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Abstract: Carbon fiber-reinforced polymer (CFRP) has many advantages as a construction/structural-
strengthening material. However, there are still concerns regarding the long-term performance of
these materials when used with reinforced concrete (RC) structures. Environmental conditions have
an adverse effect on the behavior of CFRP and the bond between these sheets and concrete. Therefore,
the durability of CFRP used for strengthening RC beams was evaluated under different environmental
scenarios, including subjection to immersion in deicing agents, tap water, and saltwater, freeze-and-
thaw cycles, and outdoor environmental changes. Laboratory tests were performed to examine
the influence of these environmental scenarios on the bonding behavior between CFRP sheets and
concrete in terms of deformations and modes of failure. Two types of test setups were performed in
this study, namely pull-off shearing and three-point bending. Forty-two concrete prisms with CFRP
were prepared and tested by using the pull-off shearing setup. It was observed that as the period of
exposure increased, noticeable effects on the CFRP sheet as well as the bond stiffness were observed.
Exposure to tap water had a greater impact than saltwater on the CFRP–concrete bond strength as
well as the CFRP. In addition, eighteen notched concrete beams strengthened with an external CFRP
were tested under three-point bending. The tap water exposure showed a 3.6% increase in the bond
strength compared to the control specimen. However, the saltwater exposure showed a 10% increase.

Keywords: environmental impacts; concrete; bond strength; CFRP; deflection; debonding

1. Introduction

Strengthening RC beams or columns by composite material has lots of advantages.
The low density, high specific strength, corrosion resistance, and ease of installation make
fiber-reinforced polymers (FRPs) a suitable technology for strengthening or rehabilitat-
ing structures. Until now, their cost and long-term behavior make their development
doubtable. Enormous costs associated with synthetic FRPs may limit their use in several
low-budget applications [1,2]. Low-cost and easily available fiber rope-reinforced polymer
composites were used to strengthen concrete columns [1]. Moreover, low-cost glass fiber
sheets were used to upgrade concrete with waste aggregate [2]. Carbon fiber-reinforced
polymer (CFRP) has superior mechanical properties and higher tensile strength, stiffness,
and durability compared with other fiber-based systems. Therefore, CFRP was the strength-
ening technique in this study. The bond strength between CFRP and concrete is the main
factor for controlling failures of strengthened structures [3]. The rough surface of CFRP
showed superior bond strength when compared to the smooth surface of CFRP [4]. The
geometry, in terms of length and width, of CFRP is a major factor that shapes the bond
strength [5]. The durability of CFRP materials in different environments is one of the pri-
mary issues that has limited the development of these materials in the application of some
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infrastructure [6]. The CFRP materials are usually very sensitive to different environmental
conditions, mostly moisture and temperature [7]. With regard to application, it is crucial for
a designer to consider not only the short-term characteristics of the materials but also the
rates of deterioration of FRP composites as a function of exposure condition and time [8].

Previous studies examined the effect of exposure to different environmental conditions
on the fabric attached to concrete using an epoxy adhesive or cement-based adhesive [8–12].
The degradation of the bond between the CFRP and concrete was attributed to the dete-
rioration of the concrete surface [9]. The effect of extreme temperature (over 200 ◦C) on
concrete prisms with attached CFRP using epoxy adhesive was investigated. The epoxy
adhesive bond strength decreased gradually as the temperature increased [10]. The thermal
cycles in the air increased the interfacial fracture energy of the CFRP–concrete whereas
the interfacial fracture energy was reduced due to the thermal cycles in water. Thermal
cycles in water caused the failure mode to change from concrete cohesive failure to primer–
concrete interfacial debonding [11]. The bond behavior of the FRP–concrete interface under
a hygrothermal environment was studied [12]. The ultimate bearing capacity of the inter-
face was reduced by up to 27.9% after exposure to the hygrothermal environments (high
temperature and humidity).

Atadero et al. [13] tested cracked concrete beams that were repaired by using CFRP
after being exposed to environmental conditions such as moisture, chloride deicer, non-
chloride deicer, and freeze-and-thaw cycles. The exposure to moisture showed reductions
in the bond strength of the epoxy adhesive. The effects of acid environments on the bond
strength of FRP sheets bonded on the concrete surface were investigated [14]. The bond
strength of the externally bonded FRP specimens depends on both exposure type and
duration. The bond strength decreased by up to about 19.7% after increasing the exposure
duration to 250 days. Taukta et al. [15] performed tests on concrete beams that had FRP
bound to them by using epoxy adhesive. The beams were tested in different moisture
environments by using an environmental chamber at 23 ◦C and at 50 ◦C before testing.
It was found that the bond strength of the FRP and concrete decayed exponentially with
respect to the moisture content of the interface of the epoxy and concrete. The thickness of
the adhesive layers (i.e., 0.2 mm and 1 mm) affects the bonding properties and the resistance
to the water immersion [16]. The thinner the adhesive layer, the higher moisture content is
found at the adhesive/concrete interface. Water immersion altered the debonding mode
from cohesive concrete fracture to adhesive separation from the concrete substrate [16,17].
Exposure of RC elements in marine structures to an aggressive environment, where the
humidity and seawater attack, exhibited noticeable effects on the cracking and deterioration
of structures when compared to other environmental exposure [18,19]. The most damaging
condition for CFRP composites was exposure to high quantities of moisture, which caused
the fiber–matrix interface to be prone to degradation. A clearly negative effect of the
conditioning factors for the specimens with the CFRP was obtained as the conditioning
time increased because of the plasticization phenomena of the epoxy adhesive [20]. The
effects of freeze–thaw cycling on the bond between FRP and concrete were examined [21].
The bond between carbon FRP strips and concrete is not significantly damaged by up to
300 freeze–thaw cycles.

There has been much research to investigate the moisture and temperature effect on
the bond strength of the epoxy adhesive. However, limited research has been conducted on
the effects of freeze–thaw cycles and deicing chemicals on the CFRP and CFRP–concrete
bond. Moreover, the current studies mostly focused on the structural behaviors and
modes of failure of concrete members strengthened with CFRP and undergoing outdoor
environmental changes. Therefore, the present study is an attempt to expand the state of
knowledge to evaluate the durability of CFRP materials that are used for strengthening
concrete members under different environmental scenarios, including being subjected to
immersion in deicing agents, tap water, and saltwater, freeze-and-thaw cycles, and outdoor
environmental changes. Laboratory tests were performed to examine the influence of these
environmental scenarios on the bonding behavior between CFRP and concrete. Two types
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of test setups were performed in this study, namely pull-off shearing [22] and three-point
bending [23]. Forty-two concrete prisms with CFRP were prepared and tested by using the
pull-off shearing setup. In addition, eighteen short beams strengthened with an external
CFRP were tested under three-point bending.

2. Description of the Experimental Program

The experimental program was conducted by using pull-off shearing testing and
three-point bending testing of short beams to evaluate the bond strength between the CFRP
and concrete. The specimens for both testing setups were exposed to various environmental
conditions, and the results were compared to control specimens.

2.1. Pull-off Shearing Tests

Most available models for the prediction of bond characteristics between CFRP and
concrete are based on data from tests on pull-off shearing specimens [20], according to
ASTM D7522/D7522M-21 [22].

2.1.1. Details of Specimens

The experimental program was carried out on a total of 42 rectangular concrete prisms
of 152.4 mm × 152.4 mm × 203.2 mm (6 in. × 6 in. × 8 in.). This block size was chosen
to provide easy handling of the specimens during the test. The composite system was
prepared in accordance with Sika’s manufacturer’s specifications (Kansas City, MO, USA).
The unidirectional fabrics were each cut into strips of three different widths (25 mm,
50 mm, and 75 mm) and bonded to the concrete blocks after being cured, as shown in
Figure 1. These different widths were selected to consider the effect of different contact
areas between the CFRP and concrete under different environmental scenarios on the bond
strength between the two elements.
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Figure 1. Preparation of specimens. (a) Rectangular concrete prisms. (b) The CFRP bonded to the
concrete blocks.

2.1.2. Exposure Conditions

The test exposures were divided into four groups as seen in Table 1. Each group
consisted of six specimens with three different widths of CFRP ranging from 25 mm to
75 mm. The control specimens were cured in the laboratory and were tested at the same
time that the exposed specimens were tested. To evaluate the long-term durability of the
bonded CFRP, the saltwater, tap water, and outdoor changes in temperature and humidity
were the exposure conditions adopted in this study. The aggressive chloride environment,
represented by the saltwater exposure, had a salt solution of 35 g/L of NaCl (corresponding
to the salt concentration of seawater) [24]. The tap water environment was simulated
to be somewhat realistic to what would be found in the real world along a bridge deck
or underside. The tap water had a pH value of 8.5 according to the City of Columbia
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public water system (Columbia, MO, USA). The full-immersion procedures for the concrete
specimens and bonding areas were used for the saltwater and tap water, as shown in
Figure 2.

Table 1. Summary of exposure conditions used to weather the specimens.

Exposure Condition Exposure Times
(Days)

CFRP Width
(mm)

Number of
Specimens

Control 60 and 195 25, 50, and 75 6

Saltwater immersion 60 and 195 25, 50, and 75 6

Outdoor environment 60 and 195 25, 50, and 75 6

Immersion in tap water 60 and 195 25, 50, and 75 6
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For the outdoor exposure, the specimens were left in the outdoor environment for
the exposure time to expose them to various weather conditions, as shown in Figure 2c.
Temperature and precipitation data were collected from the online database of Sanborn
Field (University of Missouri 2018) for the time the specimens were exposed to the outdoor
environment (see Figure 3a). The humidity data was also collected for the same period
from the Columbia, MO History online database Weather Underground (2019), as shown
in Figure 3b. The results indicate that the samples were exposed to relative humidity
ranging from approximately 45% to 85% in addition to some precipitation during the
observed period.
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2.1.3. Test Setup

An MTS loading machine was used to conduct the double-face shear-type pull-off
shearing test [22]. This kind of loading was used to eliminate the action of the load’s
eccentricity on the CFRP–concrete interface [20]. Figure 4 displays the details of the test
setup, which consists of a cylindrical roller with a diameter of 150 mm (6 in.) to match the
width of the concrete prisms to apply a pure shear along with the interface between the
CFRP and concrete. A thick steel plate of 25 mm (1 in.) thickness with four anchor bolts
was used to fix the concrete prisms in their position during the test. The CFRP strip was
wrapped around the cylindrical roller, and the two ends were bonded to the sides of the
concrete prism by using epoxy resin. The steel roller was directly attached to the load cell
by using mechanical fasteners (see Figure 4).

2.2. Three-Point Bending Tests

The three-point-bending tests are the most relevant models for the prediction of the
CFRP flexural bond [19].

2.2.1. Details of Specimens

A total of 18 concrete prisms of dimensions 100 mm × 100 mm × 355 mm (4 in. × 4 in.
× 14 in.) were cast and cured for 28 days. These dimensions were selected according to
ASTM C78/C78M-18 [25]. Additionally, six concrete cylinders 100 mm × 200 mm (4 in.
× 8 in.) were cast in accordance with ASTM C31/C31M-21a [26]. After the completion of
curing, a circular saw with a 3 mm (1/8 in.) wide blade was used to make a cut across the
tension side of the beam perpendicular to the edge (short ways) with a depth of 25 mm
(1 in.), as shown in Figure 5. The initial cut was meant to simulate an initial crack that can
occur in concrete beams due to various load applications or weather [16]. The fabric sheet
was cut into 25 mm × 250 mm (1 in. × 10 in.) strips and bound to the tension side of the
beam centered in the middle, as shown in Figure 5. The epoxy was cured for seven days to
reach maximum strength. After curing the strengthened specimens, the concrete beams
were ready to be exposed to the respective environments.
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2.2.2. Exposure Conditions

In the current test, three specimens with CFRP strips were used in each exposure.
The environments that were tested were a controlled environment, wet-and-dry cycles in
both tap water and saltwater, freeze-and-thaw cycles in both a chloride deicer and a non-
chloride-based deicer, and freeze-and-thaw cycles in tap water. The control environment
was a temperature-controlled lab where the beams were placed on their compression sides
so that the CFRP was not touching any surface. The temperature in the room was set to
room temperature, 21 ◦C (70 ◦F). The beams were then left for 90 days before being tested
in flexure. The beams were placed inside of a 16-gallon tote, which was filled up with tap
water. The beams had a 6.5 mm (1/4 in.) submerged depth in the tap water. The procedure
for the saltwater exposure was exactly the same as the tap water. The only difference
was use of a saltwater solution instead of tap water. To prepare the saltwater solution,
two liters of water were measured out, and 70 g of regular table salt were used (35 g per
liter). The salt was thoroughly mixed for approximately one minute with the water. Then
the saltwater solution was poured into the tote until the beams were submerged at least
6.5 mm (1/4 in.) covering the CFRP–concrete bond. The beams exposed to the tap water
and saltwater were subjected to a kind of fatigue testing. These specimens were immersed
in their respective baths for 24 h, and then they were taken out to dry for another 24 h at
room temperature with a relative humidity of 45%. This fatigue testing is more realistic
than simply submerging the beams in tap and saltwater. The total number of wet-and-dry
cycles was 30 for both the tap and saltwater exposures, which means the total duration of
these exposures was 60 days. After each wet cycle, the containers were rinsed out and a
new solution was prepared.

For the freeze-and-thaw cycles, only 30 cycles of freezing and thawing were completed
by using a small chest freezer according to ASTM C666 / C666M-15 [27]. The temperature
inside the chest freezer was set to −29 ◦C (−20 ◦F), and the temperature at which the beams
were set to thaw in was approximately 21 ◦C (70 ◦F). The exposure to deicing agents was
tested by using a modified version of ASTM C672/C672M-12 [28]. The two types of deicers
used in this testing were Meltdown Apex (as a magnesium chloride-based deicer) and
Apogee (as a non-chloride-based deicer), provided by EnviroTech Services, Inc. (Greeley,
CO, USA. The compositions and information on the ingredients of the two agents are listed
in Table 2. The deicers were diluted with water to enable the used chest freezer to fully
freeze them. The deicer-to-water ratio (by mass) of 1:3 was chosen for these tests. After the
solution was prepared, the deicer and water solution were poured into the tote containing
the concrete beams for full immersion. Then they were placed with the lid inside the freezer
and taken out after at least 16 h of freezing. The beams were left to thaw for at least eight
hours before being again placed inside the freezer. After every five cycles, an observation of
the surface condition was made, the totes were cleaned, the concrete’s surface was flushed,
and the deicing solution was replaced.

Table 2. Composition/information on ingredients (provided by EnviroTech Services, Inc., Greeley,
CO, USA).

MeltDown Apex Apogee

Component Amount Component Amount

Water 65–75% Water Balance

Magnesium Chloride 25–35% Proprietary Organic Based
Components 75–85%

Corrosion Inhibitor <1.0% Proprietary Performance Additive 2–6%
Performance Additive <1.0% Relative Density 1.15–1.27

Relative Density 1.24–1.34
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2.2.3. Test Setup

After the concrete beams had been exposed to their respective environments for the
designated times, they were ready to be tested in three-point bending to see how the CFRP–
concrete bond behaved. The test began with placing the beams onto the MTS loading
machine’s supports and configuring the beam so that the supports were 50 mm (2 in.) away
from the ends of the beam with a clear span of 255 mm (10 in.), as shown in Figure 6. The
loading machine was then activated and proceeded to apply a static load downward at a
rate of 0.5 mm/minute (0.02 in./minute) until the beam failed. The MTS loading machine’s
built-in LVDT and load cell were used to monitor the displacement as well as the applied
load, respectively, for each specimen.
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2.3. Material Properties

Ready-mix concrete was used for the construction of the beams with a maximum size
of aggregate of 9.5 mm (3/8 in.). The average compressive strength of concrete at the age of
28 days was 38.9 MPa (5648 psi). A unidirectional carbon fiber tape, Sikawrap Hex-230C,
was used in the strengthening process with an effective thickness of 0.38 mm. The dry
fiber properties, according to the manufacturer (Sika, Kansas City, MO, USA), are listed
in Table 3. Two-component structural epoxy (Sikadur 330, Sika, Kansas City, MO, USA)
was used as the glue material to bond the fabric to the concrete surface. The mixing ratio of
the epoxy was 4 to 1 of resin to hardener by weight. The mechanical properties of epoxy
adhesive are listed in Table 4.
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Table 3. Mechanical properties of CFRP strips (provided by the manufacturer).

Fiber orientation 0◦

Areal weight 450 g/m2

Fabric design thickness 0.38 mm (based on the total area of carbon fibers)

Tensile strength of fibers 986 MPa

Tensile E—modulus of fibers 95837 MPa

Elongation at break 2.1%

Table 4. Mechanical properties of epoxy adhesive (provided by the manufacturer).

Appearance Yellow

Density 1.1 g/cm3

Mixing ratio 4:1 by weight (at +25 C)

Open time 30 min

Tensile strength 33.8 MPa

E-modulus (Flexural) 3488 MPa

Flexural strength 60.7 MPa

2.4. Application of the CFRP Strips

The fabric sheets were adhered to the concrete specimens by using an external bond-
strengthening technique. First, the concrete surface was sanded with an abrasive dry
grinder to remove the mortar to avoid any uneven surface and loading. Then, the fabric
sheet was cut into the desired strip widths. The mixed adhesive was applied to the prepared
substrate by using a brush. The fabric was rolled over with a roller-shaped comb to be
immersed totally in the epoxy. A plastic laminating roller was used to adhere the fabric
infused with resin to the concrete surface and to remove the air bubbles. Finally, all
strengthened beams were cured at room temperature (25 ◦C) for seven days before being
tested. After the epoxy was cured, the concrete specimens were ready to be tested in their
respective environments.

3. Experimental Results and Discussions
3.1. The Pull-off Shearing Test Results

The applied load versus deflections for the tested specimens are shown in Figure 7.
The tested specimens experienced undesired modes of failure. The CFRP strips failed
instead of the CFRP–concrete bond failure, as shown in Figure 8. After 60 days of exposure
to the saltwater, reductions in the CFRP strength were 20%, 26%, and 18% for the 25 mm,
50 mm, and 75 mm widths, respectively. However, the effect of tap water had a greater
adverse effect on the CFRP strength. Total reductions of 61%, 52%, and 51% of the CFRP
strength were obtained for the 25 mm, 50 mm, and 75 mm widths, respectively, after the
exposure to tap water (see Figure 9). The peak loads from the pull-off shearing tests after
60 and 195 days of exposure are listed in Table 5. As the period of exposure increased to
195 days, more reductions in the CFRP strength were obtained (55%, 30%, and 21% for
the 25 mm, 50 mm, and 75 mm widths, respectively), as shown in Figure 10 and listed in
Table 5. The same failure modes were obtained.
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Table 5. Peak loads from the pull-off shearing tests after 60 and 195 days of exposure.

Exposure
Condition

CFRP Width (mm)
60 Days of Exposure 195 Days of Exposure

Peak Load
(kN) % Change Peak Load

(kN) % Change

Control

25 8.8 - 10.2 -

50 20.6 - 18.5 -

75 28.4 - 23.2 -

Saltwater

25 7.0 20 10.1 1

50 15.2 26 18.3 2

75 23.3 18 16.8 27

Tap water

25 3.4 61 4.7 54

50 10.0 52 12.6 32

75 13.9 51 19.3 17

Outdoor
environment

25 Lost data * - 6.4 38

50 20.0 3 13.4 28

75 27.1 5 21.3 8

* The test data was lost due to an error from the MTS loading machine.

Comparing the strength and stiffness of the outdoor-exposed CFRP and their control
partners, the outdoor environment can be considered as having a negligible effect after
60 days of exposure, as listed in Table 5. However, after 195 days, this environment had
an adverse effect on the CFRP strength, as shown in Figure 11. The drops in the CFRP
strength were 38%, 28%, and 8%, as listed in Table 5. The combined effect of moisture and
ultraviolet rays caused this reduction effect. This indicated that the effect of the outdoor
environment can be considered more damaging to the CFRP-strengthening technique than
the saltwater as the time of exposure increases. Figure 12 shows the effect of exposure time
on the strength of the 75 mm CFRP sheets. It can be seen from Figure 12 that as the time
of exposure increased, there was a degradation in the CFRP strength, except for samples
exposed to the tap water. This could be attributed to the improvement in the concrete
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tensile strength experienced by the exposure to tap water, which delayed the debonding of
the CFRP. The bond strength in this experiment was greater than the strength of the CFRP.
Therefore, the typical failure mode was a rupture in the CFRP strips. In order to obtain
failure in the bond between the CFRP strips and concrete, the bond area should be reduced.
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3.2. Three-Point Bending Test Results

The results from the three-point bending tests are listed in Table 6 and shown in
Figure 13. For the control specimens, the load increased steadily until hair cracks emerged
at the loading level of 9.3 kN, and then the initial cracks continuously propagated as the
applied load increased. The average failure load of these specimens was 11.4 kN. The
failure mode was debonding of the CFRP.

Table 6. Peak loads from the three-point bending tests after 30 cycles of exposure.

Exposure Condition Peak Load (kN) % Change Failure MODE

Control 11.4 - Debonding

Tap water 11.8 +3.5 Debonding

Saltwater 12.6 +10.5 Debonding

Chloride Deicer 11.5 +0.8 Debonding

Non-Chloride Deicer 9.6 −15.7 Debonding

Freeze and Thaw cycles 9.1 −20.2 Debonding

The flexural behavior of the specimens under the effect of wet-and-dry cycles in tap
water is shown in Figure 13b. The load steadily increased with time and the initial crack
formed at the loading level of 8.9 kN. The average failure load was 11.8 kN, which was 3.6%
higher than that of the control specimens. This could be attributed to the improvement in
the concrete tensile strength experienced by the exposure to tap water, which delayed the
debonding of the CFRP. After completion of 30 wet-and-dry cycles in saltwater, there were
no major changes in the appearance of these specimens other than white specks on the
CFRP. They were most likely caused by salt that recrystallized in the drying process. The
effect of the wet-and-dry cycles in saltwater is illustrated in Figure 13c. Multiple hair cracks
were initiated before the specimens reached their maximum loads. The average maximum
load was 12.6 kN, which was 10% more than the average maximum load of the control
specimens. The concrete surface was supposed to be affected by chlorides in a negative
way. However, it was the same scenario for the wet-and-dry cycles in tap water. The only
difference was that slightly more concrete was attached to the CFRP after debonding.
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The load versus deflection curves for the concrete specimens exposed to freeze-and-
thaw cycles in chloride-based deicer are shown in Figure 13d. The average maximum load
was 11.5 kN, which was 0.42% higher than that one for the control specimens. On the other
hand, the flexure behaviors of the non-chloride-based concrete specimens are presented
in Figure 13e. Two specimens experienced premature failure at the maximum loads of
5.6 kN and 4.7 kN. The mode of failure for these two specimens was concrete failure around
the CFRP without debonding. Figure 14a shows the large cracks that were formed in the
first two specimens. By excluding the results of these two specimens, the maximum load
was 9.6 kN, which was 15.7% less than the control specimens. The results confirmed side
effects on the concrete strength due to the exposure to the non-chloride-based deicer, which
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caused failure in the concrete instead of the CFRP. Although the third specimen experienced
debonding of the CFRP (see Figure 14b), there was much concrete, which was bound to
the epoxy. The epoxy was firmly bound to the concrete surface. That was not the same
case as with the tap water and saltwater exposures. The flexure curves for the concrete
specimens undergoing freeze-and-thaw cycles in tap water are shown in Figure 13f. The
average maximum load was 9.1 kN, which was 20.2% less than the control specimens.
Deterioration occurred in the epoxy strength due to the exposure to freeze-and-thaw cycles
in tap water. Comparisons of the three-point bending test results are presented in Figure 15.
Additional comparisons between the average peak loads of each group with error bars are
provided in Figure 16. In this figure, the bar heights represent the average peak load and
the black error bar gives information on how the scatter of the results between different
specimens of a given group. The measurements in the group of tap water are the most
precise and the least precise results are for the group of non-chloride deicer. A previous
study confirmed the same increase in the bond strength and peak loads after exposure to
saline environments [29].
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4. Conclusions

The durability of CFRP materials used for strengthening RC beams was tested under
various environmental scenarios including subjection to immersion in deicing agents,
tap water, and saltwater, freeze-and-thaw cycles, and outdoor environmental changes.
Laboratory tests were performed to examine the influence of these environmental scenarios
on the bond behavior between the CFRP and concrete. Two types of test setups were
performed in this study, namely pull-off shearing and three-point bending. Forty-two
concrete prisms with CFRP were prepared and tested by using the pull-off shearing setup.
In addition, eighteen short concrete beams strengthened with an external CFRP were tested
under three-point bending. Based on the experimental results, the following conclusions
could be drawn:

1. It was observed that as the period of exposure increased, a noticeable effect on the
stiffness of the CFRP was observed.

2. Tap water exposure had a greater impact on the CFRP–concrete bond strength and
on the CFRP than the saltwater exposure. The strength was reduced after 60 days of
exposure by an average of 5% and 26% for the saltwater and tap water exposures,
respectively, for the 25 mm CFRP width.

3. It can be seen that after 60 days of outdoor exposure, the strength of the CFRP was
not affected. However, after 195 days, this environment had an adverse effect on
the CFRP strength. Increasing the period of outdoor exposure tends to weaken the
CFRP strength.

4. From the three-point bending testing, it was observed that tap water showed a 3.6%
increase in the bond strength compared to the control specimens. However, the
saltwater showed a 10% increase in the bond strength.

5. Chloride deicer slightly affected strength, whereas non-chloride deicer reduced the
strength by 42%.

6. In this study, it was observed that freeze-and-thaw cycles in tap water reduced the
strength by 20.2% compared to the control specimens.
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