into two parts. The 3D sample points and ray
directions are asymmetrically encoded in high dimensions. The sample points encoding
dimension is higher than the direction encoding dimension, which can synthesize higher-
quality images [32]. Ti within the preset range of t f ar and tnear. The implicit point sampling
in Equation (2) adopts the coarse-fine method. The coarse operation samples implicit
points in the ray direction uniformly. Then, the density value of coarse sampling points
is used to fit the probability density function(PDF) on the ray direction. Finally, using the
coarse-generated PDF to perform fine sampling to get sampling points more accurately.
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5D Input

Position + Direction

x, y,z, ,

,PE

, ,PE x y z

volume density 
Semantic s

RGB c

Original Nerf

Semantic Nerf

Additional Module

Output

Weight

View 

Encoding 

Position 

Encoding

Semantic 

label

Original

image

Figure 5. Nerf structure and data flow. Nerf uses 5D (position and direction) vector as the input.
Position and direction using different encoding modules. The outputs are density and RGB values.
Semantic Nerf adds a semantic MLP layer after the same feature layers the RGB’s MLP inputs.

4.2. Inspection-Nerf Structure

Conventional Nerf and its improved methods are primarily used for image synthesis
of small scenes. To achieve fast training of large scenes, we use the multi-resolution position
hash encoding method of NGP. Figure 6 shows that different MLP branches are used to
output ρs and ρc, respectively. The spatial distance field value ρout = ω1 · ρs + ω2 · ρc
uses a learnable linear unit to weigh the two branch distance fields, which can improve
the accuracy of depth image rendering. Then, through the NeuS conversion method
in Equation (3), the distance field is converted into the density field representation of Nerf.
Φs(x) = (1 + e−sx)

−1 is the Sigmoid function. The final depth prediction equation is
expressed as Equation (4). ti denotes the sample point i’s distance to the camera center.

σ(t) = max

(
− dΦS

dt (ρout(t))
ΦS(ρout(t))

, 0

)
(3)

x, y,z, ,

out

RGB c

Equation (4) get depth of ray

Output

Weight Hash Encoding

SH Encoding

Semantic MLP distance field

Color MLP distance field

S

C

,SHPE

, ,zHash x yPE

Semantic s

depth D r

S

C

Figure 6. Inspection-Nerf structure.
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D̂(r) =
N

∑
i=1

Ti(1− exp(−σiδi))ti, where Ti = exp

(
−

i−1
∑

j=1
σjδj

)
(4)

The feature output of the semantic MLP branch is used as the input of the classifi-
cation MLP. Finally, the probability of each category is output through the Softmax layer.
After the features of the color MLP branch are concatenated with the features encoded
in the SH direction, the predicted values of RGB are obtained through a color render-
ing MLP layer. The integral equations of semantic labels and color values are shown
in Equations (5) and (6). Color and semantic rendering using different MLP networks
(FS

Θ, FC
Θ in Equation (5)). si denotes the semantic logits of a given volume in Equation (6).

The color rendering equation is same as Equation (2).

c = FC
Θ(x, d), s =FS

Θ(x) (5)

Ŝ(r) =
N

∑
i=1

Ti(1− exp(−σiδi))si, where Ti = exp

(
−

i−1
∑

j=1
σjδj

)
(6)

4.3. Bounding Box Sampling

According to the AABB range and its corresponding transform with the implicit Nerf
model, we can directly calculate the sampling ranges tnear and t f ar of each pixel ray using the
AABB collision detection method [33]. This approach doesn’t need to input each image’s
sampling distance range in advance. The pixel i’s ray can present as ri(t) = oi + t · di.
Due to AABB box is axis-aligned, the two points{p1, p2} on the diagonal of the cube can
represent the six plane coordinates of the cube. Then we calculate the candidate sample
distance tj =

(
pj − oj

)
/dj, j belongs to {1, 2} denote the two diagonal point of AABB

cube. tj is a vector including tx
j , ty

j , tz
j coordinates. Then, the sample range can be presented

as Equation (7). tnear = max
(

min
(

tx
j

)
, min

(
ty

j

)
, min

(
tz

j

))
t f ar = min

(
max

(
tx

j

)
, max

(
ty

j

)
, max

(
tz

j

)) j ∈ {1, 2} (7)

4.4. Loss Function

In addition to Nerf’s original RGB color loss, we add a depth loss function using the
same L1 loss pattern in Equation (8) as color loss does. X in LX denotes color rendering
function or depth rendering function. And semantic loss function in Equation (9) is the
conventional cross-entropy loss. Finally, the loss function Lall = α · Lcolor + β · Lsemantic +
γ · Ldepth is formed. α, β, and γ are the weight values of the corresponding loss function.
R presents the image rays set, and r presents the specific ray belonging to R.

LX = ∑
r∈R

∥∥X̂(r)− X(r)
∥∥2

2

, X(·) ∈
{

C(·), D(·)
}

(8)

LS = −∑
r∈R

[
L

∑
l=1

rl(t) log r̂l(t)

]
(9)

5. Experiments
5.1. Data Preparation

We used a wall-climbing robot equipped with an Intel Realsense D435i RGB-D camera
collecting 2568 pairs of images on the side walls of the spillway, including color images
and depth images. Then, we select 65 color images with typical defects for defect labeling.
Defect types include cracks, erosion, patched area, and spots.
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During the global model-building process, the SLAM method generates the pose ma-
trix of each image. We chose 2441 color images as the training set containing 59 semantically
labeled images. Other 127 images are used as test images, with 6 semantic labeling images.
Part of the defect labeling images and original images are shown in Figure 3. The actual
coverage of the dam sidewall by the image collection is 17 × 13 m. Figure 7 shows the
camera trajectory positions of training, validation, and labeling images. To see the points of
the training image pose clearly, only in (a) do we show one-fifth of the trajectory points.

(a) (b) (c)

Figure 7. Camera trajectory during the climbing robot collection process. (a–c) use red, green and blue
dots to represent the viewpoint position information of the training, validation, and human-labeled
pictures after the robot captures the images.

5.2. Model Implement

Our Inspection-Nerf model has three parts. First, for embedding points and directions,
we use the setup of the NGP model. The resolution level is 16, the upper limit of the
maximum hash parameter of each level is set to 222, number of features is 2. And direction
embedding, we follow PlenOctree setting and use SH to encode direction color. Second,
the semantic and color MLP branches use two layer MLPs with 64 dimensions. Third,
rendering part, we use the NeuS sample method, using the N − 1 mid-points of the N
sample points to convert the distance field to neural radiance field. The sampled points use
rendering function to calculate each result at last. Using the Adam This is just an optimized
general algorithm name. Most papers use their titles directly, and we suggest that no
additional information be added. (Adaptive Moment Estimation) optimizer, the learning
rate is set to 0.001, the weight decay is set to 10−6, the learning rate gradually decreases
with the number of training iterations, and the Nvidia RTX A6000 GPU (Santa Clara, CA,
USA) is used for training 100 epoch. We also set a termination condition during the training
process. In addition to the upper limit of 100 epochs, there is also a depth loss that needs to
be reduced within less than five epochs, which indicates that the model continues to learn
the correct scene depth information. The final model always learns better depth information
until 100 epochs are over. Each image selects 8192 pixels per epoch for training. For images
with semantic information, the ratios of 0.9, 0.7, 0.5, and 0.9 are used to randomly select
cracks, erosion, patched area, and spots. The proportion of semantic pixels does not exceed
70% of the total number of pixels per epoch, and the background pixel ratio is 30%. When
the total number of semantic pixels is insufficient, it is supplemented with background
pixels. The weight parameters of the color, semantic, and depth loss functions are set to 1.0,
0.5, and 0.001, requiring 12 minutes per epoch to train. Our model size is 388 MB.

5.3. Metrics and Result

We choose the NGP method combined with semantic Nerf as the baseline with depth
loss equals 0.001 (Baseline_0.001). Original image, semantic image, and depth image
rendering results are compared for the dam scene. Figure 8 shows training and validation
typical results. In addition to the baseline model, we also compare the Inspection-Nerf
training results under three different loss function ratios, including depth loss equals 0.001
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(Inspection_0.001), 0.01(Inspection_0.01), and 0.01 depth loss adding sparsity loss [24]
as regularization(Inspection_0.01_sparsity). Figure 8a presents the depth loss changing
during the training process, all depth losses are normalized finally. Figure 8b presents the
training PSNR. Inspection-Nerf with 0.001 depth loss weight has a higher PSNR value than
the baseline, and they have similar depth loss around 0.008. Furthermore, all Inspection-
Nerf-based models have faster convergence rates than the baseline models, reaching higher
PSNR values about 40 epochs earlier. Nerf-related methods are only trained to render
a single scene, so we use the model parameters of the last epoch as the best model to
validate later.

(a) (b)

(c) (d)

Figure 8. Training and validation results. (a,b) depict changes in depth loss and average PSNR during
training, respectively. (c,d) depict the averaged PSNR and LPIPS metrics during validation testing.

We use the PSNR and LPIPS parameters as the original image rendering evalua-
tion indicators. Figure 8c,d shows the validation PSNR and LPIPS values. Baseline and
Inspection-Nerf-based models with the same depth loss weight 0.001 have the best and
second best validation PSNR, and Inspection-Nerf models have better LPIPS validation
values. Similar to the training process, Inspection-Nerf models also have faster convergence
rates than baseline models in the validation process. We test the number of level equals to
11 versus the original 16. According to the NGP method, the number level equals 11 means
the resolution is 210, which is enough to meet the implicit representation of the actual
length of 17 m (real resolution around 0.0167 m) on the longest side of the experimental
environment. And we also test the original Nerf model, which uses traditional position
embedding (cosine and sine embedding in 10 digits). The results are shown in the last
two rows in Table 1. The original Nerf uses trigonometric functions to encode large scenes,
and the sparsity of spatial encoding makes the model unable to represent the details of large
scenes well. Under hash coding, when the number level is equal to 11, it can also achieve
high-precision RSDE indicators while ensuring a certain color rendering quality. For a
complete visualization, we compare the rendering results of all models in Appendix A.
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Table 1. Color and depth rendering metrics comparison of different models and loss settings. second
best ↑ or ↓ best ↑↑ or ↓↓.

PSNR↑ LPIPS↓ RSDE↓
Baseline_0.001 33.419 ↑↑ 0.2042 0.086

Inspection_0.001 33.372 ↑ 0.1967 ↓ 0.059
Inspection_0.01 33.116 0.1965 ↓↓ 0.027 ↓↓

Inspection_0.01_sparsity 33.196 0.1983 0.031 ↓
Original_Nerf 27.3025 0.5188 0.0924

Inspection_num_level = 11 32.9191 0.2245 0.0287

For the depth image, we examine the depth error of the defect category area within a
specific distance range, which we call ranged semantic depth error (RSDE) in Equation (10).
Ω is the intersection of pixels within distance threshold thr and defect pixels. I denotes the
pixel in images. The smaller the error, the more accurately technicians can measure the
defect within the threshold at post-procedure. The RSDE of different methods are shown
in the third column of Table 1, we set the thr equals to 2.5 m. The green cell means the
second-best metric, and the yellow cell means the best metric. Inspection-Nerf using 0.01
as a weight for depth loss has the best LPIPS and RSDE metrics.

RSDE =
1
|Ω| ∑I∈Ω

∣∣D̂(I)− D(I)
∣∣, Ω =D(I) < thr ∩ S(I) 6= 0 (10)

For the evaluation of semantic image results, the artificial labeling as ground truth
sometimes cannot identify the semantic information of distant locations while rendered
images can. So we intuitively compare rendered images of different methods with artificial
labeling images, as shown in Figure 9. Each group of pictures is arranged in rows in the
order of manual labeling, baseline, and inspection_0.01. The first column presents original
images, the second column presents depth images, and the last column shows semantic
images. The column side of the original column is the zoom-in detail of original images.

The green boxes in the original columns show that the Inspection-Nerf model can
render spots and crack on the surface in more detail than baseline models. The red ellipses in
the depth column indicate that the baseline model usually renders depth values inaccurately
within the semantic area, especially crack areas. Our model’s depth results within semantic
areas are as accurate as the ground truth. On the semantic column of Figure 9, white ellipses
indicate semantic information that is missing or ignored when manually labeling. Due
to viewing angle limitations, manual labeling often overlooks defects at long distances.
Cracks are ignored in (a)–(b), and erosion labels are ignored in (c). After training on
images collected in sequence, Nerf-based methods can recover the long-distance neglected
semantic information in a single image through multi-view input. The orange triangles
in (a) and (c) show that Inspection-Nerf can retrieve more semantic information than
the baseline. It indicates that Inspection-Nerf has learned more scene semantic structure
information, which is more conducive to grasping complete surrounding environment
semantic information when viewing local details. In order not to lose generality, we also
count the average recall and f1-score of Inspection-Nerf for manual labeling defects, which
are 0.958 and 0.778, respectively. This shows that our model can not only retain most of
the semantic information of human labels but also make up for the information ignored by
human labels.
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Original Depth Semantic

(b)

(a)

(c)

Baseline

Inspection

_0.01

Manual 

labeling

Baseline

Inspection

_0.01

Manual 

labeling

Baseline

Inspection

_0.01

Manual 

labeling

Figure 9. Multi-type rendering results comparison with manual labeling of validation data. (a–c)
depict the rendered image results from different viewpoints. The green box marks the comparison of
the original image rendering. The red ellipse marks the comparison of the depth rendering. The white
circle marks that the Nerf models can recover further semantic information than manual labeling.
The orange triangle marks the comparison of the semantic rendering results of different models.
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For unlabeled images, Nerf-based methods can also recover semantic information.
As shown in Figure 10, these images have no manual labeling for training. We can com-
pare it with Figure 9a,b and 10a,b. Since it is sparsely labeled, Figure 10a,b around the
manual labeled Figure 9a,b has no semantic information. Through training, our model
can restore the semantics of the images in the surrounding unlabeled viewpoint area,
and the semantic recovery information is better than the baseline model. The upper orange
ellipse in Figure 10a is intended to represent the recovery of distant semantic information,
and our method is also better than the baseline. The reason for this phenomenon is that,
as seen from the predicted depth map, the proposed method versus baseline provides
more smoothes the depth prediction of distant information, which may make it easier for
the model to map semantic information to specific locations, making semantic prediction
more complete. The orange circles show that Inspection-Nerf can retrieve more semantic
information than the baseline model. Finally, Inspection-Nerf can generate all 2568 col-
lection images’ semantic masks only using 59 labeled images as semantic ground truth to
train. Our model can synthesize 1.6 GB original and depth images from different trajectory
viewpoints only using 388 MB parameters. And semantic mask images for all images can
be generated additionally.

Original Depth Semantic

(a)

(b)

Baseline

Inspection

_0.01

without

Manual 

labeling

Baseline

Inspection

_0.01

without

Manual 

labeling

Figure 10. Multi-type rendering results comparison without manual labeling of validation data.
The orange ellipse in (a) marks the restoration comparison of the long-distance patched area and
short-distance spot semantics, and the semantic restoration comparison of crack defects is marked
in (b).

5.4. Sparse Images Sequence Training Experiment

In theory, the 388 MB parameter of the Inspection-Nerf model is to encode the 3D
space in the AABB. Therefore, within the scope of AABB, the more trajectory images are
input, the more accurate the rendering result will be. At the same time, it is also stated
that the 388 MB model can be used to generate more rendered images within the same
AABB range. We validate by sparse the number of training trajectory images. The training
sequence images are set to 2311 (90%), 2054 (80%), and 1284 (50%) images, respectively,
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and the results are shown in Table 2. To increase the credibility of semantic segmentation,
we added 50 new human-labeled semantic images to the original 6 semantic test images.

Table 2. Sparse sequence input training results.

PSNR
RSDE LPIPS

Recall F1 Score

All Val All Val All Val

Original 33.993 33.12 0.0270 0.1965 0.8827 0.8818 0.7857 0.7850

90% 33.700 33.02 0.0279 0.2061 0.8583 0.8560 0.7952 0.7937

80% 33.074 32.91 0.0301 0.2353 0.8331 0.8330 0.7573 0.7529

50% 32.9024 27.88 0.0521 0.3378 0.6292 0.6353 0.6560 0.6590

The original training procedure uses 2441 images (95%) to train. The All column
represents all sequence images, including training and validation. Val represents the
validation image sequence, 50%, 80% and 90% mode use the same validation sets as the
original mode does. 50% of the data in the training mode produce noticeable quality
degradation. For semantic part, we compare Recall and F1 score results to check the recall
and accuracy of the model against human labels. The All column represents all human
labeling images, which is total 115, and Val denotes the validation image set, which is
total 56. We can see that the more semantic labeling images contained in the training
set, the more accurately model can recall and predict the defect label in the validation
set.As seen in Table 2 the bold first line shows the original setting has the best results in all
indicators. So, if we have more image data within the fixed AABB 3D range, we can render
multi-type images with the same level of accuracy using the 388 MB model.

6. Conclusions and Future Work

We introduce the state-of-the-art image synthesis method Nerf to address the problem
of scene storage and image rechecking from global to local in the dam surface inspection
task. Our model’s hash position encoding and double-branches structure can render more
detailed and accurate color, depth, and semantic images. And only needing 2% labeled
images, the model can synthesize semantic masks with high defect recall for all input scene
images. All these contributions only take 388 MB of storage. Mainly, using the same size
model, the more input images used to train, the more realistic result can be synthesized.
It effectively assists the data store and technicians in surface inspection task process and
improves the human-computer interaction performance of the inspection process. Our
future work will focus on unifying the explicit global and implicit local models to improve
inspection automation ability.
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MDPI Multidisciplinary Digital Publishing Institute
DOAJ Directory of open access journals
TLA Three letter acronym
LD Linear dichroism
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CSSC Concrete surface spalling and cracks
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Appendix A. Supplementary Comparison of Multi-Model Rendering Results

To better demonstrate the comparison of the rendering results between the various
models, here we show a multi-model image rendering result.

Ground Truth

Original Nerf

Inspection_num

ber_level=11

Baseline

Inspection_0.001

Inspection_0.01_

sparsity

Inspection_0.01

Figure A1. All model rendering result comparison of a validation image.
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