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Abstract: Residential districts account for the most common type of urban land coverage. Massive
developments with high density have a huge impact on the urban climate. In this study, we explored
the thermal environment optimization strategies of residential districts with different development
intensities (plot ratios) from the perspective of urban renewal and residential district design in Xi’an,
China. We selected residential districts with low, medium, and high plot ratios in Xi’an City for field
measurements and environmental simulation according to five proposed optimization strategies. By
comparing the air temperature, mean radiant temperature, and physiological equivalent temperature
at the pedestrian height, 1.5 m from the ground, we explored the thermal environment optimization
texture of each strategy. The results showed that the same strategy introduced different effects in
different residential districts. Increasing the road reflectivity had the best effect on residential districts
that had a low plot ratio, whereas planting trees was the best effect in districts with medium and
high plot ratios. Planting lawns had a better effect in districts with high plot ratios. The findings of
this study provide suggestions for the optimization and reconstruction of residential districts and
contribute to future residential district development and design.

Keywords: urban microclimate; residential district; plot ratios; urban optimization strategies

1. Introduction

Urbanization is accelerating worldwide, and rapid urbanization has led to urban
environmental problems, such as the urban heat island (UHI) phenomenon, which has
become a hot topic of research in recent years.

1.1. Effects from UHI

The increase of UHI intensity can negatively affect citizens’ well-being in a variety of
ways [1,2]. Dhalluin and Bozonnet found that UHI leads to increased mortality, in particular
for the elderly and children who tend to be more sensitive to heat [3]. Mortality increased
significantly during heat waves [4]. The UHI phenomenon has increased demand for air
conditioning in buildings and therefore increases energy consumption. This increased
consumption to meet the accelerated growth of UHI is a major issue [5]. Li et al. found that
the UHI phenomenon could result in a median increase of 19.0% in cooling energy con-
sumption and a median decrease of 18.7% in heating energy consumption [6]. The increase
in temperature could have a negative impact on the microclimate within cities compared
to the rural areas [7]. Higher air temperatures (AT) have contributed to the formation of
urban smog, which is another key factor in the worsening of global warming [8].
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1.2. Causes of UHI

The most critical cause of the UHI is urbanization [9]. UHI is influenced by the
characteristics of the urban subsurface. Cities contain a large number of artificial structures,
such as concrete and tarmac surfaces [10], which absorb heat quickly and have a high heat
capacity, absorbing solar radiation during the day and releasing heat at night. In addition,
vegetation shades the sun and reflects more solar radiation, thus reducing the temperature.
Evaporation and transpiration also effectively reduce urban temperature. These processes,
however, are decreasing in cities [11]. The urban spatial form also contributes to UHI, as
it determines the extent to which urban spaces are exposed to sunlight. As early as the
1980s, experts such as Oke proposed the concept of “street canyons” to study the urban
thermal environment [12]. Building aspect ratio is another relevant parameter that has
been identified [13]. Sky view factor (SVF), another highly correlated parameter, has been
defined recently and also is used in the research about urban geometry [14,15].

1.3. Strategies to Mitigate UHI

In recent years, more urban-level strategies to mitigate the UHI phenomenon have
been proposed. These strategies can be categorized into two main categories: increasing
greening and improving material reflectivity [16].

1.3.1. Use of Green Spaces and Trees to Mitigate the UHI Effect

A higher percentage of green space means fewer impervious surfaces. This greening
not only provides shade for people but also reduces wind speed (WS) under the tree canopy
and cools the air through transpiration. Urban forests (parks), street trees, private green
spaces in gardens, and green roofs or facades represent four types of vegetation cover
and have been proposed as effective strategies to combat UHI effects [2]. Rafiee et al.
found that UHI impacts are minimized within a 40 m radius around green spaces [17].
Various other studies have found that parks and green areas could mitigate UHI effects as
cool islands [18]. Wong et al. found that 100% greenery coverage from vertical greenery
systems was effective in lowering the mean radiant temperature (MRT) of a glass façade
building [19]. Additionally, green roofs could mitigate these UHI effects by diminishing
carbon dioxide (CO2) emissions and excess heat [20].

1.3.2. Modification of Thermal Performance of Building and Road Materials

The use of high-albedo materials can decrease the solar radiation absorbed by building
envelopes and urban structures [21]. Therefore, cool pavements [22] and pavements with
high albedo have been proposed, as well as cool roofs [23] and cool facades [24]. Laboratory
tests have found that a high albedo can reduce the peak surface temperature up to 20 ◦C.
Experiments have found that increasing the albedo linearly decreases the maximum daily
surface temperature. The rate of decrease is approximately −40 ◦C to −30 ◦C/albedo [25].

1.4. Research on Residential Districts in China

In China, residential districts are the most frequently used type of land, which account
for the largest proportion of urban land use, around 25–40% [26]. As an important unit
that constitutes a city, the quality of the environment directly affects people’s working
lives and the thermal environment of the whole city [27,28]. Currently, the problems in
residential districts, such as hard paving of concrete and roofing which leads to hardening
of the underlayment, low greening rates, and high building densities, have exacerbated the
deterioration of the outdoor thermal environment in residential districts.

Current strategies to mitigate the UHI effect primarily are directed at the urban
scale, including the cooling effect of urban parks on microclimate [29] and urban tree
design approaches [30]. Fewer strategies have focused on residential districts. Meanwhile,
according to the research on residential districts in China, most of these studies have
examined a single type of residential district. For example, Zhu et al. evaluated strategies
to reduce surface temperature, building surface temperature, and canopy AT in high-rise
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residential districts [31], and Yang et al. studied the effects of optimizing greenery in
multistory residential districts [32]. Zhang et al. studied the effects of tree distribution
and species in multistory residential districts [33]. Although some of these optimization
strategies can be used, the variability of the optimization effect for the different types
of residential districts need to be studied to identify the best optimization strategy for
each district.

Plot ratio, also called floor area ratio, is an important indicator of residential district
design, and is equal to the buildings footprint area* the mean number of floors/the sample
site area [34], which determines the development intensity of the district. In this study, we
selected the three common types of residential districts in Xi’an, China: districts with low,
medium, and high plot ratios. We investigated the differences in the effects of optimization
on these three types of residential districts according to different thermal environment
optimization strategies in the summer. The results provide a reference for the design
of thermal environment optimization in residential districts for urban redevelopment in
the future.

2. Methods

In this research, three districts with different plot ratios in Xi’an were selected for study.
Microclimate data were obtained through thermal environment monitoring for simulation;
spatial indicators were obtained through field measurements. Six models were designed
in each district to present six optimization strategies. The conclusions were drawn by
analyzing the simulation results. Figure 1 shows the study workflow.

Buildings 2022, 12, x FOR PEER REVIEW 3 of 14 
 

in residential districts, such as hard paving of concrete and roofing which leads to hard-
ening of the underlayment, low greening rates, and high building densities, have exacer-
bated the deterioration of the outdoor thermal environment in residential districts. 

Current strategies to mitigate the UHI effect primarily are directed at the urban scale, 
including the cooling effect of urban parks on microclimate [29] and urban tree design 
approaches [30]. Fewer strategies have focused on residential districts. Meanwhile, ac-
cording to the research on residential districts in China, most of these studies have exam-
ined a single type of residential district. For example, Zhu et al. evaluated strategies to 
reduce surface temperature, building surface temperature, and canopy AT in high-rise 
residential districts [31], and Yang et al. studied the effects of optimizing greenery in mul-
tistory residential districts [32]. Zhang et al. studied the effects of tree distribution and 
species in multistory residential districts [33]. Although some of these optimization strat-
egies can be used, the variability of the optimization effect for the different types of resi-
dential districts need to be studied to identify the best optimization strategy for each dis-
trict. 

Plot ratio, also called floor area ratio, is an important indicator of residential district 
design, and is equal to the buildings footprint area* the mean number of floors/the sample 
site area [34], which determines the development intensity of the district. In this study, we 
selected the three common types of residential districts in Xi’an, China: districts with low, 
medium, and high plot ratios. We investigated the differences in the effects of optimiza-
tion on these three types of residential districts according to different thermal environ-
ment optimization strategies in the summer. The results provide a reference for the design 
of thermal environment optimization in residential districts for urban redevelopment in 
the future. 

2. Methods 
In this research, three districts with different plot ratios in Xi’an were selected for 

study. Microclimate data were obtained through thermal environment monitoring for 
simulation; spatial indicators were obtained through field measurements. Six models 
were designed in each district to present six optimization strategies. The conclusions were 
drawn by analyzing the simulation results. Figure 1 shows the study workflow. 

 
Figure 1. The schematic of the study workflow. 

2.1. Study Cases 
This study was carried out in Xi’an, China, between the east longitudes 107°40′–

109°49′ and the north latitudes 133°42′–34°45′. We selected three typical residential dis-
tricts: Yanming District, Qujiang Cuizhu District, and Jinshuiwan District (Figure 2; Table 
1). 

Figure 1. The schematic of the study workflow.

2.1. Study Cases

This study was carried out in Xi’an, China, between the east longitudes 107◦40′–109◦49′

and the north latitudes 133◦42′–34◦45′. We selected three typical residential districts: Yanming
District, Qujiang Cuizhu District, and Jinshuiwan District (Figure 2; Table 1).

Table 1. Basic information of three selected districts.

Name Type Plot Ratio Green Rate Road Cover Average Building Height

Yanming
District

Medium-rise and low
development 1.5 0.17 0.56 16 m

Qujiang Cuizhu
District

High-rise and medium
development 2.1 0.35 0.44 36 m

Jinshuiwan
District

High-rise and high
development 2.7 0.40 0.42 57 m
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Figure 2. Locations of three selected districts and the photos of main residential buildings ((a): Low
plot ratios district; (b): Medium plot ratios district; (c): High plot ratios district).

Table 1 shows the spatial information of three districts, among which the greening
rate and road coverage rate refer to the ratio of the area covered by tree canopy and road to
sample site area, respectively [34]. Yanming District is a low-plot-ratio, medium-rise, and
low-development-intensity district. Qujiang Cuizhu District is a medium-plot-ratio, high-
rise, and medium-development-intensity district. Jinshuiwan District is a high-plot-ratio,
high-rise, and high-development-intensity district.

2.2. Environmental Simulation Software and Validation

In this study, we used ENVI-met software, which is widely used in the field of urban
microclimate research because of its high simulation accuracy [35,36]. To assess the perfor-
mance of the software in this study, we conducted a field monitoring approach to validate
the software. On 20 August 2020, 14 HOBOs, meteorological monitoring instruments,
were placed in and around Qujiang Cuizhu District to monitor the temperature, and the
ENVI-met model was built for simulation. According to the results, the maximum value of
the difference between the simulated and measured data of temperature was 1.75 ◦C, and
this trend was consistent (Figure 3), confirming the reliability of ENVI-met in this study.
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Cuizhu District; and (c) the changes in measured and simulated temperatures in pedestrian height
over time.
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2.3. Proposed Optimization Strategies

According to previous research results, we proposed five optimization strategies to be
applied to the three selected residential districts to investigate the differences in the cooling
effect of various optimization strategies on residential districts with different plot ratios.
The baseline model and the optimization strategy models for the residential districts are
as follows:

1. Baseline Model (BM): This model was built based on field measurements of the
residential districts.

2. Grass Model (GM): This model increased the green space ratio of the residential
districts by 10% by adding grass and reducing roads.

3. Tree Model (TM): This model spread 10% more trees in residential districts while
keeping the green space ratio unchanged. The dispersed planting of trees could make
the improvement of outdoor thermal comfort more economical [32].

4. Green Roof Model (GR): This model replaced building roofs with green roofs.
5. Cool Pavement Model (CP): This model increased the solar reflectance of roads from

0.2 to 0.4.
6. Cool Facade Model (CF): This model increased the solar reflectance of building facades

from 0.5 to 0.8.
7. Cool Community Model (CC): This model combined five optimization strategies

simultaneously. The use of several methods in combination with other methods has
been shown to be the most effective strategy [9].

Table 2 shows satellite photos and ENVI-met models for the three selected districts.

2.4. Modeling and Initial Condition Setting

We selected an area of 420 m × 420 m for each of the three residential districts and set
a unit grid resolution of 3 m (x-axis) × 3 m (y-axis) × 3 m (z-axis). The base meteorological
conditions entered into the simulation were the meteorological data measured in the field
on 20 August 2020. The average WS was 1.5 m/s, and the wind direction was from the
southeast. The maximum and minimum temperature and relative humidity were 20.52 ◦C
and 83.21% at 7:00 and 33.48 ◦C and 33.63% at 16:00. The simulation started at 0:00, and the
simulation time was set to 32 h to ensure the stability of the simulation. The last 24 h were
taken for analysis.

2.5. Assessing Parameters

We used the following parameters for the analysis of the UHI mitigation strategies: air
temperature (AT), wind speed (WS), mean radiant temperature (MRT), and physiological
equivalent temperature (PET).

AT and WS are the two commonly used indicators to evaluate thermal conditions.
MRT emphasizes the effect of surface radiation of surrounding objects on temperature and
PET refers to the human thermal comfort index. These two indicators reflect the thermal
comfort of the space from different perspectives. In recent years, many papers have used
these parameters as evaluation indicators to study the thermal environment [37].
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Table 2. The satellite photos, BM, GM, and TM of three selected districts.

Yanming District Qujiang Cuizhu
District Jinshuiwan District

Satellite photos
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3. Results
3.1. Basic Model Analysis

In the baseline model, we compared the AT inside the three types of districts at 13:00
and 1:00. We found that the high-plot-ratio district had the lowest AT (29.67 ◦C at 13:00,
26.83 ◦C at 1:00), and the low-plot-ratio district had the highest AT (30.31 ◦C at 13:00,
27.03 ◦C at 1:00). From 13:00 to 1:00, the AT at all three types of districts decreased by
approximately 3 ◦C (Figure 4).
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The higher building heights in the high-plot-ratio districts provided more shading.
Conversely, although lower buildings had less building separation, these lower building
heights created less shading at midday. The analysis of the SVF showed that districts with
lower plot ratios had higher SVF and more open spaces, which resulted in more exposure
to solar radiation and higher AT. The correlation between SVF and AT at the measurement
points was 0.48 at 13:00 and 0.58 at 1:00, respectively (Figure 5).
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Figure 5. (a) SVF of BM and TM in all three types of districts; (b) the correlation of SVF and AT in the
districts at 13:00; and (c) the correlation of SVF and AT in the districts at 1:00.
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3.2. Optimization with Grass, Trees, and Green Roofs

The grass model was more effective in the high-plot-ratio district than the tree model,
with AT reductions of 0.23 ◦C at 13:00 and 0.09 ◦C at 1:00. For the low- and medium-plot-
ratio districts, the effect of the grass model was not obvious. It could be that the lower SVF
in the high-plot-ratio district resulted in more building shading, which made the lawns
have higher humidity in the shade, which resulted in cooling during the day.

By adding trees, the AT in low-, medium-, and high-plot-ratio districts decreased by
0.15 ◦C, 0.42 ◦C, and 0.28 ◦C at 13:00. At the same time, the tree model reduced the average
PET by 1.44 ◦C, 2.10 ◦C, and 2.04 ◦C in all three districts. At night, however, the addition of
trees caused a negative effect, with the AT increasing in all three districts by 0.18 ◦C, 0.17 ◦C,
and 0.09 ◦C. The planting of trees also caused an increase in PET at night. TM lowered the
SVF, provided more shading during the day, and reduced solar radiation, which was the
chief reason for cooling during the day. The TM, however, caused lower WSs in the district,
hindering heat diffusion, which is a major cause of warming in residential districts at night
(Figure 6). The daytime cooling in the residential district with a medium plot ratio was
the largest because the original ventilation in this district was better than in the low- and
high-plot-ratio districts. In addition, the effect of trees to hinder heat diffusion was limited,
and shading played a leading role.

Buildings 2022, 12, x FOR PEER REVIEW 8 of 14 
 

   

(a) (b) (c) 

Figure 5. (a) SVF of BM and TM in all three types of districts; (b) the correlation of SVF and AT in 

the districts at 13:00; and (c) the correlation of SVF and AT in the districts at 1:00. 

3.2. Optimization with Grass, Trees, and Green Roofs 

The grass model was more effective in the high-plot-ratio district than the tree model, 

with AT reductions of 0.23 °C at 13:00 and 0.09 °C at 1:00. For the low- and medium-plot-

ratio districts, the effect of the grass model was not obvious. It could be that the lower SVF 

in the high-plot-ratio district resulted in more building shading, which made the lawns 

have higher humidity in the shade, which resulted in cooling during the day. 

By adding trees, the AT in low-, medium-, and high-plot-ratio districts decreased by 

0.15 °C, 0.42 °C, and 0.28 °C at 13:00. At the same time, the tree model reduced the average 

PET by 1.44 °C, 2.10 °C, and 2.04 °C in all three districts. At night, however, the addition 

of trees caused a negative effect, with the AT increasing in all three districts by 0.18 °C, 

0.17 °C, and 0.09 °C. The planting of trees also caused an increase in PET at night. TM 

lowered the SVF, provided more shading during the day, and reduced solar radiation, 

which was the chief reason for cooling during the day. The TM, however, caused lower 

WSs in the district, hindering heat diffusion, which is a major cause of warming in resi-

dential districts at night (Figure 6). The daytime cooling in the residential district with a 

medium plot ratio was the largest because the original ventilation in this district was bet-

ter than in the low- and high-plot-ratio districts. In addition, the effect of trees to hinder 

heat diffusion was limited, and shading played a leading role. 

 

Figure 6. WS in BM and TM in all three types of districts at 13:00 and 1:00 pm. 

  

BM TM BM TM BM TM

Low Plot Ratio Medium Plot Ratio High Plot Ratio

0.0

0.2

0.4

0.6

0.8

1.0

S
V

F

0.3 0.4 0.5 0.6 0.7
29.0

29.5

30.0

30.5

31.0

13：00

R²= 0.48

A
T

 (
℃

)

SVF
0.3 0.4 0.5 0.6 0.7

26.50

26.75

27.00

27.25

27.50

1：00

R²= 0.58

A
T

 (
℃

)

SVF

Low Medium High Low Medium High

BM TM BM TM BM TM BM TM BM TM BM TM

13：00 1：00

0.0

0.3

0.6

0.9

1.2

1.5

1.8

W
S

 (
m

/s
)

Figure 6. WS in BM and TM in all three types of districts at 13:00 and 1:00 pm.

Because the green roof is too far from the ground, the effect on the thermal environment
was not significant. By implementing green roofs, the AT reductions in the three residential
districts at 13:00 were 0.06 ◦C, 0.11 ◦C, and 0.16 ◦C in low-, medium-, and high-plot-ratio
districts. At 1:00 the reductions were 0.04 ◦C, 0.01 ◦C, and 0.04 ◦C cooler in low-, medium-,
and high-plot-ratio districts.

3.3. Optimization with Cool Pavements and Cool Facades

During the daytime, increasing the reflectivity of the roads reflected more short-wave
radiation, which reduced the amount of heat stored on the road surface and lowered the
AT at pedestrian height. At 13:00 the three residential districts were 0.56 ◦C (low-plot-ratio
district), 0.38 ◦C (medium-plot-ratio district), and 0.23 ◦C (high-plot-ratio district) cooler.
Cold pavement, however, led to an increase in MRT, which was 3.57 ◦C, 1.65 ◦C, and 1.70 ◦C
higher at 13:00. This is proportional to the area of hard paved roads within the district. AT
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decreased by 0.19 ◦C, 0.26 ◦C, and 0.03 ◦C at 1:00 in low-, medium-, and high-plot-ratio
districts. This temperature decrease was related to the WS and the spatial pattern of the
districts. The better ventilation and spatial morphology of the medium-plot-ratio district
reinforced the cooling effect of the cooler pavement at night.

By increasing the reflectivity of the building facade materials, all three districts were
cooler by 0.16 ◦C, 0.13 ◦C, and 0.10 ◦C respectively at 13:00. At pedestrian height, the
building facade area in the low-plot-ratio district was the largest and therefore suffered
the most significant cooling optimization. In addition, the use of highly reflective building
facade materials led to an increase in MRT of 1.03 ◦C, 1.45 ◦C, and 1.01 ◦C in low-, medium-,
and high-plot-ratio districts. The cold facade of the building had almost no cooling effect at
night. The optimization effect of cool pavements and cool facades was less pronounced in
high-plot-ratio districts compared with the other two districts.

3.4. Optimization of Cool Community

Figure 7 shows that CC had a good cooling effect during the day, which caused the
temperature to increase at night. The planting of trees provided shade during the day and
hindered the spread of heat at night, which played a dominant role in thermal environment
optimization strategies. The daytime cooling effect was best in the medium-plot-ratio
district, followed by the high- and low-medium-plot districts. AT decreased by 0.65 ◦C
(medium-plot-ratio district), 0.45 ◦C (high-plot-ratio district), and 0.43 ◦C (low-plot-ratio
district) at 13:00. Ventilation may be one of the reasons for this discrepancy. A comparison
of WSs at 13:00 showed that the medium-plot-ratio district had the highest WS and better
ventilation. The simulation results of AT distribution in all three districts at 13:00 are shown
in Figure 8.
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MRT showed that at 13:00, the low-, medium-, and high-plot-ratio districts were
2.36 ◦C, 2.97 ◦C, and 4.77 ◦C cooler, respectively. The occlusion of trees reduced the
MRT, but the use of highly reflective materials could lead to an increase. In the low- and
medium-plot-ratio districts, larger road areas and more building façades at pedestrian
heights negated some of the optimization results. At 1:00, the MRT in low-, medium-, and
high-plot-ratio districts increased by 1.70 ◦C, 1.30 ◦C, and 1.51 ◦C, respectively. In terms of
the PET, the low-, medium-, and high-plot-ratio districts were lowered by 0.73 ◦C, 1.65 ◦C,
and 1.99 ◦C at 13:00. The thermal comfort of the high-plot-ratio district improved greatly.
At night, the PET increased by 0.97 ◦C, 0.79 ◦C, and 0.84 ◦C in the low-, medium-, and
high-plot-ratio districts.
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4. Discussion

Regarding the current situation in residential districts, and through an analysis of
BM, we found that higher plot ratios in residential districts, coupled with lower building
density and higher building height, led to a lower SVF. This, in turn, blocked the interior
space of the residential district, which resulted in lower AT during the day. This result was
consistent with the findings of Wang et al. on the urban scale [37]. The cooling from day to
night was similar, and the AT at night was also the lowest in high-plot-ratio districts.

From the perspective of urban regeneration, the effectiveness of the different strategies
varied in the different settlements. Thus, appropriate optimization strategies should be
adopted for settlements with different development densities. For low-plot-ratio settle-
ments that have large road areas and building facades at pedestrian heights, increasing the
reflectivity of roads and building materials is the best optimization strategy. For medium-
plot-ratio settlements, good ventilation amplified the cooling benefits of planting trees,
and therefore, tree planting was a more suitable strategy for this type of district. For the
high-plot-ratio district, although trees were better optimized, their lower openness, and
low SVF, could better stimulate the cooling effect of lawns, which can also lower AT better
than in low- and medium-districts. Yang et al. also proposed “mass planting” for ground
cover and shrubs [32].

The strategy of tree planting, however, has drawbacks, which are particularly evident
at night. According to Urban Microclimate: Designing the Spaces between Buildings,
trees block the sky and inhibit long-wave radiation cooling at night and excess moisture,
which then increases the heat capacity of the soil [38]. Conversely, tree planting also blocks
wind circulation and reduces WS, which can be detrimental to the diffusion of hot air,
thus leading to higher nighttime temperatures. This is at odds with the findings of Wang
et al. [37]. The main reason for this difference in result may be that the form and layout of
buildings in residential districts and in the city may be vastly different, which could have
a significant impact on the wind. The baseline model also had differences in the degree,
density, and layout of greenery. How trees are planted has been studied by experts. It also
has been suggested that trees can be planted around breezeways to enhance the cooling
benefits in districts with high-density districts that are lacking green space [30].

Because of the high heights of residential buildings, green roofs are generally inef-
fective in cooling pedestrian heights. A study by Ng et al. in Hong Kong also showed
that green roofs are ineffective in reducing human thermal comfort at ground level [39].
The advantages of green roofs in terms of reducing rainwater flow, improving air quality,
and saving energy in buildings cannot be ignored [40–42]. Adjusting the reflectivity of
materials, including increasing the reflectivity of roads and increasing the reflectivity of
building walls, can effectively reduce the AT at pedestrian heights. This causes an increase
in MRT, as has been confirmed by a previous study [43]. A combination of AT and MRT
can be used to evaluate the ability to optimize the thermal environment. The longevity
of highly reflective materials and their safety hazards also need to be explored [44]. The
effect of combining these optimization strategies is significant, and this effect is not simply
a superposition of all strategies but rather offsets cooling and warming.

This study does have some limitations. The use of ENVI-met made the simulation
more accurate by importing measured data. During the simulation process, however, we
found that the temperature of asphalt urban roads was highest during the day. Because
no HOBOs were set on the asphalt urban roads to monitor the temperature, the input
maximum temperature was lower than the real maximum temperature, which caused
errors in the model verification stage (Figure 3). Therefore, if the measured data will be
used for simulation, the measurement points must cover the maximum and minimum
temperature locations that may occur within the modeling range. A large number of
residents exist in residential districts. Therefore, the influence of residents’ daily activities
and human-made heat removal on the outdoor thermal environment of the residential
district also must be considered. Most residential districts are arranged along the main
roads in the city, and the impact of traffic heat exhaust also should be considered, but
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this was not addressed in this study. These impacts will be the subject of further research.
Additionally, the effect of the optimization strategy mentioned in this paper in the winter is
another goal of future research.

5. Conclusions

In this study, we evaluated the effectiveness of various thermal environment optimiza-
tion strategies for residential districts with different development intensities in Xi’an City
according to an environmental simulation. The results showed that different optimization
strategies are needed for residential districts with different development intensities to
achieve cooling. Residential districts with a low plot ratio had the best cooling effect as
a result of increased road reflectivity, which was 0.56 ◦C. A 10% increase in tree plant-
ing in residential districts with a medium plot ratio and with a high plot ratio reduced
temperatures of 0.42 ◦C and 0.28 ◦C, respectively, at 13:00.

Compared with the baseline model, the cool district model had a positive cooling
effect, but its effect was not a simple sum of all of the optimization effects. The optimization
strategy showed an insignificant effect in districts with good thermal environments. Trees
can hinder cooling at night.

Urban redevelopment for spatial and environmental optimization is widely discussed
in developed countries such as North America and European countries, and is becoming
a critical issue for a national development strategy in China [45,46]. The findings of this
study provide science-based guidance for urban renewal from the perspective of improving
urban thermal environments in different styles of residential districts.
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