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Abstract: Non-probabilistic reliability analysis has great developmental potential in the field of
structural reliability analysis, as it is often difficult to obtain enough samples to construct an accurate
probability distribution function of random variables based on probabilistic theory. In practical
engineering cases, the performance function (PF) is commonly implicit. Monte Carlo simulation
(MCS) is commonly used for structural reliability analysis with implicit PFs. However, MCS requires
the calculation of thousands of PF values. Such calculation could be time-consuming when the
structural systems are complicated, and numerical analysis procedures such as the finite element
method have to be adopted to obtain the PF values. To address this issue, this paper presents
a grasshopper optimization algorithm-based response surface method (RSM). First, the method
employs a quadratic polynomial to approximate the implicit PF with a small set of the actual values
of the implicit PF. Second, the grasshopper optimization algorithm (GOA) is used to search for
the global optimal solution of the scaling factor of the convex set since the problem of solving the
reliability index is transformed into an unconstrained optimal problem. During the search process
in the GOA, a dynamic response surface updating strategy is used to improve the approximate
accuracy near the current optimal point to improve the computing efficiency. Two mathematical
examples and two engineering structure examples that use the proposed method are given to verify
its feasibility. The results compare favorably with those of MCS. The proposed method can be
non-invasively combined with finite element analysis software to solve non-probabilistic reliability
analysis problems of structures with implicit PF with high efficiency and high accuracy.

Keywords: non-probabilistic reliability analysis; response surface method; grasshopper optimization
algorithm; finite element analysis

1. Introduction

To address the uncertain factors in a structure, it is necessary to reasonably select a
mathematical model that quantifies the uncertain factors and structural reliability. Many
analytical- and simulation-based methods have been developed to calculate the failure prob-
ability and reliability index of structures [1,2]. Among them, Monte Carlo simulation (MCS)
is probably the most widely used high-precision structural reliability analysis method.
However, when the probability of structural failure is small, MCS often needs to simulate a
large number of samples to obtain accurate probability values, which will increase a lot of
computational costs. Some improved methods, such as the subset simulation method [3],
the line sampling method [4], and the importance sampling method (IS) [5], still have a
high computation when facing complex problems. Analytical methods, such as first-order
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reliability methods (FORMs) and second-order reliability methods (SORMs), are computa-
tionally efficient but are often not stable enough in the face of structures with implicit PFs.
For some improved algorithms, such as the directional stability transformation method
(DSTM) [6] and finite-step adaptive length (FAL) [7], it is difficult to solve the convex set
reliability problem [8]. On the other hand, by the type of random variable in the structures,
Cremona [9] divided structural reliability models into random reliability models, fuzzy
reliability models, non-probabilistic reliability models, and mixtures of the three models
according to the mechanism of uncertainty factors. Among the various uncertainty models,
the most widely used is the probabilistic reliability model based on probability theory and
stochastic processes [10–12]. However, it is difficult to obtain sufficient statistical sample
data in practical engineering structures to construct the probability distribution function
of a probabilistic model. Additionally, a small fitting error of the probability distribution
function of a random reliability model can lead to a large structural reliability calculation
error [13]. This is especially true when there are few samples with which the model can
calculate [14].

To address the condition of insufficient samples, in 1993, Ben-Haim [15] and Elishakoff [16]
proposed a non-probabilistic reliability model for structural analysis and applied the
maximum uncertainty allowed in the system to evaluate the structural reliability. Non-
probabilistic reliability theory uses an artificially defined set model to describe the uncertain
variables of the structure. The non-probabilistic reliability model only needs the range of
the uncertain variables and then constructs the mapping relationship between the uncertain
variables and the corresponding feasible domain of the structure under the combined
action of multiple variables. It can be seen from this that it is particularly important to use
the non-probabilistic reliability method in the reliability analysis of complex engineering
structures. Due to factors such as safety and cost, it is difficult to carry out enough field
experiments to obtain enough actual samples to establish reliable probability distribution
functions in complex engineering structures [17]. Furthermore, small deviations in the
probability density function due to data noise are likely to lead to large result errors [13].
However, in the same situation, using a small number of field experiments, the range
of random variables can be quickly obtained, and then a structural reliability analysis
with high reliability can be constructed through the non-probabilistic reliability method.
Then, by comparing the set model and the limit state surface defined by the performance
function (PF), the structural reliability index can be evaluated. Subsequently, scholars
have conducted many studies that can be summarized into two categories: proposing
different non-probabilistic reliability models aimed at better describing multivariable
problems and studying how to quantify non-probabilistic reliability indicators according
to different models. In 1998, Qiu and Elishakoff [18] used interval theory to establish
an interval model to optimize a six-bar truss. In 2011, Wang et al. [19,20] proposed a
non-probabilistic reliability model measurement index based on an interval model, where
the index was defined by the ratio of the volume of the safety domain of the structure to
the total volume of the basic interval variable domain. The interval model can only deal
with independent variables [21]; therefore, scholars further proposed ellipsoid models to
deal with dependent variables. In 1998, Pantelides et al. [22] proposed an ellipsoid model
and compared the structural analysis results of different working conditions based on
the ellipsoid model. In 2011, Jiang et al. [23] proposed a modeling method to establish a
multidimensional ellipsoid model. To make the dependence of uncertain variables explicit,
they introduced a covariance matrix to evaluate the correlations of dependent variables.
In 2016, Kang and Zhang [24] constructed a mathematical formula system to develop a
compact ellipsoid model. Recently, to address the problem of including independent and
dependent variables, scholars have proposed more general models. In 2015, Jiang et al. [21]
proposed a multidimensional parallelepiped model that can efficiently deal with complex
‘multi-source uncertainty’ problems. Guo et al. [25] proposed a mixed model composed of
a hypercube interval model and a hyper-ellipsoid model. In 2021, Cao et al. [26] proposed a
quantifying strategy for non-probabilistic uncertainties by combining the general polygonal
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convex set model and cluster polygonal convex set model. However, with the development
of non-probabilistic reliability models and quantitative indices of reliability, solving non-
probabilistic reliability problems quickly and accurately has become a restriction on related
field development.

To address the above problems, scholars have explored many methods. Jiang et al. [23]
applied the first-order reliability method (FORM) to a non-probabilistic convex model based
on multidimensional ellipsoids for uncertainty. Wang et al. [27] proposed an improved
second-order reliability method (SORM) for reliability analysis in the presence of both
random and interval variables. These methods perform well in reliability analysis with
explicit PFs; however, in practical engineering cases, the PF is commonly implicit. Therefore,
it is difficult to obtain the exact boundaries of the structural failure domain and the reliable
domain. For more complex structures, the reliability can only be calculated by numerical
simulation methods such as finite element analysis (FEA), which are very time-consuming
in most practical engineering applications. Therefore, the use of an explicit surrogate model
of PFs for structural reliability analysis has become mainstream. One of the most commonly
used methods is the response surface method (RSM). In 1989, Faravelli [28] first proposed a
quadratic polynomial regression model to approximate a function, and this method is also
called the classical RSM. The response surface can quickly and accurately fit an implicit
PF and, at the same time, can eliminate the interference caused by sample noise through
probabilistic methods. RSMs can be simply divided into two types: regression-based
models and interpolation-based models [29]. Regression-based models, such as Gaussian
process regression [12,30,31], use the probabilistic properties of known samples to perform
regression analysis to fit functions in the feasible domain. An alternative model is based on
general polynomial chaos expansion (gPCE) [32–34]. In this surrogate model, the random
variables are placed in the random space expanded by orthogonal polynomials. The
coefficients of each dimension are multiplied by the corresponding orthogonal polynomials,
and then added to obtain the explicit surrogate model of the implicit PF. Interpolation-based
models, such as support vector machines [35,36] and artificial neural networks [37–39],
correct the values of the weight parameters of the model by learning the characteristics of
the known samples to interpolate the function in the feasible domain. However, the RSMs
mentioned above are all aimed at probabilistic reliability, and research on RSMs aimed at
non-probabilistic reliability is still very rare.

This paper proposes a grasshopper optimization algorithm (GOA)-based RSM for
the non-probabilistic reliability analysis of structures with implicit PFs. In this method,
a quadratic polynomial response surface is presented to fit the PF. Notably, for general
engineering structures, although the newly proposed RSM has high accuracy, the fitting
speed is slow. Additionally, the hyper-parameters in models such as support vector machine
(SVM) are difficult to determine without manual parameter adjustment [40]. In contrast,
the application of the quadratic polynomial RSM in the field of probabilistic reliability is
very mature [41] and can be quickly fitted while largely guaranteeing the fitting accuracy
in general structures. Then, the proposed method uses a dynamic fitting strategy to find
the approximate location of the generalized design point and then performs local fitting of
the PF around the generalized design point. To find the globally optimal solution faster
in the process of calculating the non-probabilistic reliability index, the GOA is used to
search for the reliability index and optimal design point of the structure. This paper is
organized as follows: Section 2 introduces the convex model theory to quantify the non-
probabilistic reliability with the reliability index. Section 3 presents the framework of the
proposed method. According to the framework, Section 4 introduces the key technologies
of the proposed method. Section 5 introduces the detailed implementation of the proposed
method based on the key technologies. Section 6 gives four examples—two mathematical
examples and two engineering structure examples—to verify the feasibility of the proposed
method. Finally, Section 7 summarizes the conclusion for the proposed method according
to the examples.
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2. Reliability Index of Non-Probabilistic Reliability

A non-probabilistic reliability model is an effective way to deal with structures with
insufficient samples. The question arises of how to characterize the safety of structures in
a non-probabilistic setting. Many scholars have proposed multiple reliability indices to
quantify the non-probabilistic reliability [42–44]. The use of a scaling factor for convex sets
is one of the most common methods.

According to the properties of the convex model, the total uncertainty of a structure
is the intersection set of m convex sets of all uncertainties [37]. This intersection set can
also be considered a feasible domain for the structure to remain stable under the impact of
multiple uncertain variables. It can be represented as:

X(α, X) =
n
∩

i=1
Xi =

{
X = (x1, . . . , xn) : xi ∈ Xj(αi, xi), j = 1, . . . , m,

X1 = (x1, . . . , xn1), . . . , Xm = (xnm−1+1, . . . , xnm), n = nm

}
(1)

where α = {α1, α2, . . . , αn} is the size parameter of the convex set family of total uncertain
variables, X = {x1, x2, . . . , xn} is the position parameter of the convex set family of total
uncertain variables, and Xm = (xnm−1+1, . . . , xnm) represents a subset of uncertain variables
with the same convex set. The stability of the structure under a certain working condition
can be determined by Equation (1).

The scale factor λ can be used to freely scale the intersection set in Equation (1). The
scaled intersection set is as follows:

X(λ, α, X) =
n
∩

i=1
Xi =

{
X = (x1, . . . , xn) : xi ∈ Xj(λαi, xi), j = 1, . . . , m,
X1 = (x1, . . . , xn1 ), . . . , Xm = (xnm−1+1, . . . , xnm ), n = nm

}
(2)

The factor acts on the size parameter of each convex set. When the above intersection
set in Equation (2) is increased by the factor λ to intersect the failure domain divided by
the PF, this indicates that the structure is in a failure state under some combination of
uncertain variables. Therefore, λ must be reduced until the intersection is tangent to the
failure domain. This tangent point represents the generalized design point of the structure
on the PF [45]. Figure 1 shows the non-probabilistic reliability index of a PF considering
two uncertain variables in x-space. The failure domain is divided by PF g(X) = 0, and the
blue solid area denotes the normalized convex model. It is defined by the intersection of an
ellipsoid convex set X1 and an interval convex set X2. When the convex set expands to be
tangent to the PF, the value of λ is the non-probabilistic reliability index η, and the tangent
point A is the generalized design point.

Therefore, the minimum λ value can be defined as the reliability index η of structural
reliability as follows:

η = min(λ)

s.t.



M = g(x1, x2, . . . , xn) ≤ 0
ρi(xi, xi) ≤ λαi
X1 = (x1, . . . , xn) ∈ X1(α1, X1)
. . .
Xj = (xnj−1 , . . . , xnj) ∈ Xj(αj, Xj)

. . .
Xm = (xnm−1+1, . . . , xnm) ∈ Xm(αm, Xm), nm = n

(3)

The index η can be used to simply measure the degree of non-probabilistic reliability
to judge whether the structure is in a safe or failure state. The structural reliability problem
is then transformed into the problem of finding the optimal solution of η.
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Figure 1. Schematic of the non-probabilistic reliability index based on a convex set model.

The scaling factor of the convex set is used to obtain the optimization formula of η.
The optimization formula is obtained by transforming Equation (3) into an unconstrained
optimization problem through the penalty method:

minη = λ + P ·
{

max[0, g(X)]2 +
m

∑
i=1

max[0, ρi(xi, xi)− λαi]
2

}
(4)

where ρ(x, x) is the functional relation of the convex set model and P is the penalty coeffi-
cient, which is generally a large constant. Finally, the non-probabilistic reliability problem is
transformed into the problem of finding the optimal solution of Equation (4), which is based
on the convex set model X and PF g(X). In other words, Equation (4) can be considered the
fitness function of some optimization algorithm, and the optimal solution can be sought.

3. Framework of the Proposed Method

To solve non-probabilistic reliability problems quickly and accurately, there are two
possible ways: (1) while ensuring the accuracy of calculation, the time of performing FEA
should be reduced as much as possible; that is, the number of calls to the structural PF
should be reduced; (2) while ensuring accuracy, the number of samples required by the
surrogate model should be reduced as much as possible; that is, the fitting time of the
surrogate model should be reduced. As it is also difficult to obtain sufficient samples in
practical engineering cases, a dynamic updating mechanism can be used to correct the
fitting errors of the surrogate model in local areas on the basis of small samples. The
framework of the dynamic surrogate model for non-probabilistic reliability analysis is
shown in Figure 2. x* and η are the optimal design point and reliability index searched by
the optimization process.
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To establish the framework, the dynamic surrogate model needs to include the follow-
ing three parts: (1) the response surface model; (2) the optimization process; and (3) the
dynamic updating process. The first part constructs the response surface model to fit the PF
and constructs the fitness function in Equation (4) for non-probabilistic reliability analysis.
The second part uses optimization methods to find the optimal value of the fitness function.
The third part uses the searched optimal design point as the new center point to construct
new sample points and refit the PF if the output does not reach convergence. Finally, the
iteration reaches convergence and outputs the optimal solution. These three parts make the
computational cost of structural reliability very low. The key technologies of each part of
the proposed method are presented in Section 4.

4. Key Technologies of the Proposed Method
4.1. Flexible Construction of the Response Surface with a Small Dataset

To construct the response surface function, a sample dataset related to the uncertain
variables must be obtained. The initial sample datasets are constituted by a series of points
xi (i = 1, 2, . . . , n) and a series of corresponding PF values zi calculated by FEA. The quality
of the sample points directly affects whether the quadratic polynomial response surface
can approximate the real PF well.

In traditional structure reliability analysis, the methods of sample point design com-
monly used in response surface construction are the random sampling design, two-level
factorial design [46,47], central composite factorial design [28], Bucher design [48], Latin
hypercube sampling design [49], IS design [5,50], and directional simulation [51]. The
sampling design method this paper uses is the Bucher design. This is because the num-
ber of sample points constructed by the Bucher design grows more slowly than that of
other design methods when the number of undetermined variables increases. When the
structure is complex and the uncertain variables have a complex high-dimensional form,
an increasing number of sample points will reduce the efficiency of fitting the response
surface. For example, when there are n factors, the two-level factorial design will construct
2n sample points, and the central composite factorial design will construct 2n+ 2n + 1
sample points. Both grow exponentially in number. In contrast, the Bucher design uses the
difference set between the central composite factorial design and two-level factorial design,
constructing only 2n + 1 sample points, which is linearly increasing. The sampling method
in the two-dimensional condition is shown in Figure 3:
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In Figure 3, the center of the initial sample points is the position parameter x* = (x1, x2, . . . , xn).
The vertical and horizontal offset distances are kf times the size parameter αi (interval model
k = 1, ellipsoid model k = ei).

After constructing the initial sample points, the FEM is used to calculate the PF values of
the sample points. The obtained function values g(x1, x2, . . . , xn) and g(x1, x2, . . . , xi ± kfαi, . . . ,
xn) and the sample points will be combined by a one-to-one correspondence into 2n + 1
samples of the response surface model.

In this paper, a polynomial response surface is used to fit the PF. When a dynamic
fitting strategy is employed, the quadratic polynomial response surface does not need to
represent the response of a nonlinear model to multiple uncertainty parameters over the
entire feasible region. Instead, it is only necessary to respond to the nonlinear model of
the uncertainty parameters near the generalized design point, that is, to realize the local
fitting of the response surface near the generalized design point. In local fitting, since the
local PF itself is not too complicated, the use of high-order polynomials will not greatly
improve the accuracy but will increase a lot of computational costs. So, the use of quadratic
polynomials to fit nonlinear PFs is sufficient to achieve high-precision fitting. Simple
quadratic polynomials are usually used, as follows:

Z = g(X) ≈ Zr = ĝ(X) = A +
n

∑
i=1

biXi +
n

∑
i=1

ciX2
i +

n

∑
1≤i<j≤n

dijXiXj (5)

where X are the basic random variables of the structure; a, bi, ci, and dij are the undetermined
coefficients of the polynomial; g(X) is the real PF; and ĝ(X) is the quadratic polynomial
response surface function.

Given the variables X, the corresponding value ĝ(X) is calculated by the FEM. Then,
the undetermined coefficients can be solved with the following equation:

ĝ(X) = λA (6)

where λ =(A, b1, b2, . . . , bn, c1, c2, . . . , cn, d1, . . . , dn)
T, ĝ(X) = (ĝ1, ĝ2, . . . , ĝ2n+1)

T,
and A is the coefficient matrix.

To make the response surface fit the real PF better near the checking point, a quadratic
polynomial without a cross-product term is usually selected, as follows:

Zr = ĝ(X) = A +
n

∑
i=1

biXi +
n

∑
i=1

ciX2
i (7)
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Note that in the non-probabilistic reliability model, if X is a non-probabilistic random
variable, the quadratic polynomial response surface function is selected by the above for-
mula. In the case of two random variables X and Y, the response surface model expressed
in Equation (7) does not consider the cross product term of random variables; that is, it is
equivalent to two variables being independent variables. Therefore, the quadratic poly-
nomial response surface in this case can be obtained by adding the quadratic polynomial
constructed by X and the quadratic polynomial constructed by Y, and can be expressed as
the following Equation (8):

Zr = ĝ(X) = A +
n

∑
i=1

biXi +
m

∑
i=1

ciYi +
n

∑
i=1

diX2
i +

m

∑
i=1

eiY2
i (8)

The explicit quadratic polynomial response surface model established above is ob-
tained by fitting the implicit PF with sample points. Therefore, the response surface model
can be used to replace the PF to divide the structural reliability domain and failure domain
and replace the PF to participate in the non-probabilistic reliability analysis of the structure,
thus avoiding the impediment of the implicit PF to the structural reliability analysis. Based
on the response surface function Equation (8), the optimization problem Equation (4) can
be established to determine the non-probabilistic reliability.

4.2. Quickly Searching for the Global Optimal Solution Using the GOA

Due to the diversity of random variables in the structure, the PFs used for structural
reliability analysis in engineering structures are often implicit multimodal functions, which
means Equation (4) has multiple local optimal solutions. Traditional optimization methods
are based on gradient descent to find the global optimum, which often leads to local
optimization [52]. Nature-inspired algorithms, such as the genetic algorithm (GA) [53],
particle swarm algorithm (PSO) [54], ant colony algorithm (AC) [55], etc., create random
input values as candidate optimization schemes. Then, iterative search for the global
optimum is achieved by evaluating each scheme, observing the target value, and changing
and combining schemes according to the output. However, these algorithms still experience
many difficulties in solving complex optimization problems [56]. For example, PSO lacks
dynamic adjustment of the search speed and falls into local optimization. GA has a strong
global optimization ability but weak local search ability, which makes it difficult to converge
quickly. The grasshopper algorithm (GOA) [57] has an adaptively adjusted search speed
and can be well combined with non-probabilistic structural reliability solution methods
to speed up the solution process [58]. Therefore, GOA becomes the optimization method
used in this paper to find the optimal solution of the fitness function Equation (4).

By observing and simulating the collective behavior of grasshopper swarms as they
search for food, in 2017, Saremi et al. [57] proposed the grasshopper optimization algorithm
(GOA). The basic idea of the GOA is as follows.

The current position of the grasshopper operator Xi can be described as:

Xi = Si + Gi + Ai (9)

where Si is social interaction, Gi is the force of gravity on the i-th grasshopper, and Ai is the
wind advection. These parameters can be defined as follows:

Si =
N

∑
j=1,i 6=j

s(dij)d̂ij, dij =
∣∣∣Xi −Xj

∣∣∣ (10)

Gi = −gêg (11)

Ai = uêw (12)

s(r) = f e
−r
l − e−r (13)
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where dij is the distance between the i-th and j-th grasshoppers, s is the function shown in
Equation (13) to define the strength of social force, and d̂ij is a unit vector of the i-th and
j-th grasshoppers. f is the intensity of attraction, and l is the attractive length scale. g is
the gravitational constant, and êg is a unit vector towards the center of the Earth. u is a
constant drift, and êw is a unit vector in the direction of the wind. Then, the next position
of the grasshopper swarm can be defined as follows:

x̂k
i = c1

(
N

∑
j=1

c2
ulk − f lk

2
p
(

dk
ij

)xk
j − xk

j

dk
ij

)
+ Tk

g (14)

where x̂k
i indicates the next position of the grasshopper operator xi in dimension k. ulk

and f lk represent the upper and lower bounds of the model in dimension k. If the new
positions of some grasshopper operators exceed the upper and lower bounds of the model
space, they will be pulled back to the model space. dk

ij represents the distance between

grasshopper operator xk
i and grasshopper operator xk

j in dimension k. Tk
g represents the

component of the currently found optimal solution in dimension k. c1 and c2 are adaptive
shrinkage parameters, which can be calculated as:

c = cmax − t
cmax − cmin

tmax
(15)

where t is the current iteration time. cmax and cmin are the maximum and minimum values
of the adaptive shrinkage parameters. In this paper, they are set as 1 and 1.0 × 10−5.

Through the GOA, the proposed method can efficiently search for the optimal solution
to Equation (4). The proposed method will gradually approach the generalized design
point and the reliability index of non-probabilistic structural reliability.

4.3. Dynamically Updating the Response Surface

After obtaining the initial quadratic polynomial response surface model, the optimal
design point can be searched by the GOA. Notably, compared with the initial sample
points of the uncertain variables, the optimal design point is much closer to the generalized
design point. This indicates that when the structure is impacted by the combination of
uncertain variables represented by this optimal point, it is the most likely situation to
cause structural failure in the current. This means that this optimal design point is also
an effective sample point for the response surface model to learn the characteristics of
structural failure. Therefore, we construct an iterative strategy called the dynamic fitting
strategy of the response surface: we initialize the response surface model, find the optimal
design point, use the searched optimal design point as the new center point to construct
new sample points if the outputs do not reach convergence, retrain the response surface
model, and find the new optimal design point with the GOA. In addition, since more
samples near the generalized design point are found in the dynamic fitting strategy, the
response surface model will be fitted near the generalized design point. Therefore, the
response surface does not need to be fitted in the entire feasible domain of the PF, thus
reducing the cost of fitting. Figure 4 shows the two-dimensional dynamic fitting strategy of
the response surface. After two iterations, the response surface model is very close to the
PF near the generalized design point.
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5. Implementation of the Proposed Method

The proposed method can be implemented through the following steps, as shown in
Figure 5.
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Step 1: Create the initial sample points using the Bucher design method. Set x* = (x1, x2, . . . , xn) as
the center of the initial sample points and kfαi as the offset distance.
Step 2: Calculate the function values g(x1, x2, . . . , xn) and g(x1, x2, . . . , xi ± kfαi, . . . , xn) of
each sample point by the FEM. Then, construct 2n + 1 total samples in the dataset.
Step 3: Solve the undetermined coefficients a, bi, ci, dij, and eij of the quadratic polynomials.
Step 4: Construct the quadratic polynomial response surface function in the form of
Equation (8).
Step 5: Establish the optimization problem of Equation (4) using the scaling factor of the
convex set.
Step 6: Set the hyper-parameters of the GOA. Search for the global optimal solution of
Equation (4) by the GOA to obtain the optimal design point x* and reliability index value η
of the current iteration step.
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Step 7: Compare the reliability index value of the current iteration step with that of the
previous iteration step. If the convergence conditions are satisfied (|η(i) − η(i-1)| < 10−3,
where i is the iteration step), stop the iteration and obtain the reliability index. Otherwise,
go to Step 8.
Step 8: Generate new sample points by using the optimal design point x* as the center of
Bucher design and calculate the sample FEA value. Then, return to Step 3.

6. Examples and Discussion

To verify the feasibility of this method, four examples—two mathematical examples
and two engineering structure examples—are given.

6.1. Example 1

The nonlinear PF of a structure is [37]:

g = e−x2
1/10 + (x1/5)4 − x2 + 2 (16)

The variation range of the uncertain variables can be expressed by the following
non-probabilistic interval model:

X1(α1, x1) = {x1 :|x1 − x1|≤ α1} (17)

X2(α2, x2) = {x2 :|x2 − x2|≤ α2} (18)

where the position parameters are x1 = x2 = 0 and the size parameters are α1 = α2 = 1.
The Bucher experimental design method is used to construct the initial sample points.

The position parameter of each variable is taken as the center point. Twice the value of the
size parameter is taken as the offset distance of the model.

The parameters of the GOA are set as follows: the dimension is D = 2, the population
size is N = 30, the maximum and minimum adaptive shrinkage parameters are cmax = 1
and cmin = 1.0 × 10−5, the number of iterations is t = 1000, the upper and lower bounds of
the model space are ul = 10.0 and fl = −10.0, and the search range of the scaling factor λ is
[0, 10].

After three calculation steps, the iteration reaches convergence. The explicit expression
of the quadratic polynomial response surface at each iteration step is:

ĝ(X)(i) = λ(i)A(i) i = 0, 1, . . . , 3 (19)

where y(X), α, and K in each iteration step are:
Step 1:

ĝ(X)(0) = [3.00, 2.91, 4.00, 2.91, 2.00]
λ(0) = [3.00, 0, −1.00, −0.0936, 0]

A(0) =


1 0 0 0 0
1 −1 0 1 0
1 0 −1 0 1
1 1 0 1 0
1 0 1 0 1

;

Step 2:

ĝ(X)(1) = [−0.0007, −0.044, 0.9993, 0.2032, −1.0007]
λ(1) = [3.4401, 0.5388, −1.00, 0.0803, 0]

A(1) =


1.0000 −2.5846 2.5848 6.6803 6.6813
1.0000 −3.5846 2.5848 12.8495 6.6813
1.0000 −2.5846 1.5848 6.6803 2.5117
1.0000 −1.5846 2.5848 2.5110 6.6813
1.0000 −2.5846 3.5848 6.6803 12.8509

;
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Step 3:

ĝ(X)(2) = [0.0005, −0.0431, 1.0005, 0.2045, −0.9995]
λ(2) = [3.4394, 0.5382, −1.0000, 0.0802, 0]

A(1) =


1.0000 −2.5834 2.5838 6.6741 6.6761
1.0000 −3.5834 2.5838 12.8410 6.6761
1.0000 −2.5834 1.5838 6.6741 2.5085
1.0000 −1.5834 2.5838 2.5073 6.6761
1.0000 −2.5834 3.5838 6.6741 12.8438

.

Through the above calculation, the response surface image of each iteration step can
be obtained, as shown in Figure 6. Comparing the response surface with the PF and
comparing the optimal design point of each iteration step with the generalized design
point, it can be seen that the method in this paper can quickly fit the PF and can quickly
find the generalized design point. Notably, image (c) is the part in the red box in image (d).
This indicates that the proposed method performs local dynamic fitting to the PF in the
vicinity of the domain where the generalized design point is located. The proposed method
does not focus too greatly on areas far from the generalized design point. Therefore, the
fitting process for the PF can be further accelerated on the premise that the generalized
design point can be accurately found.
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Table 1 gives the optimal design points and reliability indices searched by the GOA in
each iteration step. Table 2 shows the calculation results of different methods.
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Table 1. Iterative process for solving Example 1.

Iteration Step I II III

Optimal design points x1* −2.4417 −2.5834 −2.5835
x2* 2.4419 2.5838 2.5839

Reliability index η 2.4418 2.5838 2.5838

Table 2. Result comparison using different methods for Example 1.

Method Number of Function Calls η (×10−3) Relative Error (%)

MCS 106 2.5846 0
GOA 541 2.5842 0.015

Proposed 16 2.5838 0.031

In Table 2, the number of function calls fc can be calculated from the number of
sampling points (2n + 1) and the number of iteration steps s. The calculation formula is
as follows:

fc = s× (2n + 1) + 1 (20)

The results of the Monte Carlo simulation (MCS) method with a large number of
samples are used as relatively accurate solutions. The result of directly using the GOA to
solve the optimization problem of Equation (4) is used as a comparison. Tables 1 and 2
show two valuable pieces of information. First, the GOA method has higher precision, and
the relative error is only 0.015%. Second, the relative error of the proposed method is close
to that of the GOA method; however, the number of fitness function calls is significantly
lower, only 1/34 that of the GOA method. We place tighter constraints on the convergence
conditions of dynamic iterations in our method (|η(i) − η(i − 1)| < 10−6). The obtained
reliability index value is 2.5844, the relative error is reduced to 0.008%, and the number
of function calls is 226. It shows that the method in this paper can further increase the
accuracy, with a moderate increase in the amount of computation, while still ensuring
the computational efficiency. It can be proven that (1) the GOA has a strong optimization
capability and can deal with non-probabilistic reliability optimization problems with high
precision; (2) the proposed method combines the RSM with the GOA and can improve
the efficiency of the solution by reducing the number of calls to the fitness function. The
method proposed in this paper has some applicability in solving the non-probabilistic
reliability index with the whole interval model of the nonlinear PF of structural reliability.

6.2. Example 2

The PF of a structure is Ref. [37]:

g = 5x1 −
x2x3

4
(21)

The variation range of the uncertain variables satisfies the following mixed model,
which combines the non-probabilistic interval model and super ellipsoid model:

X1(α1, x1) = {x1 : |x1 − x1| ≤ α1} (22)

X2(α2, X) = {(x2, x3)x1 :
(x2 − x2)

2

4
+

(x3 − x3)
2

9
≤ α2

2} (23)

where the position parameters are X = (x1, x3, x3) = (10, 5, 7) and the size parameters
are α1 = α2 = 1.

It is worth noting that GOA has a total of six hyperparameters: the population size N,
the maximum number of iterations t, the upper and lower bounds ul and fl of the search,
and the maximum and minimum adaptive shrinkage parameters cmax and cmin. The upper
and lower search bounds ul and fl represent the search space of the model, which can be
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reasonably estimated according to the variation range of random variables. The population
size N and number of iterations t have similar effects on the operation of the algorithm:
when N or t increases, the search operator searches more thoroughly in the entire model
space, but if they are too large, it will cause a lot of unnecessary searches, which greatly
increases the running time of the algorithm and reduces the efficiency. If N or t is too
small, the global optimal solution cannot be searched, which affects the accuracy of the
understanding. Therefore, N and the maximum t are two empirical parameters. In general,
the more complex the optimization problem to be solved, the greater the N, and the greater
the t. The adaptive shrinkage parameter c gradually decreases with the increase in the
number of iterations, so that the grasshopper algorithm will not quickly converge to the
target. In the early stage of the algorithm, a larger c is set, so that the grasshopper operator
is encouraged to perform global optimization, and a small c is set in the later stage of the
optimization, so that the grasshopper operator can perform local optimization as much
as possible and move toward the target. In addition, the problem dimension D is equal
to the number of uncertain variables contained in the optimization problem. Subsequent
examples follow the above principles.

The Bucher experimental design method is used to construct the initial sample points.
The offset distance of the variables based on the interval model is taken as twice the size
parameter value. The offset distance of the variables based on the super ellipsoid model is
taken as twice the eiα2 value, where e = (e1, e2) = (2, 3).

The parameters of the GOA are set as follows: the dimension is D = 3, the population
size is N = 30, the maximum and minimum adaptive shrinkage parameters are cmax = 1 and
cmin = 1.0 × 10−5, the number of iterations is t = 1000, and the upper and lower bounds of
the model space are ul = 100.0 and fl = 0.0. The search range of the scaling factor λ is [0, 10].

The iteration results of Example 2 are shown in Table 3. The comparison results of
using different methods are shown in Table 4, and Figure 7 shows the final response surface
g(x) = 0 and the PF ĝ(>x) = 0. The comparison between the final searched optimal point
and the generalized design point is also shown.

Table 3. Iterative process for solving Example 2.

Iteration Step I II III IV

Optimal design points
x1* 5.9263 6.7132 6.7272 6.7219
x2* 10.774 9.9533 9.4149 9.5114
x3* 15.6217 13.482 14.2475 14.134

Reliability index η 2.0368 1.6434 1.6384 1.6388

Table 4. Result comparison using different methods for Example 2.

Method Number of Function Calls η Relative Error (%)

MCS 106 1.6446 -
GOA 506 1.6399 0.286

Proposed 29 1.6388 0.353

After four calculation steps, the iteration reaches convergence. In Table 3, with the
increase in the iteration steps, the optimal design points and reliability index values tend to
become stable gradually. In Table 4, the MCS method is used to simulate 106 calculation
results as a relatively accurate solution, and the result of directly using the GOA to solve the
optimization problem of Equation (4) is used as a comparison. The error of the proposed
method is only 0.353%, and the calculation accuracy is satisfactory. The calculation accuracy
of the proposed method is similar to that of the GOA, and the number of function calls is
only 29 while the number of function calls of the GOA is 506. The calculation efficiency of
the proposed method is obviously higher. Furthermore, Figure 7 shows the dynamic fitting
process of the response surface model and the optimal design point of each step. Notably,
the range shown in the image in step 4 is smaller than those of the other three steps, and
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the last step shows that this dynamic fitting strategy makes the response surface model fit
the PF very well around the generalized design point. The GOA can quickly determine the
optimal design point and makes the iteration quickly reach the convergence condition in
four steps.
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To check the fitting ability of this quadratic polynomial response surface model to the
actual PF, after each iteration step, the error between the PF and the response surface model
at the optimal design point is calculated (see Figure 8). It can be seen from Figure 8 that the
sample points set at the beginning have a large error in the positive direction, and then the
dynamic fitting strategy of the proposed method quickly adjusts the parameters, and even
a negative error occurs; however, the absolute error is reduced. Finally, according to the
errors of the first two steps, the fitting error of the response surface is quickly corrected and
reduced, which shows that the surrogate model can fit the implicit PF well.

6.3. Example 3: A 10-Truss Girder

Example 3 is a 10-truss girder, as shown in Figure 9. An interval model is used to solve
the reliability index with an implicit PF. The length of the horizontal and vertical bars is
L, the cross-sectional area of each bar is Ai (i = 1, 2, . . . , 10), the elastic modulus is E, and
the acting positions of the external loads P1, P2, and P3 are shown in the figure. Suppose L,
Ai (i = 1, 2, . . . , 10), E, P1, P2, and P3 are 15 relatively independent interval variables, the
position and size parameters of which are shown in Table 5.
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Table 5. Statistical parameters for Example 3.

Random Variable Unit Position Parameter Size Parameter

Ai (i = 1, 2, . . . , 10) m2 0.001 0.0002
E Pa 1 × 1011 1.0 × 1010

P1 N 8 × 105 1.4 × 105

P2 N 1 × 105 1.5 × 104

P3 N 1 × 105 1 × 104

L m 1 0.01

The vertical displacement D(x) of node 2 is considered the intuitive stiffness index in
this structure. Therefore, a PF can be established, with D(x) not exceeding 3% of L:

g(x) = 0.06− D(x) (24)
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The vertical displacement D(x) of node 2 is calculated by the FEA software ANSYS.
The parameters of the GOA are set as follows: the dimension is D = 15, the population size
is N = 60, the maximum and minimum adaptive shrinkage parameters are cmax = 1 and
cmin = 1.0 × 10−5, the number of iterations is t = 5000, the upper and lower bounds of the
model space are ul = 10 and fl = 0.0, and the search range of the scaling factor λ is [0, 10].

The calculation results are shown in Table 6. In the table, the search result of the
genetic algorithm is taken as the relatively accurate solution [37]. The calculation results
of the weighted linear RSM [37] and the ANN [37] are used as a comparison. The result
of the weighted linear RSM is the highest, and the accuracy of the proposed method is
similar to that of the ANN. However, the number of function calls of the proposed method
is significantly lower than those of the above two methods, indicating that the number of
FEA calls used in the calculation process of the proposed method is less, so the calculation
speed is higher, and the method is more efficient. In another paper by the author of this
paper [59], the use of SVM to build a response surface model was proposed and applied to
the same structural example. Note that the quadratic polynomial requires fewer samples
than SVM, the regression effect is more stable, and the support vector fitting effect is too
dependent on the hyperparameters.

Table 6. Result comparison using different methods for Example 3.

Method Number of FEA Calls η Relative Error (%)

Genetic Algorithm [37] - 1.4590 -
Linear RSM [37] 135 1.4599 0.060

ANN [37] 280 1.4617 0.190
Proposed 51 1.4611 0.144

6.4. Example 4: A 23-Truss Girder

Example 4 is a 23-truss girder, as shown in Figure 10 [60]. A mixed model is used
to solve the reliability index with an implicit PF. E is the elastic modulus, A is the cross-
sectional area, the load P is the uncertain variable of the convex model, and the parameter
distributions of the uncertain variables are shown in Table 7.
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Table 7. Statistical parameters for Example 4.

Uncertain Variable Distribution Type Unit Position Parameter Size Parameter

E1 of horizontal truss Ellipsoid model GPa 206.9 1
A1 of horizontal truss Ellipsoid model m2 0.002 1

E2 of tilted truss Ellipsoid model GPa 206.9 1
A2 of tilted truss Ellipsoid model m2 0.002 1

P1 Interval model kN 49 7.5
P2 Interval model kN 49 7.5
P3 Interval model kN 49 7.5
P4 Interval model kN 49 7.5
P5 Interval model kN 49 7.5
P6 Interval model kN 49 7.5
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The vertical displacement D(x) of the midpoint is considered the intuitive stiffness
index in this structure. Therefore, the performance can be established, with D(x) not
exceeding 0.15 m:

g(x) = 0.15− D(x) (25)

The vertical displacement D(x) of the midpoint is calculated by the FEA software
ANSYS. The parameters of the GOA are set as follows: the dimension is D = 10, the
population size is N = 80, the maximum and minimum adaptive shrinkage parameters are
cmax = 1 and cmin = 1.0 × 10−5, the number of iterations is t = 6000, the upper and lower
bounds of the model space are ul = 20.0 and fl = 0.0, and the search range of the scaling
factor λ is [0, 10].

In Table 8, the MCS method is used to simulate 106 calculation results as a relatively
accurate solution, and the result of directly using the quadratic polynomial RSM based on
sequential quadratic programming (RSM-SQP, implemented using the MATLAB toolbox)
to solve the optimization problem of Equation (4) is used as a comparison. It can be seen
that in terms of both the number of function calls and the accuracy of the reliability index,
the proposed method is better than RSM-SQP.

Table 8. Result comparison using different methods for Example 4.

Method Number of FEA Calls η Relative Error (%)

MCS 106 2.6013 -
RSM-SQP 111 2.6790 2.987
Proposed 75 2.6102 0.342

7. Conclusions

This paper presents a grasshopper optimization algorithm-based RSM for non-probabilistic
structural reliability analysis with an implicit PF. The main conclusions are as follows:

1. By conducting the proposed method, the reliability index of a structure can be quickly
found with fewer function calls. The error self-correction fitting of the response
surface model near the generalized design point is achieved. This significantly re-
duces the number of calls to the PF in the calculation process and avoids the decrease
in the solution speed caused by the global fitting of the response surface model.
Compared with MCS and other methods, the proposed method is more suitable for
performing non-probabilistic reliability analysis with an implicit PF, especially for
non-probabilistic reliability analysis of complex engineering structures with high com-
putational accuracy requirements; however, it has lower time consumption because
there are fewer calls to the FEA.

2. The proposed method is nonintrusive. An existing structural analysis program or
FEA software can be directly invoked to carry out the proposed method. It can be
easily applied by structural engineers without any modification to structural analysis
programs or FEA software.

The efficiency and convenience of the proposed method make it a new way of quickly
solving reliability problems for structures with implicit PFs. However, this research is
suitable only for reliability analysis with a unique optimal solution. The case of multiple
solutions needs further research. The method in this paper is not suitable for structures with
multiple optimal solutions or structures with discontinuous PFs. In the above cases, the
proposed method will not be able to obtain all possible results. In addition, in the reliability
calculation of more complex engineering structures, the quadratic polynomial response
surface model has great limitations, and it is impossible to fit the high-order features of the
structural limit state surface from the sample points. Therefore, the following work will
focus on applying different response surface models with higher fitting accuracy and more
efficient optimization methods to the dynamic fitting framework proposed in this paper.
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