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Abstract: The coexistence of developed areas and historic buildings is an important topic in urban
planning. Our study focuses on this topic from the perspective of urban microclimate. A multi-physics
CFD simulation is applied to model urban microclimate with anthropogenic heat and buoyancy
effects. First, we clarified the impact of new development, i.e., high-rises on pedestrian-level air flow
by comparing city structures in Case A (the past, 1960s) and Case B (the current, 2020s). The results
showed an average wind speed decrease of 43% over time. Second, we assessed air temperature
increments from anthropogenic heat emitted from Case C (high-rises), Case D (historic buildings),
and Case E (both). We found that the mean air temperature increased by 0.16 ◦C for Case C, 0.52 ◦C
for Case D, and 0.87 ◦C for Case E, respectively. Third, we developed heat mitigation strategies based
on the assessment results in the previous steps. The integration of open spaces and building porosity,
which create wind corridors together, can promote outdoor ventilation and heat dispersion in the
study area. Compared with Case E, the three mitigation cases improve outdoor thermal environment,
with mean temperature reductions of 33%, 25%, and 21%, respectively. Finally, we developed new
mitigation strategies by considering the constraints in this special region, where modernity and
history coexist. Our practical mitigation strategies will aid urban planning and support conservation
efforts not only in Singapore, but also in other tropical and subtropical cities.

Keywords: historic area; urban heat island; mitigation strategies; anthropogenic heat; wind corridor

1. Introduction

Many cities have historic areas in their centers where historic buildings and a modern
city context (i.e., high-rise buildings) coexist [1,2]. These historic areas are an important
part of local tourism and cultural conservation [3,4]. Due to the economic and cultural
significance of historic buildings, current measures for their conservation aim to keep their
original form and allow occupancy of these buildings [5–7]. However, city centers tend to
experience Urban Heat Island effect (UHI) due to factors arising from modern urban de-
velopment such as high density, high-rise buildings and anthropogenic heat release [8–12].
The UHI phenomenon in city centers can lead to negative health impacts [13] for users
of the historic area, especially tourists and occupants of the historic buildings. Therefore,
a comprehensive method to improve the thermal environment of historic areas in city
centers is needed that balances the users’ needs and architectural conservation. This study
contributes to a better understanding of scientific and practical mitigation strategies for
urban planning in historic areas in the process of urban development. Chinatown in Singa-
pore is a typical area where historic shophouses and modern urban development coexist.
Shophouses with two–three stories are the primary building form in Chinatown [14,15],
whereas skyscrapers are dominant in other areas of the Central Business District (CBD)
(Figure 1). Meanwhile, Singapore, one of densest cities worldwide, tends to suffer intense
UHI effects [11,16–19]. Additionally, Singapore is in a tropical climate zone, and relies on
air-conditioning (AC) for year-round thermal comfort [20]. The effect of anthropogenic
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heat from AC can be significant [10,12,21], especially in Chinatown, which is the densest
city area of Singapore.
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There are two main challenges regarding the thermal environment in Singapore’s
Chinatown area. The first challenge is that the existing shophouses were designed to adapt
to the functions and ambient environment of the past, without considering the use of AC
systems which cause anthropogenic heat accumulation in the area [15]. The second one
is the negative effect of surrounding high-rise buildings that have been constructed over
the past 40 years. On the one hand, a large amount of AC-related anthropogenic heat
emissions from skyscrapers can lead to localized temperature increases [10,11,22]. On the
other hand, the blockage of airflow may result in anthropogenic heat not being readily
removed [11]. Therefore, understanding heat dispersion within and around historic regions
helps to improve future urban and architectural design.

Urban heat mitigation strategies can be implemented in newly built areas in or near
existing historic regions in the process of urban development. Various mitigation strategies
regarding urban morphology and anthropogenic heat have been proposed in previous
studies. These strategies generally rely on modifying urban morphology to enhance airflow,
and thus decrease the surrounding air temperature [23]. Some studies have proposed the
recommended geometries of street canyons, one of the basic urban forms in a city [24,25].
In a high-density urban context, the effects of high-rise buildings are one of the main issues
to explore. An earlier study from Priyadarsini et al. [17] suggested reducing the number of
high-rise buildings to achieve a better thermal environment in street canyons. However,
this does not appear possible in practice because a high-rise and high-density environment
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is an inevitable trend in Singapore due to the limited land availability [19]. This means that
limiting the amount or the height of high-rise buildings in street canyons may not be an
appropriate strategy. More practical suggestions have been provided by some later studies,
focusing on the geometry of individual buildings. One useful strategy was proposed by
Adelia et al. [22], which emphasized the importance of emission positions of outdoor AC
units and building porosity in street canyons in Singapore residential areas. This study
also indicated the positive impact of uniformity of building height, which concurred with
studies by Erell & Williamson [26] and Kondo et al. [27]. Another strategy is from a study by
Yuan et al. [28] who proposed using gaps between buildings with long façades in order to
improve the wind environment on urban streets. These studies tend to focus on modifying
building geometry to mitigate the localized UHI effect.

However, the above literature mainly focused on the localized effects of urban mor-
phology and anthropogenic heat, such as in street canyons, while the effects of surrounding
neighborhoods are overlooked. Therefore, there is a clear need to better understand the
effects of urban morphology of both the historic area itself and the surrounding areas
on the microclimate at the targeted historic area. Therefore, this study aims, firstly, to
develop urban heat mitigation strategies for a historic area—Chinatown, Singapore—and
secondly, to analyze the integrated effects of urban morphology and anthropogenic heat
from both the historic shophouses and the surrounding high-rise buildings in the area. In
this study, we conducted a high-fidelity CFD simulation to model the microclimate with
anthropogenic heat and buoyancy effects and quantitatively investigate wind environment
and air temperature increment in the Chinatown area.

The research structure is organized as follows. The design of scenarios for the nu-
merical simulation and data analysis method are described in Section 2. In Section 3, the
simulation results of all the cases are presented. Section 4 presents discussion on the effects
of urban morphology and practical implications for historical areas. The main conclusions
of this research and future study are presented in Section 5.

2. Methodology

This study comprised three steps. First, we compared the pedestrian-level air flow
of the historic area in the 1960s and 2020s, considering the different urban and building
forms of the Singapore CBD area in the past and current scenarios. In the second step,
we compared the air temperature increment when involving the effects of anthropogenic
heat due to air conditioning (AC) from both the surrounding high-rise buildings and the
existing shophouses in the Chinatown area. The third step was to develop mitigation
strategies based on the evaluation of results from the previous two steps. The mitigation
strategies were developed from three aspects: focusing on the Chinatown area; focusing on
the surrounding high-rise buildings; and integrating both strategies.

2.1. Simulation Scenarios Description

Eight parametric cases were simulated using CFD simulation: Five cases to investigate
the impact of surrounding new development and anthropogenic heat due to AC on air
flow and air temperature increment at the historic area as the first and second steps, and
three cases to develop and evaluate mitigation strategies as the third step. As Table 1
and Figure 2a show, the first two cases represent the urban form in the study area in the
1960s (Case A) and 2020s (Case B). In these two cases, the effect of anthropogenic heat due
to ACs was not considered because they were not widely used in the 1960s. Therefore,
the impact of new high-rise buildings on the wind environment can be investigated by
cross-comparing Cases A and B. The differences in anthropogenic heat dispersion among
three cases at the second step (Cases C, D, and E) were mainly focused on anthropogenic
heat emissions from ACs (Table 1 & Figure 2b). Specifically, at Case C, we only considered
the anthropogenic heat due to ACs from the surrounding high-rise buildings. Case D only
considers anthropogenic heat from shophouses in the historic area of Chinatown. In Case
E, anthropogenic heat emission in both surrounding high-rise buildings and shophouses in
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the historic area were applied for simulation to represent the real scenario. Cases F, G, and
H represent the proposed mitigation strategies (Table 1 & Figure 2c). The principle of the
proposed mitigation strategies was to create a ventilation corridor by increasing porosity.
In Case F, horizontal porosity was created by removing some shophouses. Case G focuses
on the modification of the surrounding high-rise buildings to increase both vertical and
horizontal porosity. The specific modifying methods in Cases F and G were based on the
analysis of previous evaluation steps. Case H integrated the previous two methods into
one case.

Table 1. Description of Case A-H and simulation aim of step 1–3.

Cases Description Aim

Case A Represents urban geometry of the study area in 1960s Step 1: To clarity the impact of new development
on pedestrian-level air flowCase B Represents urban geometry of the study area in 2020s

Case C The urban geometry of 2020s and anthropogenic heat
from the surrounding high-rise buildings are applied

Step 2: To assess the air temperature increment
caused by anthropogenic heat emitted

Case D The urban geometry of 2020s and anthropogenic heat
from the historic shophouses are applied

Case E
The urban geometry of 2020s and anthropogenic heat

from both high-rise buildings and the historic
shophouses are applied

Case F The mitigation strategy is to create horizontal porosity
and open spaces by removing some shophouses

Step 3: To develop the mitigation strategies
based on the assessment from previous two stepsCase G

The mitigation strategy is to create both vertical and
horizontal porosity by modifying the geometry of the

surrounding high-rise buildings

Case H The mitigation strategies in Case F and G are integrated
in this case
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Figure 2. (a) Simulation scenarios of Case A and B to represent the urban geometry in the past
(1960s) and the current (2020s). (b) (Left) Simulation scenarios of Case C–E to represent the impact
of anthropogenic heat emitted from high-rise buildings, historic shophouses, and both. (c) (Right)
Simulation scenarios of Case F–H to represent the developed mitigation strategies focusing on the
historic shophouses, high-rise buildings, and both.
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2.2. CFD Simulation Setup
2.2.1. Computational Domain and Meshing

As shown in Figure 3, a simplified district model which represents the study area,
was created and placed in the center of the computational domain. As suggested by
Tominaga et al. [29], considering that maximum building height in the study area was
approximately 33 m (Case A) and 280 m (Cases B–H), the domain heights were set as five
times these heights, i.e., 165 m and 1400 m, respectively. The side dimensions were set at
15 times these heights, i.e., 495 m and 4200 m, respectively, which are the minimum
dimensions for the inlet. Simulations were conducted with NE (northeast, i.e., the prevailing
wind direction of Singapore [30], as the incoming wind direction. Figure 4 shows the
applied mesh type is unstructured poly-hexcore mesh. We assigned the maximum size
with 100 m for the less important area in the domain and 2 m for the surrounding high-rise
buildings. In the targeted area with shophouses, we applied the maximum size as 1 m. In
addition, we added four boundary layers with 1 m height for building walls. Taking Case
B as an example, the average value of wall y+ of targeted buildings is around 250, which is
well within the logarithm region.
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conserved at the Chinatown area).

2.2.2. Boundary Conditions

Table 2 summarized the CFD simulation settings. The bottom of the computational
domain and building surfaces were set as a non-slip plane. Top side was set as symmet-
ric plane. Regarding incoming wind speed, the annual average incoming wind speed,
i.e., 7.6 m/s at 300 m above the ground, was applied in this study as a common scenario.
Additionally, we used a power law equation for the incoming wind speed profile. Horizon-
tal inflow velocity at the inlet of the computational domain reproduces an Atmospheric
Boundary Layer (ABL) velocity profile, where the turbulence originates only from the
friction and shear [31].

U(z) =
u∗ABL
κ

ln
(

z + z0

z0

)
. (1)

k(Z) =
u∗ABL

2√
Cµ

. (2)

ε(Z) =
u∗ABL

3

κ(z + z0)
. (3)

ω(Z) = ε(Z)
Cµ

k(z)
. (4)

In Equations (1)–(4), u∗ABL is the atmospheric boundary layer friction velocity, z is the
height above the ground, z0 = 0.5, which is the aerodynamic roughness length, κ = 0.42
and Cµ = 0.09, which are constants of the turbulence model, U is the horizontal inflow
velocity, k is the turbulence kinetic energy and ε andω are the turbulence dissipation rate
and specific dissipation rate respectively.

This study applied the SST k-ω model as the turbulence model, which has been
validated by our team in a previous study [22]. In the validation, we compared the CFD
simulation results and wind tunnel data from a study worked by Allegrini et al. [24]. All
the simulation settings, i.e., domain configurations and boundary conditions, are the same
as the ones at the wind tunnel experiment. The cross-comparison between simulation
result using SST k-ωmodel and wind tunnel experiment shows there is a good agreement
between SST k-ω and wind tunnel data, as Figure 5 shown. The validation results suggest
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the SST k-ω model can reproduce the mixed convection, caused by input air flow and
buoyancy effect. Therefore, SST k-ωmodel was used in the simulation in this study.

Table 2. CFD simulation settings.

Turbulence Model SST k-ω

Computational grid type Unstructured poly-hexcore meshes
Blockage ratio <5%
Grid expansion ratio 1.2
Density Boussinesq
Solving algorithms SIMPLE
Input wind profile Power law equation
Inflow boundary condition Operating temperature: 27 ◦C

Incoming wind speed Power-law profile with the reference wind speed of 7.6
m/s at 300 m above the ground

Incoming wind directions northeast (the prevailing wind direction of Singapore)

Heat flow specification method Mass flow rate inlet: normal to boundary direction (Heat
emission temperature: 40 ◦C)

Other boundary conditions
Outflow: pressure outlet
Bottom and buildings: Wall
Top: Symmetry

Convergence criteria 1E-6 for all variables
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The locations and geometries of AC condensers were set according to the real situation
of the buildings in the study area. The buildings include two types of AC condensers,
i.e., air-cooling and water-cooling. The air-cooling type was utilized in shophouses in
Chinatown, residential buildings, and some office buildings in the surrounding area. The
water-cooling type was the dominant type in retails, hotels, and office buildings in the
surrounding area. Examples of locations and geometries of heat sources which represented
the AC condensers in simulations are shown in Figure 6. AC condensers in the study area
were set either on exterior walls or on the rooftop for both shophouses and surrounding
high-rise buildings. Therefore, we modelled the AC condensers as vertical or horizontal
stripes on exterior walls or blocks on the rooftop according to the real locations of the AC
condensers in individual buildings.
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Additionally, we need to apply the heat emission from AC condensers in the sim-
ulations to represent the impacts of anthropogenic heat from AC [10,32]. We applied
the following equation to calculate the mass flow rate (ma) of heat emission from AC
condensers [33]:

Q = maca∆T. (5)

Therefore, the mass flow rate (ma) is:

ma =
Q

ca∆T
(6)

where Q is the anthropogenic heat from the AC condenser of each building, ca is the specific
heat of air, and 1005 J/kg K. ∆T is the increase in air temperature from the background
air temperature near the AC condensers. Accordingly, to determine the input amount
of mass flow rate (ma), we also needed to determine the increase in air temperature
from background air temperature near the condensers of AC, ∆T. Adelia et al. [22] and
Yuan et al. [11] set ma as 0.245 kg/s, according to the study from Bojic et al. [34], and ca
was set to 1.005 kj/kg.K, resulting in a ∆T of 13 ◦C. This value is in agreement with the
10–13 ◦C range of temperature increase near the condenser unit in Singapore measured
by Bruelisauer et al. [35]. This study applied a ∆T of 13 ◦C for calculating the ma in
our simulations.

In addition to the values of ca and ∆T, we need to estimate anthropogenic heat from
the AC operation of each building (Q). The anthropogenic heat from the AC condenser
(Q) consists of the cooling loads (Qc) of buildings and the energy needed (Ec) for AC
operation [36]. Therefore, Q can be calculated as follows:

Q = Qc + Ec,

where Ec = Qc/COP, Qc = Ec.COP
(7)

Thus, Q = Qc

(
COP + 1

COP

)
(8)

In this study, we calculated the anthropogenic heat emission for the different types
individually, including retail buildings with air-cooling (shophouses); office and residential
buildings with air-cooling; and retail, hotel, and office buildings with water-cooling. One of
the differences between the air-cooling and water-cooling types is the ratio of sensible heat
to the dispersed heat. The air-cooling type is considered as 100% sensible heat whereas the
water-cooling type which applies to the cooling towers is normally approximately 75% of
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latent heat due to the evaporation effect and 25% of sensible heat [37,38]. Therefore, for
the water-cooling type, the anthropogenic heat from one condenser unit is calculated as
follows [36]:

Q = 0.25Qc

(
COP + 1

COP

)
(9)

For commercial buildings, according to Version 3 of the Code for Environmental
Sustainability of Buildings, issued in 2012, from the Building and Construction Authority
(BCA) of Singapore, [39] the coefficient of performance (COP) of 4.2–4.29 (4.2 for multi-
function areas, such as the lobby on the first floor and 4.29 for single function, such as offices
above) is recommended for non-residential buildings when at full installed capacity. In this
study, COP of 4.2 was applied. In addition, the design peak cooling load (Qc) was in the
range of 100–180 W/m2 for office buildings, 120–260 W/m2 for hotels, and 250–350 W/m2

for retail buildings, according to the cooling load data obtained from the energy audit
results during the operating hours, complied by the Building Construction Authority (BCA)
and National Environment Agency (NEA). The dataset on the measured cooling load
showed that the mean cooling load per air-conditioned floor area of office buildings (from
58 projects), hotels (from 32 projects), and retail buildings (from 28 projects), ranged from
54–100 W/m2, 40–98 W/m2, and 93–195 W/m2, respectively with mean values of 74 W/m2,
61 W/m2, and 130 W/m2, respectively [40]. Therefore, taking office building as an example,
the average anthropogenic heat emission can be calculated as follows:

Q = Qc

(
4.2 + 1

4.2

)
(10)

In addition, Quah and Roth [10] measured and calculated the total anthropogenic
heat flux of Q in commercial buildings in Singapore and showed that it ranged from
40–120 W/m2, with the largest mean hourly flux of 113 W/m2.

By understanding the average anthropogenic heat flux of Q, we can calculate the
sensible heat Q as:

Q = QA, (11)

where A is the gross floor area of the involved buildings.
In terms of residential buildings, the COP of the AC operation was set to 3.34 according

to the energy label and tick rating of ACs operating in the apartments in Singapore [41].
Additionally, Qc is 2.5 kW per apartment in residential buildings, assuming one-split-AC
operating in full-load capacity in each apartment unit. Qc values were found from Energy
Efficient (E2) Singapore [42] and were calculated based on the total air-conditioned area [22].
Therefore, we can produce the result that QA which represents anthropogenic heat from of
each unit was 3.25 kW. Therefore, the total anthropogenic heat (Q) was calculated using
equation as:

Q = QAN (12)

where QA is 3.25 KW and N is the number of units in the residential buildings, and was
calculated as:

N =

(
1− Rp

)
AGF

Ah
, (13)

where Ah is assumed as 80 m2 which is the typical area of one apartment unit in Singapore;
and Rp is the public area ratio which was assumed to be 20%. We calculated the gross floor
area (AGF) as:

AGF = AF NF, (14)

where AF is the floor area of one building and NF is the number of floors of the building.
Table A1 at Appendix A shows a summary of the equations to calculate ma for different

types of AC and building functions. By estimating the anthropogenic heat from the AC con-
denser (Q) with the above method, which has been applied in previous studies [11,12,22],
we are able to calculate the ma for simulation input.
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2.3. Data Analysis

The simulation’s outputs, including air temperature increment and wind speed, were
exported for further comparison. Specifically, we selected 18 test lines where major visitors’
activities occurred: 13 test lines at the streets with both roadways and footways and
5 test lines at the roads with only footways (Figure 7). The test lines were selected from the
middle of the streets, and average value within the analysis points from the selected test
lines for each road were reported as a single value to represent their temperature increment
and wind speed. The single temperature increment and wind speed values in each case
scenarios were compared for further evaluation.
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3. Results and Analysis

In this section, we presented the simulation results of proposed eight cases. Figure 8
shows the wind speed contours of Case A and Case B. Figure 9a presents the air tem-
perature increment contours of Case C, D, and E. Figure 9b presents the air temperature
increment contours of Case F, G, and H. The quantitative data, including wind speed
and air temperature increment in each test line and the average value, are presented at
Tables A2 and A3 at Appendix B.
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3.1. Comparison of Wind Speed between Cases A and B

To evaluate the impacts of newly built high-rise buildings on the wind speed in
the Chinatown area, the CFD simulation was taken to obtain the wind speed at Case
A (representing the 1960s scenario) and Case B (representing the current scenario). The
wind environment results show that considerably more areas of Chinatown experienced
extremely low wind speed (nearly 0 m/s) at the pedestrian level in Case B compared with
Case A (Figure 8). Figure 10 shows the wind speed at the test streets showed differences
from 84% to −80%, with an average of −43%, from 1.11 m/s decreased to 0.63 m/s for the
tested values of wind speed, compared with Case B and Case A. Additionally, it can be
noted that in Case B, only three tested streets (RTL1, RTL13 and FTL4) had higher wind
speed and the other 15 streets had lower wind speed than the tested values of wind speed
in Case A. This result clearly showed that the surrounding high-rise buildings caused
reductions in wind speed in the Chinatown area. The only three streets with increased
wind speed were observed at the locations closer to the wind inlet. The lower wind
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speed was likely to have been due to the high-rise buildings on the leeward side (wind
shadow), especially in the areas farther from the wind corridor and the streets which are
perpendicular to the prevailing wind direction. For example, at the test line on RTL7,
which was the furthest test line from the oncoming wind, the wind speed decreased by
43% from 0.79 m/s to 0.45 m/s. The wind speed at the streets which are perpendicular
to the prevailing wind direction, such as RTL9, RTL10, RTL11, and RTL12, also decreased
significantly, i.e., by 47–80%.
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3.2. Comparison of Air Temperature Increments among Cases C, D, and E

Cases C and D assumes that the shophouses in the Chinatown area and the high-rise
buildings in the surrounding area did not use AC, respectively. Case E represents the real
scenario of the study area, with AC in use. In this way, we are able to compare the effects of
anthropogenic heat in different areas on thermal environment in analyzing the Chinatown
area. Figure 11a,b show the temperature increment in each test line of the three cases,
comparing Case C with Case E and Case D with Case E. In the real scenario, Case E, the
temperature increment at the pedestrian level at all tested streets increases by 0.87 ◦C on
average, ranging from 0.13 ◦C at RTL13 to 1.45 ◦C at FTL1. The temperature increments of
Cases C and D were compared with that of Case E to evaluate the effects of anthropogenic
heat. Specifically, compared with Case E, the mean temperature increments of both of Cases
C and D decreased, by averages of 82% and 41%, respectively. The result indicates that
anthropogenic heat due to AC in both shophouses in Chinatown and high-rise buildings
in the surrounding area significantly influenced the outdoor thermal environment in the
Chinatown area. In addition, the result shows that the anthropogenic heat due to AC in
shophouses influenced the outdoor air temperature more than those in high-rise buildings,
most likely due to the types (i.e., water-cooling) and locations (i.e., rooftop) of the AC
condensers in the skyscrapers.
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3.3. Urban Heat Mitigation Strategies Evaluation among Case F, G, and H

According to the previous evaluation and analysis, the detailed mitigation strategies
are described as Figure 12a,b. The main principle is to create porosity both vertically and
horizontally to enhance ventilation at the pedestrian level in the Chinatown area. For
Case F (Figure 12a), we focused on the Chinatown area. The principle is to remove some
shophouses to allow the ventilation into the historic area, and we also consider the locations
and amount of the removed shophouses carefully to retain the texture of the existing area
simultaneously. In most cases, we removed one shophouse at a time instead of removing
several adjacent shophouses, especially for the rows of shophouses closer to the wind inlet
and parallel to the wind direction. Generally, the width of one shophouse is approximately
6 m [14]. One or more of 6 m porosity have little influence on the original texture of the
historical area. Additionally, a group of (i.e., two or more) shophouses at the end of a
row of shophouses where heat emission accumulated are removed to create open spaces
for heat diffusion. Although two or more shophouses may be removed, it would have
little effect on the texture of Chinatown because these buildings are at the end of a row of
shophouses. In some rare cases, we remove a few adjacent shophouses in the middle of a
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row of shophouses which closer to the wind outlet. In terms of Case G (Figure 12b), both
vertical and pedestrian-level porosity was applied accordingly for the high-rise buildings
in the surrounding area. Specifically, in place where airflow is noticeably blocked and thus
not able to entry Chinatown, buildings were removed and substituted by one or more super
high-rise buildings. This is to create more open spaces at the wind gateway while maintain
the gross floor areas for the original sites. Moreover, some buildings were redesigned
to generate porosity to allow ventilation. Vertical porosity at different heights is applied
in the building towers, which enables the incoming wind to be diverted into different
levels and promotes vertical flow within the street canyon. Meanwhile, pedestrian-level
porosity was applied in podium structures. Study shows that wind environment at the
pedestrian level is significantly influenced by building morphology at podium layer [43].
Large podium volume tends to reduce the air volume and block the air flow, which is
not desirable for pedestrians [44]. Thus, we diminished the large podium structures in
surrounding buildings by random breaks and encourage wind penetration by providing
ventilation corridors. Case H was simulated as the scenario including mitigation strategies
in both areas.
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Comparing the three mitigated cases with the real scenario, Case E, the results showed
that all the three cases with mitigation strategies had decreased temperature increments,
with average decreases of −33% for Case F, −25% for Case G, and −21% for Case H,
respectively (Figure 13a–c).
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This indicated that these strategies were effective to reduce outdoor air temperature
in the Chinatown area. Although the mean value of all the three cases showed decreased
temperature increments, some test streets with increased values can offer more information
to select locations of porosity more effectively. More specifically, in Case F (Figure 13a), if
the test streets are far from the wind inlet, such as RTL4 which is closed to the surrounding
area, the porosity method applied to shophouses in Chinatown is unsatisfactory because
the temperature increment of RTL4 increased by 3% compared with that of RTL4 in Case E.
Additionally, the other test lines (i.e., RTL9, RTL10, RTL13, FTL3, and FTL5) with increased
temperature increments were parallel to the prevailing wind direction. This means that
the strategy to remove some shophouses to increase pedestrian-level porosity should
consider the locations of existing shophouses, either near the wind inlet or perpendicular
to the prevailing wind direction. For Case G (Figure 13b), although the mean value of
the decreasing temperature increment in Chinatown was lower than the value of Case F,
most test streets (14 of 18) still showed decreases ranging from 1% (RTL3) to 92% (RTL13).
Similar to Case F, RTL4, which was far from the wind inlet, showed an unsatisfactory result
because the temperature increment increased by 47% compared with the value of Case
E. All the other test streets with increased values were those with only footway (FTL2,
FRL3, and FTL4), which were narrower than the streets with both roadways and footways.
These results indicated that the mitigation strategies for the surrounding area allowed more
wind to enter into Chinatown for lowering the temperature increment of the entire area.
However, some streets may be too narrow (i.e., streets with only footway) to adequately
allow ventilation, resulting in unsatisfactory results locally. Case H (Figure 13c), which
integrated both mitigation strategies in shophouses in Chinatown and high-rise buildings in
the surrounding area, however, was less effective at decreasing the temperature increment
in Chinatown than Cases F and G. The decreased temperature increment of Case H, 21–25%
was slightly lower than that of Case G, but much lower than that of Case F (21–33% on
average). There may be two reasons for this result. Firstly, it could be that anthropogenic
heat from high-rise buildings in the surrounding area was dispersed into Chinatown via
the ventilation corridor. Evidence of this was shown from RTL4, in Case F, which showed
only a 3% temperature increment compared with Case E; however, for Cases G and H,
when the ventilation corridor of the surrounding area was created, this value increased
by 47% in Case G and 55% in Case H. Secondly, the wind environment was influenced by
both the wind corridor in the surrounding area and the porosity in Chinatown; however,
they may have opposing or negligible effects. As Table A2 in Appendix B shows, the wind
speed in streets, RTL 3 and RTL 5 increased in both Cases F and G whereas it decreased in
Case H, compared with the values in Case E.

4. Discussion
4.1. Effect of Anthropogenic Heat and Urban Morphology on the Urban Heat Environment in the
Singapore Chinatown Area

In this study, the unsatisfactory urban heat environment at the pedestrian-level in Chi-
natown was due to the combined effect of heat emission from AC in both Chinatown and
its surrounding areas, and that low wind speed was most likely due to blockages from sur-
rounding high-rise buildings and the building geometry of Chinatown. Firstly, the high-rise
buildings in the surrounding area can block the strong prevailing wind [13,45]. The wind
environment simulation results of Cases A and B support this finding. However, this does
not mean that high-rise buildings should be limited during the urban development process.
In contrast, high-rise buildings are among the appropriate solutions for densely populated
regions, such as Singapore [46]. Therefore, carefully designed high-rise buildings should be
handled by related professionals in order to mitigate the negative effects for localized and
existing wind environments. Secondly, the geometry of the Singapore Chinatown (i.e., the
shophouses as a row) could be a barrier because it would obstruct the anthropogenic heat
from dissipating and cause it to aggregate. Although the historic regions have restrictions
for development and renovation, actions may be taken to simultaneously conserve existing
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historic buildings and enhance the outdoor thermal environment. The mitigation strategies
on urban geometry in the Singapore Chinatown developed in this study considered both
aspects. Third, urban heat mitigation strategies should consider the effect of anthropogenic
heat, including the locations, types, and potential heat emissions. For example, in this
study, the water-cooling type of AC on rooftops of high-rise buildings limited the negative
effects on the pedestrian-level thermal environment in the Chinatown area. In contrast,
although the shophouses in Chinatown dispersed much less anthropogenic heat, compared
with high-rise buildings in surrounding areas, the effect was larger, which was probably
due to the ineffective AC type and unplanned locations of AC condensers.

4.2. Practical Implications for Proposed Mitigation Strategies in Historic Areas

Based on our analysis, it is more effective to modify urban morphology at Chinatown
area to mitigate the urban heat as the existing building geometry was not designed for its
current functions and macro- and micro- climate conditions. However, these shophouses
are historic buildings which need to be handled carefully with regard to any demolition or
reconstruction actions. Although urban heat mitigation strategies in the surrounding area
appeared to not be as effective as those in the Chinatown area, the results still showed great
potential for improvements in the outdoor thermal environment. For architects, urban
designers, and related professionals, it can be easier to consider mitigation strategies when
starting new buildings. Thus, considering existing historic areas in advance is of great
importance for these professionals. Additionally, a combination of mitigation strategies
should be applied based on different situations. In this study, we suggest pedestrian-
level porosity by removing some existing shophouses near the prevailing wind inlet and
those perpendicular to the wind direction. Thus, if a redevelopment plan is undertaken
in the historic area, these kinds of buildings should be considered as a priority for the
benefit of outdoor wind and heat environment of the entire area. In terms of newly-built
high-rises in surrounding areas, the principle was to create a ventilation corridor in the
surrounding area to allow wind to penetrate Chinatown more easily, further influencing
outdoor thermal performance. We suggest both vertical and horizontal porosity to create
the ventilation corridor. In addition, the orientation of the wind corridor should be matched
to the prevailing wind direction. We also noted from this study that separate mitigation
strategies for historic area and surrounding areas may have opposing or negligible effects.
This highlights the need for professionals to carefully design the locations of porosity to
avoid anthropogenic heat in the surrounding area dispersing to the historic areas.

5. Conclusions

This study evaluated the impact of surrounding high density urban areas on the
microclimate at historical areas, and developed the corresponding urban heat mitigation
strategies. We investigated the impact of high-rise buildings on pedestrian-level air flow
and assessed air temperature increment caused by anthropogenic heat. Multi-physics CFD
simulation was applied to model the microclimate with anthropogenic heat and buoyancy
effects. A total of eight parametric cases were designed in three steps. The following
are specific research outputs to support urban and architectural design in historic area in
Singapore and other high density tropical cities.

• The average wind speed decreases of 43%, from 1.11 m/s in Case A to 0.63 m/s in
Case B. This indicates the great impact of new development, i.e., high-rise buildings,
on pedestrian-level air flow of the historic area.

• The mean air temperature increased by 0.16 ◦C for Case C, 0.52 ◦C for Case D and
0.87 ◦C for Case E, respectively. This indicates that the anthropogenic heat emission
from surrounding high-rise buildings had less effect than that from historic shophouses
in Chinatown.

• The integration of open spaces and building porosity, which create wind corridors
together, can promote outdoor natural ventilation and heat dispersion at the study
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area. Compared with Case E, the three mitigation cases improve outdoor thermal
environment, with mean temperature reduction of 33%, 25%, and 21%, respectively.

• To retain the urban texture of the area, the locations and number of removed shop-
houses should include either one shophouse closer to the wind inlet and perpendicular
to the wind direction as a priority, or a number of shophouses at the end or in the
middle of the row where heat emission accumulates, in some cases.

6. Limitations and Future works

This study focuses on a common scenario with annual average wind speed. In future
studies, we will consider various scenarios, e.g., the worse scenario, utilizing the lowest
wind speed for simulation. Different wind directions will be utilized for further analysis
in order to investigate other scenarios in addition to the prevailing wind direction. In
addition, the effect of heat emission from vehicular traffic on the thermal environment
will also be discussed. Moreover, urban heat plume impact will be included to make the
simulation results more realistic. In terms of developing urban heat mitigation strategies,
the contribution of urban greenery needs to be studied. Last but not least, quantitative
analysis is needed to evaluate the performance of urban heat mitigation strategies, so as to
give more practical suggestions to improve urban design in historic areas.
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Nomenclature

Abbreviations
ABL Atmospheric boundary layer
AC Air-conditioning
BCA Building and construction authority
CBD Central Business District
CFD Computational fluid dynamics
COP Coefficient of performance
NE Northeast
NEA National environment agency
UHI Urban heat island
Symbols
A Gross floor area of buildings (m2)
Ah Typical area of one unit of residential buildings (m2)
AGF Gross floor area (m2)
ca Specific heat of air (J·kg−1·K−1)
Cµ Model constant
Ec Cooling energy (kw)
E2 Energy Efficient Singapore
ma Input mass flow rate of heat emissions (kg·s−2)
N Number of units in residential buildings
NF Floor number of residential buildings
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Q Total anthropogenic heat (kw)
QA Anthropogenic heat from each unit of residential buildings (kw)
Qc Cooling loads generated in the indoor spaces (kw)
Rp Public area ratio
u∗ABL Atmospheric boundary layer friction velocity (m/s)
z Hight above ground (m)
z0 Aerodynamic roughness length (m)
ω Specific dissipation (s−1)
κ Turbulent kinetic energy (m2·s−2)
ε TKE dissipation rate (m2·s−3)

Appendix A

Table A1. Equations to calculate ma for buildings with different AC types and functions.

AC Type Building Function Equation

Air cooling

Shophouses (retail) ma =
130×( 4.2+1

4.2 )A
ca∆T

Residential buildings ma =
1000×2.5×( 3.34+1

3.34 )× (1−Rp)AGF
Ah

ca∆T

Water cooling

Retail ma =
0.25×130×( 4.2+1

4.2 )A
ca∆T

Office ma =
0.25×74×( 4.2+1

4.2 )A
ca∆T

Hotel ma =
0.25×61×( 4.2+1

4.2 )A
ca∆T

Appendix B

Table A2. Wind speed of all test streets and average value.

RTL1 RTL2 RTL3 RTL4 RTL5 RTL6 RTL7 RTL8 RTL9 RTL10 RTL11 RTL12 RTL13 FTL1 FTL2 FTL3 FTL4 FTL5 Ave

Case A 0.73 1.06 1 0.96 1.07 1.8 0.79 0.46 1.01 0.96 2.23 1.51 0.94 1.67 1.67 0.62 0.58 0.93 1.11
Case B 1.01 0.54 0.61 0.76 0.8 0.76 0.45 0.36 0.34 0.51 0.45 0.64 1.15 0.54 0.36 0.32 1.07 0.64 0.63

Case B-A 38% −49% −39% −21% −25% −58% −43% −22% −66% −47% −80% −58% 22% −68% −78% −48% 84% −31% −43%
Case C 1.39 0.92 1.7 2.26 1.75 0.69 0.47 0.52 0.84 1.92 1.16 1.16 2.34 1.21 1.13 1.94 2.23 0.9 1.36
Case D 1.39 1.47 0.99 1.43 1 0.91 2.82 0.57 0.88 1.1 1.08 0.69 1.57 0.43 1.36 0.81 0.96 1.51 1.17
Case E 1.62 1.62 1.52 2.38 1.44 1.19 0.39 0.33 1.52 1.86 1.27 1.31 3.04 1.36 1.17 0.62 2.09 2.25 1.47

Case C-E −14% −21% 12% −5% 22% 42% 21% 58% 45% 3% −9% −12% −23% −11% −3% 213% 7% −60% −8%
Case D-E −14% 27% 35% 40% −31% −24% 623% 73% −42% −41% −15% −47% −48% −68% 16% 31% −54% −33% −21%

Case F 1.9 1.8 2.08 2.49 1.64 1.07 0.58 0.42 1.13 1.81 2.35 2.23 2.21 2.28 1.39 0.47 2.44 0.76 1.61
Case G 1.61 1.38 1.77 1.89 2.25 2.06 0.68 0.82 1.24 1.69 1.96 1.5 3.84 1.86 0.77 0.89 1.06 1.31 1.59
Case H 1.22 1.62 1.16 1.62 0.79 1.98 0.77 1.18 1.23 1.46 2.32 1.88 1.74 2.39 0.97 0.79 1.26 1.29 1.43

Case F-E 17% 55% 37% 5% 14% −10% 49% 27% −26% −3% 85% 70% −27% 68% 19% −24% 17% −66% 10%
Case G-E −1% 19% 16% −21% 56% 73% 74% 148% −18% −9% 54% 15% 26% 37% −34% 44% −49% −42% 8%
Case H-E −25% 40% −24% −32% −45% 66% 97% 258% −19% −22% 83% 44% 43% 76% −17% 27% −40% −43% −3%

Table A3. Temperature increment at all test streets and average value.

RTL1 RTL2 RTL3 RTL4 RTL5 RTL6 RTL7 RTL8 RTL9 RTL10 RTL11 RTL12 RTL13 FTL1 FTL2 FTL3 FTL4 FTL5 Ave

Case C 0.22 0.19 0.15 0.12 0.16 0.25 0.2 0.25 0.08 0.06 0.21 0.11 0.13 0.12 0.12 0.11 0.24 0.14 0.16
Case D 0.46 0.49 0.78 1.05 0.3 0.43 0.24 0.57 0.39 1.14 0.04 0.54 0.09 0.77 0.95 0.64 0.35 0.07 0.52
Case E 1.3 1.26 1.42 0.92 1.16 1.03 1.43 1.08 0.37 0.31 0.48 0.67 0.13 1.45 0.94 0.89 0.49 0.35 0.87

Case C-E −83% −85% −89% −87% −86% −77% −86% −77% −78% −81% −56% −84% 0 −92% −87% −88% −51% −60% −82%
Case D-E −65% −61% −45% 14% −74% −58% −83% −47% 5% 268% −92% −19% −31% −47% 1% −28% −29% −80% −41%

Case F 0.71 0.32 0.97 0.95 0.78 0.73 1.18 0.62 0.51 0.51 0.28 0.28 0.23 0.23 0.59 0.89 0.26 0.46 0.58
Case G 1.05 0.64 1.41 1.35 0.39 0.75 0.34 0.98 0.3 0.29 0.29 0.39 0.01 0.2 1.09 1.07 0.91 0.23 0.65
Case H 0.86 0.69 0.89 1.43 1.12 0.6 1.02 0.68 0.46 0.69 0.22 0.37 0.88 0.23 0.42 0.9 0.69 0.2 0.69

Case F-E −45% −75% −32% 3% −33% −29% −18% −43% 38% 65% −42% −58% 77% −84% −37% 0 −47% 31% −33%
Case G-E −19% −49% −1% 47% −66% −27% −76% −9% −19% −6% −40% −42% −92% −86% 16% 20% 86% −34% −25%
Case H-E −34% −45% −37% 55% −3% −42% −29% −37% 24% 123% −54% −45% 577% −84% −55% 1% 41% −43% −21%
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