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Abstract: Timely crack detection plays an important role in building damage assessment. In this
study, an automatic crack detection method based on image registration and pixel-level segmentation
(improved DeepLab_v3+) is proposed. Firstly, the moving images are calibrated by image registration,
and the similarity method is adopted to evaluate the calibrated results. Secondly, the DeepLab_v3+ is
improved and used to segment the fixed images and the calibrated images. Finally, the difference
of crack pixels between the fixed and calibrated images is estimated, and the key parameter is
investigated to find the optimal optimizer and learning rate. The results illustrate that: (1) the image
registration technology shows excellent calibration achievement and the average error is only 4%;
(2) with the resnet50 being selected as the backbone network of improved Deeplab_v3+, the automatic
detection method proposed in this study is more efficient in comparison with other common pixel-
level segmentation algorithms; (3) the best network optimizer of improved Deeplab_v3+ and learning
rate of crack segmentation task are sgdm and 0.001, respectively. The crack detection method proposed
in this study can significantly improves the technical level of crack detection in practical projects.

Keywords: structural health monitoring; crack detection; image registration; improved DeepLab_v3+;
pixel-level segmentation

1. Introduction

External cracks of aging infrastructures (such as buildings (Figure 1), bridges, and
pavements, etc.) are potential dangers for the structural durability and safety. Cracks
of different degrees commonly appear in building structures. The structural cracks are
mainly caused by an inadequate bearing capacity of the structures. It is the characteristic of
the structural damage initiation or the symptom of insufficient structural strength, which
is relatively dangerous, and the cracks must be further analysed to avoid the following
disasters. The non-structural cracks, including temperature cracks and shrinkage cracks,
always have little impact on the bearing capacity of the structure. Although these non-
structural cracks do not reach the dangerous level of building collapse, these non-structural
cracks can cause leakage, corrosion, concrete carbonation, etc., resulting in the reduction
of the durability of building components, and even a serious potential threat to the safety
and reliability of the structure. Structural health monitoring (SHM) is an effective way to
recognize the cracks and evaluate the degree of damage, and structural maintenance can
be subsequently proposed to prevent further crack propagation. However, the traditional
manual visual inspection of cracks is labor-intensive, subjective, and error-prone, which
can hardly meet the long-term development requirements for the detection of large-scale
and complex modern structures. Therefore, the automatic and efficient crack detection
method becomes an urgent need.

Buildings 2022, 12, 1081. https://doi.org/10.3390/buildings12081081 https://www.mdpi.com/journal/buildings

https://doi.org/10.3390/buildings12081081
https://doi.org/10.3390/buildings12081081
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/buildings
https://www.mdpi.com
https://orcid.org/0000-0003-1703-3362
https://doi.org/10.3390/buildings12081081
https://www.mdpi.com/journal/buildings
https://www.mdpi.com/article/10.3390/buildings12081081?type=check_update&version=2


Buildings 2022, 12, 1081 2 of 16

Buildings 2022, 12, x FOR PEER REVIEW 2 of 17 
 

detection of large-scale and complex modern structures. Therefore, the automatic and 
efficient crack detection method becomes an urgent need.  

 
Figure 1. Building crack cases. 

Recently, artificial intelligence (AI) algorithms are developing rapidly and provide 
great convenience for the automatic crack detection. For instance, the artificial neural 
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slow convergence, over-fitting, and a high computational cost are also exposed in prac-
tical applications [3,4]. Therefore, a fast and high-precision detection technology is still 
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Deep learning (DL) provides a more advanced method for SHM with a high com-
putational performance and accuracy. As a representation of DL algorithms, the deep 
convolutional neural network (DCNN) has been widely used in SHM. It can extract fea-
tures from the original data automatically and obtain advanced features through multi-
ple processing layers, gradually [5]. Meanwhile, the DCNN has a faster computing speed 
and a better robustness for the usage of the partial connection of neurons and pooling 
operations (down-sampling), which leads it to be an effective SHM method. The appli-
cation of DCNN in image classification for pavement cracks, sewer defects, and road 
damage detection exhibits excellent performances [6–9]. Furthermore, the sliding win-
dow method is also employed to obtain the crack location [10,11]. However, this method 
always results in high computational costs as every window needs to be classified. Object 
detection technology can obtain the crack locations more accurately through creating a 
bounding box around the interest region. In the field of SHM, two common algorithms 
are used for objects detection: (1) a two-stage model, i.e., region-based CNN series, 
RCNN, Fast-RCNN, and Faster-RCNN, which have been used to detect the post-event 
building [12], concrete structure [13], and asphalt pavements [14]; and (2) a one-stage 
model, i.e., the you only look once (YOLO) and single shot multi-box detector (SSD) ap-
plied to detect the cracks (both in bridges and pavements) [15,16] and road defects [17], 
which show faster processing speeds than that of the two-stage model [9]. 

The pixel-level segmentation algorithm has been widely concerned for it can further 
improve the precision of defect information. It identifies the pixel distribution of the ob-
ject, which can be used to analyze the object features (e.g., crack length, width, and area). 
Several kinds of neural networks have been developed to automatically implement pix-
el-level crack detection [18–22]. Compared with image classification and object detection, 
pixel-level segmentation is more effective and accurate in providing information about 
the distribution path and the shape of cracks. These advantages provide the potential for 
deeply extracting pixel-level quantifiable information of crack features. The latest version 
of the DeepLab_v3+ combines the advantages of the spatial pyramid pooling (SPP) and 
encoder–decoder structure [23]. It provides the excellent pixel-level segmentation 
method and has been successfully used for human and animal, skin and smoke detection 
[23–25]. In the field of SHM, the DeepLabv3+ has also been used to detect road potholes 
[26] and cracks [27] automatically, and its high detection accuracy has been verified. 
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Recently, artificial intelligence (AI) algorithms are developing rapidly and provide
great convenience for the automatic crack detection. For instance, the artificial neural
network (ANN) technology has been explored in detecting the rail surface cracks and
potholes of asphalt pavement surfaces [1,2]. However, many disadvantages, such as a
slow convergence, over-fitting, and a high computational cost are also exposed in prac-
tical applications [3,4]. Therefore, a fast and high-precision detection technology is still
urgently needed.

Deep learning (DL) provides a more advanced method for SHM with a high com-
putational performance and accuracy. As a representation of DL algorithms, the deep
convolutional neural network (DCNN) has been widely used in SHM. It can extract fea-
tures from the original data automatically and obtain advanced features through multiple
processing layers, gradually [5]. Meanwhile, the DCNN has a faster computing speed and a
better robustness for the usage of the partial connection of neurons and pooling operations
(down-sampling), which leads it to be an effective SHM method. The application of DCNN
in image classification for pavement cracks, sewer defects, and road damage detection
exhibits excellent performances [6–9]. Furthermore, the sliding window method is also
employed to obtain the crack location [10,11]. However, this method always results in
high computational costs as every window needs to be classified. Object detection tech-
nology can obtain the crack locations more accurately through creating a bounding box
around the interest region. In the field of SHM, two common algorithms are used for
objects detection: (1) a two-stage model, i.e., region-based CNN series, RCNN, Fast-RCNN,
and Faster-RCNN, which have been used to detect the post-event building [12], concrete
structure [13], and asphalt pavements [14]; and (2) a one-stage model, i.e., the you only look
once (YOLO) and single shot multi-box detector (SSD) applied to detect the cracks (both in
bridges and pavements) [15,16] and road defects [17], which show faster processing speeds
than that of the two-stage model [9].

The pixel-level segmentation algorithm has been widely concerned for it can further
improve the precision of defect information. It identifies the pixel distribution of the
object, which can be used to analyze the object features (e.g., crack length, width, and area).
Several kinds of neural networks have been developed to automatically implement pixel-
level crack detection [18–22]. Compared with image classification and object detection,
pixel-level segmentation is more effective and accurate in providing information about
the distribution path and the shape of cracks. These advantages provide the potential for
deeply extracting pixel-level quantifiable information of crack features. The latest version
of the DeepLab_v3+ combines the advantages of the spatial pyramid pooling (SPP) and
encoder–decoder structure [23]. It provides the excellent pixel-level segmentation method
and has been successfully used for human and animal, skin and smoke detection [23–25].
In the field of SHM, the DeepLabv3+ has also been used to detect road potholes [26] and
cracks [27] automatically, and its high detection accuracy has been verified. However, there
is still a huge challenge in using intelligent algorithms for the automatic detection of crack
images and identify and merge the different crack images captured at different views. It is
difficult to ensure whether the camera is located at the same position [28,29]. Therefore, it is
necessary to calibrate images in order to accurately obtain the crack change information of
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images from different perspectives. Image registration is an image processing technology
that aligns two or more images of the same scene with respect to a particular reference
image (fixed image), and it has been widely used in remote sensing [30], medicine [31–33],
and other fields for its high precision.

Therefore, this study proposes an automatic approach to detect the change of cracks
in the consideration of view-influence based on the image registration and pixel-level
segmentation technology (DeepLab_v3+). Firstly, the moving images are calibrated by
image registration, and the similarity method is adopted to evaluate the calibrated results.
Secondly, the DeepLab_v3+ will be improved and subsequently used to segment the fixed
images and the calibrated images. Finally, the difference of crack pixels between the fixed
and calibrated images is finally estimated, and the key parameter is investigated to find the
optimal optimizer and learning rate. This study can help to improve the efficiency of crack
detection in practical projects.

2. Materials and Methods

The whole process, including image registration and crack detection, was conducted
in MATLAB (MathWorks Inc., Natick, MA, USA). A total of 1100 moving images were
obtained through translating, rotating, and scaling 100 fixed images. The improved
Deeplab_v3+ was obtained with the comparison of different backbone networks and
then used to detect the change of cracks. The optimal optimizer and learning rate of the
detection method in this study were obtained through parameter analysis.

2.1. Image Registration

Image registration is an image processing technique that can align the fixed and
moving images. The critical work of image registration is to solve the transformation
matrix (T), which describes the transformation information between the fixed and moving
images. Generally, the transformation is defined in the following:x′

y′

1

 =

a1 a2 a5
a3 a4 a6
0 0 1

x
y
1

 (1)

where,

a1 a2 a5
a3 a4 a6
0 0 1

 is the transformation matrix (T), (x, y) and (x′, y′) are the locations

before and after the transformation, respectively. The rotational matrix including a1, a2, a3,
and a4 will lead to the rotation of the image, and a1 and a4 also represent the magnification
(reduction) of the x and y coordinates of the image, respectively; a5 and a6 represent the
translation of the x and y coordinates of the image, respectively. Therefore, it is critical
to determine the six parameters accurately in order to implement image registration. A
two-step model was established in this study:

Step 1: evaluation of image similarity. Mutual Information (MI) is used to assess
the similarity of image intensities measured between the fixed and moving images. The
maximized MI means the moving images have been accurately aligned.

MI (x, y) = ∑
y∈Y

∑
x∈X

p(x, y) log(
p(x, y)

p1(x)p2(y)
) (2)

where, p(x, y) is the joint distribution function and p1(x), p2(y) is the marginal distribution
functions of the two random variables (X, Y), MI ⊆ [0,1]. In this study, X and Y are fixed
and moving images, respectively. If MI = 1, the two images coincide completely while they
are irrelevant with MI = 0.

Step 2: optimization of key parameters. The optimization algorithm based on gradient
descent function is employed to obtain accurate image transformation parameters. The
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gradient descent adopts downhill steps proportional to the local gradient of the cost
function MI:

aj+1
i = aj

i − k
∂MI
∂ai

∣∣∣aj
i (3)

where, i = 1, 2 . . . , 6 (i.e., six transformation parameters), j is the number of iterations, and
k is the relaxation factor (0 < k < 1, in this study, k = 0.5).

The image registration process is: (1) the initial similarity of the fixed and moving
images is obtained through the mutual information (Equation (2)). (2) The initial trans-
formation matrix is updated by the gradient descent algorithm (Equation (3)), and the new
transformation matrix is used for image transformation to obtain a new image. (3) The simi-
larity between the new image and fixed image is evaluated again. The steps (2) and (3) are
repeated until the maximum iterations are obtained. The above process has been shown in
Figure 2.
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2.2. DeepLab_v3+

The DeepLab_v3+ is a network model containing an encoder–decoder structure
(Figure 3), which implements the pixel-level segmentation task. It is evolved based on
DeepLab_v3 [34]. The DeepLabv3+ network employs a DCNN (backbone network) as a
feature extractor to extract the feature information of objects. The object prediction results
are subsequently obtained through the process of the specific encoder–decoder structure.

In the encoder module, the atrous spatial pyramid pooling (ASPP) sub-module, in-
cluding four atrous convolution layers and one pooling layer, is used to extract features
and reduce data dimensions. Finally, a 1 × 1 convolution kernel is used to extract features
from the above information (ASPP sub-module), which is used as a branch input of the
decoder. The atrous convolution is used to capture multi-scale information by obtaining
the filter’s field-of-view using different convolution kernel sizes, which is a generalization
of the standard convolution. It is defined as follows:
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In the case of two-dimensional raw data (Figure 4), for each location i on the output
feature map y and a convolution filter w, the atrous convolution is applied over the input
feature map x as follows:

y[i] = ∑
k

x[i + r · k]w[k] (4)

where, the atrous rate r determines the stride with which we sample the input data (r = 2
in Figure 4). Note that standard convolution is a special case where r is 1. The filter’s
field-of-view is adaptively modified by changing the rate value.

Buildings 2022, 12, x FOR PEER REVIEW 5 of 17 
 

 
Figure 3. The DeepLab_v3+ network. 

In the encoder module, the atrous spatial pyramid pooling (ASPP) sub-module, in-
cluding four atrous convolution layers and one pooling layer, is used to extract features 
and reduce data dimensions. Finally, a 1 × 1 convolution kernel is used to extract features 
from the above information (ASPP sub-module), which is used as a branch input of the 
decoder. The atrous convolution is used to capture multi-scale information by obtaining 
the filter’s field-of-view using different convolution kernel sizes, which is a generaliza-
tion of the standard convolution. It is defined as follows: 

In the case of two-dimensional raw data (Figure 4), for each location i on the output 
feature map y and a convolution filter w, the atrous convolution is applied over the input 
feature map x as follows: 

[ ] [ ] [ ]r= + ⋅∑
k

y i x i k w k  (4) 

where, the atrous rate r determines the stride with which we sample the input data (r = 2 
in Figure 4). Note that standard convolution is a special case where r is 1. The filter’s 
field-of-view is adaptively modified by changing the rate value. 

 
Figure 4. Atrous convolution process. 

In the decoder module, the transposed convolution is used to extend the dimension 
of the feature map. Another branch input of the decoder comes from the backbone net-
work and the special convolution operation (1 × 1 convolution kernel). After the concat-

Encoder

Decoder
A

SP
P

DCNN

1×
1

co
nv

ol
ut

io
n

Upsample

U
ps

am
pl

e

Concatenation
3×3

convolution

Raw image
1024×1024

Prediction
1024×1024

1×1
convolution

1 2 3 4 5 6
7 8 9 . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . x

a b c d
e f g

. . .
. . . i

Kernel Kernel 

Kernel 

Raw data (x) 

Feature map (y) 

r=2

Figure 3. The DeepLab_v3+ network.

Buildings 2022, 12, x FOR PEER REVIEW 5 of 17 
 

 
Figure 3. The DeepLab_v3+ network. 

In the encoder module, the atrous spatial pyramid pooling (ASPP) sub-module, in-
cluding four atrous convolution layers and one pooling layer, is used to extract features 
and reduce data dimensions. Finally, a 1 × 1 convolution kernel is used to extract features 
from the above information (ASPP sub-module), which is used as a branch input of the 
decoder. The atrous convolution is used to capture multi-scale information by obtaining 
the filter’s field-of-view using different convolution kernel sizes, which is a generaliza-
tion of the standard convolution. It is defined as follows: 

In the case of two-dimensional raw data (Figure 4), for each location i on the output 
feature map y and a convolution filter w, the atrous convolution is applied over the input 
feature map x as follows: 

[ ] [ ] [ ]r= + ⋅∑
k

y i x i k w k  (4) 

where, the atrous rate r determines the stride with which we sample the input data (r = 2 
in Figure 4). Note that standard convolution is a special case where r is 1. The filter’s 
field-of-view is adaptively modified by changing the rate value. 

 
Figure 4. Atrous convolution process. 

In the decoder module, the transposed convolution is used to extend the dimension 
of the feature map. Another branch input of the decoder comes from the backbone net-
work and the special convolution operation (1 × 1 convolution kernel). After the concat-

Encoder

Decoder

A
SP

P

DCNN

1×
1

co
nv

ol
ut

io
n

Upsample

U
ps

am
pl

e

Concatenation
3×3

convolution

Raw image
1024×1024

Prediction
1024×1024

1×1
convolution

1 2 3 4 5 6
7 8 9 . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . x

a b c d
e f g

. . .
. . . i

Kernel Kernel 

Kernel 

Raw data (x) 

Feature map (y) 

r=2

Figure 4. Atrous convolution process.

In the decoder module, the transposed convolution is used to extend the dimension of
the feature map. Another branch input of the decoder comes from the backbone network
and the special convolution operation (1 × 1 convolution kernel). After the concatenation,
convolution (3 × 3 convolution kernel), and up-sampling, the feature maps are gradually
restored to their original spatial dimensions, the output layer outputs each pixel classifica-
tion of the raw image. The cracks have been marked and the pixel-level segmentation of
the object region has been finished now.

2.3. Crack Change Detection

The detection of crack change before and after image registration is mainly divided
into three steps: (1) align the moving images refer to the fixed images; (2) segment crack
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pixels by the improved DeepLab_v3+; (3) calculate crack change ratio of the fixed and
moving images.

(1) Calibration of the moving images
In this section, 100 crack images (1024× 1024 pixels) were used as fixed images. Firstly,

these images were scaled (Dataset A in Table 1), translated (Dataset B), rotated (Dataset
C), and hybrid transformed (Dataset D and Dataset E). The images after transformation
were named as moving images (total 1100 images). Table 1 shows the classification of the
datasets and their detailed transformation paths. The moving images aligned with the
fixed images were named as calibrated images.

Table 1. Moving image library.

Dataset Transformation Method Motion Parameters Sample Number

A Scaling Factor = 0.8 Factor = 0.9 Factor = 1.1 300
B Translation (pixel) [x = −10, y = −10] [x = −30, y = −30] [x = −50, y = −50] 300
C Rotation −5 degrees −15 degrees −25 degrees 300

D Translation (pixel) and
Rotation [x = −10, y = −10] and −10 degrees 100

E Scaling and Translation (pixel)
and Rotation 1.1 and [x = −10, y = −10] and −10 degrees 100

Total 1100

Note: “−” is shift left.

(2) Crack segmentation by the DeepLab_v3+
As a deep learning model, the DeepLab_v3+ needs network training prior to the

designative detection task. In this study, 1200 crack images (1024 × 1024 pixels) were
collected, and the “Image Labeler” toolbox was used to label these cracks (Figure 5).
Among these images, 75% of them were used as training images, and the rest were used as
testing images to evaluate the effect of crack segmentation.
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The DeepLab_v3+ needs a backbone network (the DCNN in Figure 3) to extract
the features of the object, and there are several backbone networks can be combined
with the DeepLab_v3+ besides the official ‘xception’ backbone network. However, the
effect of different backbone networks on exclusive crack detection is not clear. Therefore,
the influence of backbone networks on the results should be firstly investigated. This
study employed five well-known DCNNs (‘resnet18’, ‘resnet50’, ‘mobilenetv2’, ‘xception’,
‘inception-resnetv2’) as the backbone network of the DeepLab_v3+ for crack segmentation.
The testing images were used to evaluate the crack segmentation results and identify the
optimal DCNN model. Subsequently, the optimal model (improved DeepLab_v3+) was
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used to implement the crack segmentation (300 testing images). In order to prove the
feasibility of the improved DeepLab_v3+, this study will compare the results with these
obtained from popular SegNet, FCN, and U-Net network models.

Intersection over Union (IoU) was an evaluation indicator of the DeepLab_v3+ for
evaluating the overlap between the predicted (Ap) and real (Ar) object pixels. IoU was
defined as:

IoU =
area(Ap ∩ Ar)

area(Ap ∪ Ar)
(5)

and the Mean IoU of all classes, defined as:

MIoU =
IoU
N

(6)

where, N is the number of classes. In this study, N = 2, which means crack and non-crack
classes were contained.

The accuracy and F−score were used to evaluate the classification effect:

Accuracy =
TP + TN

TP + FP + FN + TN
(7)

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)

F− score = 2× Precision + Recall
Precision× Recall

(10)

where, true positive (TP): a real crack pixel is predicted correctly. False positive (FP):
s real non-crack pixel is predicted as a crack pixel. False negative (FN): a real crack
pixel is predicted as a non-crack pixel. True negative (TN): a real non-crack pixel is
predicted correctly.

(3) Calculation of crack change rate
Assuming that the crack pixel number in image i is N, and in the entire image i is I,

the ratio of crack pixels in the entire image is defined as:

Ratio =
N
I
× 100% (11)

Therefore, the crack change ratio of the fixed image i and its corresponding moving
image is:

Di f _Ratio = RatioFixed − RatioMoving (12)

where, RatioFixed and RatioMoving are the ratios of crack pixels in the fixed and moving
images, respectively.

3. Results and Discussions
3.1. Image Registration Results

A total of 1100 moving images (sample library in Section 2.3) were aligned by the image
registration technology, and their similarities related to the fixed mages were calculated.
A part of the calibration results is shown in Figure 6. Detailed similarities of scaling,
translation, and rotation images are exhibited in Figures 7–9, respectively. Figure 10a,b
show the registration similarity of the hybrid transform images (translation and rotation
for Figure 10a and scaling, translation, and rotation, for Figure 10b). Due to the movement
of the image, the black area in the calibrated image is lost. It can be summarized from the
results that the fixed and calibrated images have a high similarity (the average similarity is
higher than 0.8).
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3.2. Crack Detection Results 

Figure 10. The registration similarity of the hybrid transformed images. (a) Translation and rotation;
(b) scaling, translation, and rotation.

Table 2 shows the relative error of image registration. The relative errors of all datasets
are less than 10%, and the average error is 4%. In addition, the image registration shows the
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excellent registration results for the hybrid transform images with the relative error being
only 1%. Generally, the similarity of the calibrated image can reach more than 80% accuracy
despite the image having a single movement or a complex multi-directional coupling
movement. The results in Table 2 prove that the image registration method can be used to
accurately align the moving images with the fixed images.

Table 2. Relative error of image registration.

Dataset Transformation Method Relative Error

A Scaling 3% 7% 1%
B Translation 8% 5% 2%
C Rotation 8% 4% 4%
D Translation and Rotation 1%
E Scaling and Translation and rotation 1%

3.2. Crack Detection Results

The detection results of five different DeepLab_v3+ networks ((‘resnet18’, ‘resnet50’,
‘mobilenetv2’, ‘xception’, and ‘inception-resnetv2’) used as the backbone network, respec-
tively) are listed in Table 3. The ‘resnet50’ achieves the highest MIoU, accuracy, and F-score
simultaneously; some detection examples are shown in Figure 11. Interestingly, the ‘mo-
bilenetv2’ has the fastest computing speed at the expense of a small amount of precision.
In the most extreme model, the ‘inception-resnetv2’ achieves the lowest accuracy and
consumes a lot. Therefore, the DeepLab_v3+ adopting ‘resnet50’ as the backbone network
was selected as the crack detection approach (named as: improved DeepLab_v3+).

Table 3. Segmentation results of different DeepLab_v3+ models.

Evaluation Indicators
Backbone Network

Resnet18 Resnet50 Mobilenetv2 Xception Inceptionresnetv2

MIoU 0.82 0.84 0.82 0.80 0.75
Accuracy 99% 99% 99% 99% 99%

F-score 0.91 0.93 0.90 0.88 0.81
Detection time 1158 s 1783 s 649 s 1397 s 2825 s
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Table 4 shows the detection results of the SegNet, FCN, U-Net, and improved
DeepLab_v3+. The MIoU and F-score of DeepLab_v3+ were at 0.84 and 0.93, nearly all
higher than those of SegNet, FCN, and U-Net. The detection time for DeepLab_v3+ was
at 1783 s, which was 25.2%, 46.4%, and 68.6%, respectively, lower than those of SegNet,
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FCN and U-Net. These means that the detection accuracies of the SegNet, FCN, and U-Net
are all lower than that of the improved DeepLab_v3+ despite the same accuracy (0.99) for
four of them, and the detection time cost is higher than that of the improved DeepLab_v3+.
Additionally, the detailed detection precision and detection speed ranking is in the same
descending order as: improved DeepLab_v3+ > SegNet > FCN > U-Net. That is, a higher
detection time does not mean a higher detection precision, and improved DeepLab_v3+
provides a fast and high precision network model for crack segmentation. The improved
method proposed in this study is the best choice in considering the three precision indicators
(MIoU, accuracy, and F-score) and calculation cost comprehensively, and this reversely
proves the correctness of selecting resnet50 from the five backbone networks.

Table 4. Detection results of popular pixel-level segmentation networks.

Evaluation Indicators
Popular Pixel-Level Segmentation Network

SegNet FCN U-Net Improved DeepLab_v3+

MIoU 0.84 0.78 0.77 0.84
Accuracy 0.99 0.99 0.99 0.99

F-score 0.91 0.91 0.87 0.93
Detection time (300 images) 2383 s 3326 s 5679 s 1783 s

The DeepLab_v3+ network was subsequently used to detect the fixed and registration
image, respectively. Finally, the change ratios of crack pixels were obtained. Part of the
detection results are shown in Figure 12, and most of the errors (92% of the samples) were
less than 0.3%. The detailed detection results are shown in Figure 13, and the average error
is 0.11%. These results prove the feasibility of the approach proposed in this study based
on image registration and the improved DeepLab_v3+.
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3.3. Analyses of Parameters

The neural network adopts gradient descent algorithms to obtain the optimal weights
(w) of the network, which brings the more accurate prediction results. The most used
gradient descent algorithms included stochastic gradient descent with momentum (sgdm),
root mean square propagation (rmsprop), and adaptive moment estimation (adam), and the
details were described in the reference [35]. In order to explore the most suitable gradient
descent algorithm for crack detection, the sgdm, rmsprop, and adam were used to train
the improved DeepLab_v3+, respectively. The testing results are shown in Table 5, and the
training process is shown in Figure 14.

Table 5. Detection results of the improved DeepLab_v3+ using different algorithms.

Evaluation Indicators
Gradient Descent Algorithms

Sgdm Rmsprop Adam

MIoU 0.84 0.73 0.57
Accuracy 99% 98% 95%

F-score 0.93 0.81 0.60
Training time

(450 iterations) 11,259 11,724 11,936

As shown in Table 5, the specific MIoU, accuracy, and F-score of sgdm were at 0.84,
99%, and 0.93, while those of rmsprop and adam were just at 0.73, 98% and 0.81, and 0.57,
95% and 0.60, respectively. That is, the MIoU, accuracy and F-score of sgdm were all higher
than those of rmsprop and adam. This indicates that the descending order of detection
precision is: Sgdm > rmsprop > adam. In addition, the training times for sgdm, rmsprop,
and adam were at 11,259, 11,724, and 11.936, which were very close with each other. This
indicates the slight influence of the optimizer on the training time. Therefore, the sgdm
optimizer is the best choice of gradient descent algorithm.

The learning rate is another important parameter in deep learning because it deter-
mines whether and when the loss function will converge to the local minimum. In this
study, the influences of four network models with different learning rates on the detection
results were compared, and the learning rates were set as 0.1, 0.01, 0.001, and 0.0001, re-
spectively. The network training process is shown in Figure 15, and the detection results
are shown in Table 6. The results show that different learning rates lead to significant
differences between MIoU and F-score, while the accuracy is very close. For example, the
MIoU and F-score were at 0.72 and 0.85 with the learning rate at 0.1, while they increased to
0.84 and 0.93 when the learning rate was changed to 0.0001. The accuracy for the learning
rate at 0.01, 0.001, and 0.0001 were all at 99% despite it being 98% for the learning rate at
0.01. Furthermore, the network model with the 0.001 learning rate has the highest MIoU,
accuracy, and F-score, specifically at 0.84, 99%, and 0.93, which means this model has the
highest detection precision. Additionally, the training time for the four set learning times
were at 10,635 s, 10,439 s, 11,259 s, 11,235 s, respectively, suggesting that the learning rate
does not affect the training time dramatically. Through the parametric analyses, the optimal
optimizer and learning rate are determined, which can improve the efficiency and accuracy
of the approach proposed in this study.
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Table 6. Detection results of the DeepLab_v3+ using different learning rates.

Evaluation Indicators
Learning Rate

0.1 0.01 0.001 0.0001

MIoU 0.72 0.80 0.84 0.82
Accuracy 98% 99% 99% 99%

F-score 0.85 0.90 0.93 0.91
Training time 10,635 s 10,439 s 11,259 s 11,235 s
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4. Conclusions

In this study, a new detection approach of crack changes was proposed based on the
combination of image registration and automatic crack detection (improved DeepLab_v3+).
The cracks were detected and the change ratios were obtained after the image calibration.
Compared with other popular detection algorithms and the latest approaches, the method
proposed in this study showed great advantages in improving the precision of crack
detection. In addition, the influence of the two optimizers and the learning rate of improved
DeepLab_v3+ on the training results was also studied and the optimal optimizer and
learning rate were confirmed. Based on the above research results, this study draws the
following conclusions:

1. Image registration technology can achieve the calibration of fixed and moving crack
images accurately with a high similarity;

2. Improved DeepLab_v3+ has a satisfying precision in pixel-level segmentation of
cracks with the analyses of MIoU, accuracy, and F-score;

3. The proposed crack change detection approach based on image registration and
pixel-level segmentation performed well with a negligible average error of 0.11%;

4. For the pixel-level segmentation of cracks, the most suitable optimizer and learning
rate of the improved DeepLab_v3+ are sgdm and 0.001, respectively.
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In practical engineering, it is often necessary to pay attention to the development
of cracks (for example, the growth rate of cracks). The previous detection methods can
only detect cracks and cannot obtain the development of cracks. The main challenge is
that the cameras’ positions of shooting cracks are often unfixed, so it is impossible to
calculate the accurate change of cracks. The technical contribution of this paper is to realize
the alignment of different spatial images through image registration technology, which is
more suitable for the engineering needs. The application of this technology can effectively
improve the detection level of building cracks and also provide an important support for
the stable operation of building structures.
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