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Abstract: The development and application of nondestructive testing technology for prestressed
reinforced concrete structures in the field of infrastructure construction were summarized in this
study via the analysis of relevant literature worldwide. The detection methods, detection principles,
and detection instruments in quality evaluation of prestressed reinforced concrete structures were
analyzed and compared, based on which, acoustic emission detection technology, impact echo
detection technology, ultrasonic detection technology, infrared thermography detection technology,
ground-penetrating radar detection technology, piezoelectric transducer detection technology, and
X-ray detection technology were summarized. Additionally, the advantages, disadvantages, and
application scope of each detection method were focused upon and analyzed comparatively. It
is indicated that further improvement in the detection visualization, accuracy, and efficiency for
most nondestructive testing technologies is available by optimizing the algorithm and combining
artificial intelligence technology with neural network deep learning, precise positioning, and imaging
analysis of the quality defects in prestressed reinforced concrete structures. The results of this study
can provide technical reference for the further application and research of nondestructive testing
technologies in the quality inspection of prestressed reinforced concrete structures.

Keywords: NDT technology; quality evaluation; prestressed reinforced concrete structure; bridge
engineering

1. Introduction

Recently, with the continuous expansion of infrastructure construction throughout
the world, the scale of bridge construction has increased significantly. It is reported that
more than 800,000 road bridges have been built in China. The total length of high-speed
railway bridges exceeds 10,000 km. The high-speed railway is 22,000 km, accounting for
more than 50 percent of the total length of the line. By 2030, 45,000 km of high-speed rail
will be completed, forming a high-speed rail network with 8 vertical and 8 horizontal lines.
As a result, bridges have become a calling card for profitable and efficient infrastructure
construction in China.

The quality of bridge construction is very important for the safety of people and
properties as well as the national economy [1]. In recent years, there have been reports
of bridge fracture and collapse accidents continuing to occur worldwide [2–4], which has
been a cause of concern for engineering and technical researchers. Regular quality inspec-
tion technology of engineering structures in service must be improved, and the quality
monitoring of buildings in the process of construction should be strengthened. NDT of
civil engineering can be used to evaluate the stability, integrity, and quality monitoring
of old and new buildings and to monitor their quality status. NDT can serve the role of
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supervision, diagnosis, and measurement in an environmentally friendly and economical
manner [5]. In the construction of bridge structures, the number of prestressed concrete
bridges accounts for more than 95% of the total. The compactness of prestressed duct
grouting is the key factor that affects the service life of prestressed concrete structures [6].
The scientific and accurate detection of the grouting quality of prestressed ducts of pre-
stressed concrete structures has gradually become a research hotspot for most scientific
and technological workers and quality inspection departments. Compared with traditional
damage detection methods, NDT has been particularly favored by the majority of scien-
tific researchers because of its non-destructive, mutual compatibility, dynamic, and other
advantages [7–15].

Rehman et al. [16] and Lin et al. [17] summarized the research methods, advantages,
and disadvantages, and the latest research progress on NDT methods (such as IE, UT,
GPR, and IRT) for concrete bridges. Consequently, the applicability of different methods
was determined. He et al. [18] summarized the development status of bridge structure
detection and evaluation technology. A complete set of prestress detection technology was
emphasized that could achieve quantitative testing of the four key parameters of prestress,
including prestress reinforcement tension, steel corrosion, pipe grouting compaction, and
prestress pipeline positioning.

Scott et al. [19] evaluated the bridge deck structure based on the GPR, chain drag,
and IE and consequently verified the accuracy of the detection results by using bridge
deck coring. Further, considering the characteristics of the dynamic response of defective
concrete under impact load, Mori et al. [20] conducted tests and numerical simulations
on artificial defective concrete specimens of different sizes using non-contact equipment
to generate impact. Experimental results showed that this method is effective for defect
detection in the shallow range. Wu et al. [9] and Sack et al. [21] found that the IE was
suitable for the location and thickness determination of structure. The surface wave
spectrum analysis method is suitable for defect location in tunnels, pavement, floor slab,
shaft lining, and some large concrete structures.

In terms of grouting compactness detection of prestressed concrete bridges, scholars
have done a lot of research work. Li et al. [22,23] used a pre-capacitance sensor to evaluate
the quality of a post-tensioned prestressed conduit and proposed a measurement method
of the quality factor based on the central frequency to detect the boundary between air
and cement or air and water. Terzioglu et al. [7] artificially arranged the common grouting
quality defects in the internal pipeline of post-tensioned box girders and conducted an ex-
perimental study on the performance of slurry defects with GPR, IE, and UT. Guo et al. [24]
used the multi-sensor mechatronics impedance method to monitor the grouting compact-
ness of tendon ducts. The resonance frequency coupled each piezoelectric ceramic with
the physical characteristics of the local structure, which was able to capture the multi-peak
impedance of multiple PZT in series. Li et al. [25] introduced the IE method based on the
HHT method to detect the grouting quality of plastic pipes in PC structures. Firstly, the
concrete thickness frequency was measured. Then, the irrelevant frequency components
were filtered out with a band-pass filter. Finally, the Hilbert marginal cumulative spectrum
was established. The results showed that the thickness frequency gradually decreases with
a decrease in the grouting compactness.

In addition, certain scholars have studied the properties of grouting materials.
Kamalakannan et al. [8] studied the grouting materials in the post-tensioning system and
adopted a two-stage test scheme to evaluate the hardening characteristics of seven com-
mercial grouts. To ensure the reliability of the results, batch grouting tests were conducted
on each grouting material. Liu et al. [26] improved the ultrasonic longitudinal guided
wave detection of PC strands by exploiting the magneto-strictive effect. Combined with
experiments and finite element analysis, it was found that three axisymmetric permanent
magnets can significantly improve the performance of magneto-strictive transducers to
generate and receive axisymmetric longitudinal guided waves. Yong-Sik et al. [27] studied
the grouting characteristics of two types of grouting and the corrosion mode of pouring
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conditions. The results indicated that the corrosion resistance of the improved grouting is
significantly improved. Guo et al. [28] studied the influence of grouting fullness defect and
local grouting length on the grouting effect and the bonding performance of prestressed
steel strands. The bond strength formula was obtained by fitting the test data.

In addition, optical methods such as 3D laser vibration measurement (3D LDV) [29–31]
and digital Image correlation (DIC) [32–35] were used to evaluate concrete structures and
bridges. Huiheng et al. [36] applied Scanning Electron Microscopy (SEM) technology to
conduct a meso-analysis of the stress mechanism of basalt fiber nano-CaCO3 concrete
(BFNCC); combined with the results of Digital Image Correlation (DIC) technology, the
fracture mechanical properties and the stress mechanism of BFNCC were revealed. Azzed-
dine et al. presented a new post-processing methodology for DIC, which allowed assessing
the evolution of the local fracture energy and the length of the fracture process zone (FPZ)
during the wedge splitting test [37]. Light absorption-induced thermoelastic and pho-
toacoustic excitation, combined with laser Doppler vibrometry, was utilized to analyze
the dynamic mechanical behavior of a microcantilever [38]. It was found that 3D-DIC
exhibits compelling capacity in dynamic testing, especially for nondestructive damage
detection [39].

Recently, the research on nondestructive testing to evaluate the quality of building
structures has been focused on using elastic wave and electromagnetic wave propagation
methods. Among them, ultrasonic echo, IE, and GPR are recognized as characterization
and analysis tools that are extensively used in the NDT of PC structures [40]. The key factor
for the success of the nondestructive testing program was the correct selection of testing
methods. Each testing method possesses advantages and limitations, and thus a variety of
testing methods should be used to improve the confidence in nondestructive testing [41].
In the field of civil engineering, NDT technology primarily includes the following com-
mon methods: acoustic emission (AE), impact echo (IE), ultrasonic testing (UT), infrared
thermography (IRT), ground-penetrating radar (GPR), piezoelectric transducer (PZT), and
X-ray. This study summarizes the above detection methods and presents their disadvan-
tages, advantages, and scope of application, which can serve as a technical reference for the
application of NDT technology in the quality evaluation of reinforced concrete structures in
the future and provide a theoretical basis for the further development of NDT technology.

2. Development History of Nondestructive Testing Technology

Nondestructive testing has experienced three development stages: nondestructive
inspection, testing, and evaluation. There is no absolute point in time dividing these three
stages, and there is mutual inheritance and development. Their primary characteristics are
as follows.

2.1. Nondestructive Inspection

Nondestructive testing technology refers to the nondestructive testing of specific
objects without damaging the internal and external structures and organization of the
tested object. It aims to master the internal conditions of the structure, provide a basic
reference, and serve as a means for considering corresponding reinforcement and other
technical treatment measures. This technology was primarily used in the 1950s and 1960s
worldwide. As the primary stage of nondestructive testing, it is characterized by simple
technology. In terms of technical means, it is relatively singular, primarily employing
ultrasonic, ray, and other technologies. Primarily, NDI involves finding whether the
test piece has defects or abnormalities. The basic task is to determine defects in parts or
components without damaging the product. The detection conclusions are divided into two
categories, defective and non-defective. Relevant national departments have considered
the application and development of NDT technology crucial and thus implemented a series
of important policies and regulations in terms of unified standards, policy formulation, and
environmental optimization. Moreover, the practical advantages of nondestructive testing
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technology are primarily reflected in high testing efficiency, fewer external influencing
factors, high precision, and low cost [42].

2.2. Nondestructive Testing

With the continuous progress of science and technology, particularly the increasing
demand for nondestructive testing technology in production, it is evident that simply
detecting defects cannot satisfy the actual needs of the people. The development stage
of nondestructive testing includes identifying whether the test piece contains defects but
also mastering more information through testing regarding the test piece, such as the
structure, nature, and location of defects [5]. For developed industrial countries, this
stage began in the late 1970s or early 1980s. Non-destructive testing not only uses the
characteristics of sound, light, electricity, and magnetism to detect defects in the inspected
structure without damaging the service performance of the inspected structure but also
provides information such as the nature, size, quantity, and location of the defects to
determine the technical state of the inspected object [43]. In the field of engineering, NDT
technology plays an irreplaceable role in the condition evaluation of existing structures,
quality control of new buildings, and quality assurance of maintenance engineering [16].
Nondestructive testing and evaluation technology is an applied engineering technology
developed based on materials science, fracture mechanics, physics, mechanical engineering,
computer technology, electronics, information technology, and artificial intelligence.

2.3. Nondestructive Testing Evaluation

NDT technology could meet the needs of most industrial production in the second
stage. The continuous improvement of quality requirements for materials and components
designed for the safety and economy of in-service equipment led to the third phase of NDT
technology. A landmark event was the 14th World Congress on Nondestructive Testing,
held in New Delhi in 1996. At this conference, an important view of transforming NDT
into nondestructive evaluation was proposed and soon accepted by the nondestructive
testing community. At this stage, information such as the presence, location, attribute,
and size of defects must be mastered, and the impact of these characteristics of defects on
the comprehensive performance indexes of the tested components must be evaluated and
analyzed. Finally, relevant conclusions on the comprehensive indexes need to be presented.
At present, industrially developed countries are already at this stage of development.
Certain other countries are still focused on second-stage technology, while others are
already in the development transition from the second to the third stage.

3. Application of Nondestructive Testing Technology in Reinforced Concrete Structure
3.1. Acoustic Emission

AE is a type of transient elastic wave generated by the rapid release of energy from
local sources. The acoustic monitoring system is composed of material deformation as
the excitation source and sensors as the receiving source to receive the generated stress
wave. The schematic shown in Figure 1 is the general working principle of an acoustic
monitoring system [44]. A generalized theory of AE based on elasticity was proposed in the
last century [45]. It has been reported that the applicability of this theory is closely related
to the characteristic length of the material [46]. In the frequency range of less than 50 kHz,
the wavelength of elastic waves in concrete is typically larger than the size of the aggregate.
Therefore, concrete could reasonably be understood as employing uniform elastodynamics,
which is used to handle stress waves caused by external forces or impacts and AE waves
caused by cracking [47]. The governing equations of elastodynamics are referred to as
Navier–Stokes equations [46].

uk(x, t) =
∫

s
[Gki(x, y, t) ∗ ti(y, t)− Tki(x, y, y ∗ ui(y, t)]dS (1)



Buildings 2022, 12, 843 5 of 37

where Gki is the Green’s function; Tki is the derived traction force; ti is the traction force,
and ui is the displacement on the surface. Equation (1) is called the basic equation of the
boundary element method (BEM) for numerical analysis [48],

In AE generalized theory [45], Separate (1) to obtain (2) and (3)

uk(x, t) = Gki(x, y, t) ∗ fi (2)

uk(x, t) =
∫

s
Tki(x, y, t) ∗ bi(y, t)dS (3)

where * denotes convolution integral.

Figure 1. Principle of acoustic emission [44].

In the field of AE research, Equation (2) can be applied to Lamb’s problem. The
capacitive sensor of NIST was used to record the Green’s function of the Lamb solution
owing to the surface pulse for the first time. Subsequently, the calibration technology of
the AE sensor is established, and the transducer is replaced by a conical transducer [49–51].
The AE detection parameters include time parameters, detection threshold, wave velocity,
sampling length, sampling rate, and amplifier gain forward touch time [52]. Amplitude is
an important characteristic of the AE signal of precast concrete [53–55]. Ji et al. [56] studied
the correlation between the concrete strength index and AE signal frequency characteristics.
The AE signals of concrete with different strength grades are mostly low-frequency signals.
However, at higher stress levels, the dominant frequency of the AE signal gradually
increases with the increase in intensity level. Considering the damage mechanics and AE
rate process theory [57], scholars established the equation of the relationship between AE
characteristic parameters and damage evolution of concrete under uniaxial compression.
According to the basic theory of damage mechanics, the damage to materials is expressed
by scalar parameter D:

D = 1− E/E∗ (4)

where E∗ is the elastic modulus of the material without damage; E is the elastic modulus of
the material under damage conditions.

According to (4), the relationship between damage (D0) and corresponding elastic
modulus (E0) at the initial time of concrete material under uniaxial compression and the
relationship between damage (DP) and elastic modulus (EP) under ultimate stress state can
be expressed as:

D0 = 1− E0

E∗
(5)

DP = 1− EP
E∗

(6)
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DP − D0 =
E0 − EP

E∗
(7)

N = cVaexp(bV) (8)

where parameters a, band c in (8) can be fitted by measuring the number of AE events
n of concrete specimens at different stress levels V %, which are collectively referred to
as AE test parameters or characteristic parameters. a is the AE rate parameter, and its
value reflects the number of cracks in the material [58]. Because the total amount of crack
propagation is directly proportional to the damage change of concrete and the size of AE
events, according to (8), the damage change can be expressed as:

DP − D0 = f (a, b, c) (9)

There is a strong correlation between the damage change of concrete material and the
AE characteristic parameter a, while the influence of parameters b and c is minimal [59].
Assuming that the damage change of the concrete material is linear with parameter a, the
following can be obtained:

E0 − EP = E∗(DP − D0) = Xa + Y (10)

where X and Y are constants; E0 is the tangent modulus of concrete material at the initial
time of uniaxial compression; EP is the secant modulus under the limit stress state.

In general, AE could be divided into two emissions. The first emission is generated
from the interior of the material, while the second emission is from an external source.
Acoustic radiation detection is closely related to the characteristics of stress wave atten-
uation, wave pattern, multipath effect, and source location algorithm criterion, among
others [60]. Generally, AE monitoring schemes include global and local methods. Local
monitoring is primarily aimed at damage in specific areas, and global monitoring is con-
ducive to evaluating the integrity of the entire structure [61]. Most traditional AE sensors
employ piezoelectric elements to convert the measured transient elastic mechanical waves
into AE electrical signals [44]. Further, in the process of bridge monitoring, unidirectional
sensors and sensors that are sensitive to internal wave modes are helpful in distinguishing
the AE sources in various components of the bridge. Generally, the collected signal can
be represented by characteristic parameters, such as duration and amplitude, as shown in
Figure 2.

Figure 2. A typical AE signal [44].
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Ma employed an AE system (as shown in Figure 3) to detect the compactness of
the sleeve grouting connection and analyze the AE signal characteristics under different
concrete strengths, compactness, and hollow sleeve positions [62]. The results showed that
the amplitude of C30 concrete is higher than that of C40 concrete, while the amplitude of
the dense grouting sleeve is higher than that of the hollow sleeve. Li et al. [63] used AE
technology to detect cracks in concrete hollow slab bridges. By studying the relationship
between crack propagation and AE signals, it is concluded that low-amplitude signals
are generated due to the propagation of microcracks and the mutual friction of old crack
fracture surfaces. The high amplitude signals are generated by the further propagation
of macro cracks. Carpinteri et al. [64] described the fracture experiments of rocks and
cementitious materials of different sizes and examined the extended application of similar
schemes in the actual size structure in the multi-scale method. In addition, other scholars
applied AE detection technology to study the corrosion and cracking of reinforced concrete
and verified the reliability of this method [65–67].

Figure 3. Acoustic emission system [62].

Above all, AE technology has been widely used in the field of engineering testing [68].
At the same time, some defects in the detection process are also exposed. The characteristics
of acoustic emission are sensitive to materials and susceptible to interference from elec-
tromechanical noise [69–71]. Acoustic emission detection generally requires proper loading
program, and accurate control of loading process is very important [72]. In addition, due
to the irreversibility of acoustic emission, the acoustic emission signal in the experimental
process cannot be obtained repeatedly through multiple loading. Therefore, the acquisition
of signals during each detection process is very valuable, and precious data should not be
lost due to human negligence. The acoustic emission characteristics of various materials
vary greatly under different experimental conditions. In order to establish the relationship
between the received acoustic emission signal and the sound source, more research is
needed on the acoustic emission characteristics of various materials.

3.2. Impact Echo Detection Technology

The IE method (as shown in Figure 4) is a stress wave method that aids in flaw
detection and the determination of the thickness of structural components such as building
materials, bridge decks, and slabs [16,73–76]. The basic principle of this method involves
hitting the surface of the measured structure with an impactor to generate and propagate
high-frequency stress waves [77] and subsequently measuring the response using a nearby
signal receiver. The recorded time-domain signal is converted into a frequency-domain
function via a fast Fourier transform. The reflected frequency is referred to as the thickness
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frequency, and the plate thickness h can be determined using the measured compression
wave velocity and thickness frequency f as follows:

h =
Vp

2 f
(11)

From the early 1970s to the 1980s, the IE method was used to evaluate pile foundation
and concrete components, such as material bonding quality and crack depth [78–81].
Equation (11) was obtained assuming that the wave velocity across the thickness of the
plate is the same as that of the compression wave. Other scholars have demonstrated
that the apparent wave velocity is approximately 96% of the compression wave velocity.
Therefore, by modifying Equation (11) and multiplying it with the coefficient (0.96), it can
be obtained as follows [82]:

h = β
Vp

2 f
(12)

Figure 4. Diagrammatic sketch of IE method [25]. (The interior of A is empty pipe, the interior of
B is half-empty and half-grouting, the interior of C is full grouting and the interior of D is dense
concrete slab).

Zou, C. et al. [83] used the IE method to evaluate the grouting quality of prestressed
pipelines of post-tensioned structures and used the main frequency formed in the frequency
domain after the transformation of the original time-domain signal as the primary eval-
uation index. Zhu et al. [75] applied the air-coupled IE technology to the nondestructive
evaluation of concrete. The researchers created a concrete slab with artificial delamination
and void defects and scanned the entire slab area with an air-coupled IE to generate a
two-dimensional contour image (as shown in Figure 5). Moreover, when using IE to test
concrete structures [84], a transient stress pulse was introduced into the concrete surface by
mechanical shock. The stress pulse propagated into the object along the spherical wavefront
in the form of longitudinal (P), shear (S), and Rayleigh (R) waves. P-waves are the primary
research focus owing to their low frequency, large wavelength, and strong penetration
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ability. Scholars first studied the feasibility of using deep learning models to classify bridge
deck IE data to locate underground defects [76] and performed IE detection on laboratory
concrete specimens with artificial defects. The results showed the feasibility and potential
of this method for detecting underground defects.

Figure 5. (A) Slab containing delamination and void defects. (a) Plan view; (b) Cross Section A-A;
(B) Two-dimensional contour images of Slab built up using air-coupled impact-echo data. The solid
lines indicate the location of defects [75].

Zhou et al. [85] established an ATC estimation model and estimated the size of the
hole based on the IE method. A schematic of the empty hole and the T and R sensors is
shown in Figure 6, where V is the wave velocity of the impact echo; t1 is the measured
value of the first wave of the reflected wave; t2t is the theoretical value of the diffracted
wave; Rt is the theoretical value of the cavity radius; DTR is the distance between the signal
transmitter and the receiver, and L is the thickness of the measured concrete member.

LTH =
t1 × v

2
; LTI =

DTR
2

; LIO =
L
2

;

are the known condition; the critical distance and angle could be obtained by the follow-
ing steps:

LIH =

√
LTH

2 − LIT
2 =

√
v2t1

2

4
− DTR

2

4
(13)

LTO = LTI
2 + LIO

2 (14)

∠TOI = arccos

(
LHO

2 + LTO
2 − LTH

2

2× LHO × LTO

)
(15)

arccos(∠TBO) =

(
LTB

2 + LBO
2 − LTO

2

2× LTB × LBO

)
(16)
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From the triangular function relationship LCD
2 + LOC

2 = LOD
2, it can be obtained

as follows:

LCD =

√ (vt1)
2

4
− DTR

2

4
+ Rt

2

− Rt
2 (17)

From the formula arccos(∠COD) =
(

LOC
2+LOD

2−LCD
2

2×LOC×LOD

)
, it can be obtained as follows:

∠COD = arccos

 Rt√
(vt1)

2

4 − DTR
2

4 + Rt

 (18)

∠TOB = arccos
Rt[√

(vt1)
2

4 + 2Rt

√
(vt1)

2

4 − DTR
2

4 + Rt
2

] (19)

t2t =

(
LTB + B̂M + M̂C + LCD

)
v

(20)

Based on the shock echo theory, a cavity estimation model is established. According
to the reflected wave sound, the hole diameter can be estimated by the theoretical value R
of the hole radius of the diffracted wave and the first wave sound t2t.

Figure 6. Empty estimation model.

Schoefs et al. [86] applied a new type of laser interferometer non-contact robot and
released the IE to detect the pipe cavity in a reinforced concrete wall, which confirmed that
upon performing the detection near the cavity defect, the peak frequency of IE decreases
with the effective reduction of penetration thickness and section stiffness. To overcome the
difficulty of identifying the peak frequency in the traditional methods [87], Masa proposed
the spectral amplitude superposition imaging method based on IE. The experiment con-
firmed that the use of an aluminum bomb as an impactor in the detection process could
provide a good frequency response of up to approximately 40 kHz, which can distinguish
the grouted pipe from the non-grouted pipe of a prestressed concrete beam. Ninel et al.
improved the spectral amplitude superposition imaging method by exploiting IE [88]. The
results demonstrated that the improved elliptic integral mode of the Sibie program could
enhance the visualization of IE results. Yao et al. [89] realized signal transformation by
a wavelet using the IE method via short-time Fourier transform and consequently deter-
mined the defects of the grouting layer. Li et al. [25] used the IE method to detect the
grouting quality of plastic pipes of prestressed concrete structures based on HHT and
extracted the main vibration modes related to grouting. Tang proposed a quantitative
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cavity detection method based on acoustic spectrum analysis to estimate the internal state
of the tunnel lining [90]. Through numerical simulation and experimental tests, a parameter
spectral density ratio based on frequency domain analysis was extracted to estimate the
lining quality.

IE is especially suitable for the thickness detection of single-sided structures, such
as pavement, airport runways, bottom slope protection, retaining walls, tunnel lining,
dams, and other concrete structures [91,92]. It has the characteristics of large excitation
energy, simple operation, low-frequency energy penetrating steel bars, small interference,
repeatable testing, and so on. Nonetheless, IE has poor applicability for structure detection
with thickness larger than 100 cm [93]. The test results of shallow surface defects and
small deep defects are not ideal [94]. At present, the detection efficiency of a single-point
impact echo instrument is low, and it is not suitable for large-scale continuous detection.
Although the scanning impact echo instrument realizes continuous detection by using
a rolling contact sensor and improves the test efficiency, because the sensor and the test
surface are in rolling contact, the coupling state between them is relatively worse, which
reduces the range and accuracy of the test naturally. In addition, the more complex the
internal structure, the more chaotic the signal response will be.

3.3. Ultrasonic Detection Technology

Concrete is a composite material with dimensions ranging from microns to centimeters.
Coda interferometry is extensively used in concrete ultrasonic testing because it is sensitive
to weak changes in the medium [95]. Monika proposed a new theoretical model to deter-
mine the propagation paths of refraction, transmission, reflection elastic, and creep waves
along the surface [96], which is used to estimate the bonding quality between concrete and
steel. Ultrasonic surface waves (USW) are used to evaluate the material properties in the
near-surface region of the medium. It is limited to the high-frequency range, where the
penetration depth of the surface wave is less than the thickness of the measured object [97].
Moreover, the average surface wave velocity will decrease when the concrete slab has
defects such as delamination and voids [77]. The propagation velocity (VR) of the surface
wave is obtained by dividing the distance ∆x between two receivers by the difference
∆t of arrival time. Given the surface wave velocity, the modulus of the material can be
determined by VR, ρ, v:

E = 2(1 + v)ρVR
2(1.13− 0.16v)2 (21)

Lu et al. [98] used ultrasonic tomography technology to evaluate relevant parameters
affecting grouting quality and analyzed the effects of these parameters by employing
a theoretical model (as shown in Figure 7). It is assumed that the propagation path of
ultrasonic wave around the pipeline is SABR, ∠AOS = θ1, ∠BOR = θ2, and the diffraction
radius is r.

Then the minimum propagation time t1 from S to R along the SABR path is as follows:

t1 = min(
√

(rcos(θ1+π/2))2+(rsin(θ1+π/2)−0.1)2

v1
+

r(π−θ1−θ2)
v5

+ . . .
√

(rcos(3π/2−θ2))
2+(rsin(3π/2−θ2)+0.1)2

v1
)

(22)

When propagating directly along the SR path, the minimum propagation time t2 can
be obtained as:

t2 =



(0.11− 2h)/v1 +(0.09−Md1)/v2 +Md1/v3 + 2h/v6

(M ≤ 15) Strand

(0.11− 2h/v1 +(0.09− Nd2)/v2 +Nd1/v3 + 2h/v6

(N ≤ 2) Steel bar

(23)
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where v1 is the wave velocity in the material around the pipe; v2 is the wave velocity in
the slurry inside the pipeline; v3 is the wave velocity in the prestressed reinforcement; v4 is
the wave velocity in plastic; v5 is the wave velocity along the pipeline boundary; v6 is the
wave velocity through the corrugated pipe wall; M is the number of steel strands; d1 is the
diameter of steel strands, N is the number of steel bars; and d2 is the diameter of steel bars.

Figure 7. Theoretical Model.

By comparing the sizes of and, the minimum propagation time path of ultrasonic
waves can be determined, which is the minimum propagation time of ultrasonic waves
from S to R in a slurry-containing pipeline. Consequently, by analyzing the influence
of each parameter on the ratio of ((t1 −min(t1, t2)) and min(t1, t2), the influence of each
parameter on the detection effect of ultrasonic tomography can be determined.

De La Haza et al. [99] introduced the basic characteristics of two ultrasonic testing
equipment (Figure 8) developed at the beginning of this century. The dry point contact
(DPC) shear wave transducer array was applied to generate 2D and 3D tomographic
images of reflected waves. Shear wave, DPC sensor, image reconstruction method, synthetic
aperture focusing technology (SAET), and schematic representation of digital focusing array
signal capture scheme were also introduced (Figure 9). Shokouhi, P. et al. [100] evaluated
the accuracy and precision of low-frequency ultrasonic detection of concrete bridge deck
delamination using a multi-probe ultrasonic detection system. The results indicated that
delamination defects as small as 30 mm could be reliably detected by using a multi-probe
ultrasonic array. Shah, A.A. et al. [101] studied the ultrasonic nondestructive evaluation of
defects or damages at micro and macro scales in concrete under initial and peak horizontal
loads. It was found that the damage attenuation amplitude of the high-pressure pulse is
greater than that of the low-pressure pulse. The pulse velocity was sensitive when the
damage degree exceeded 60% of the ultimate strength of concrete.

To test the effectiveness of the grouting process and the adhesion of grouting to
masonry materials, Jorne et al. [84] performed ultrasonic tomography and mechanical
tests. It was confirmed that the bonding performance of the interface is important to the
mechanical results, and the characteristics of porous media after grouting correspond to the
information displayed by tomography. To detect the damage in reinforced concrete beams,
the propagation characteristics of ultrasonic waves in reinforced concrete beams were
studied [85]. Two types of piezoelectric elements were applied to the surface of the concrete
beam before and after the four-point bending test. The experimental results showed that the
piezoelectric ceramic disk could detect the influence of cracks on the material properties.
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Figure 8. (a) View of prototypes for the Mira equipment (2nd generation), (b) View of the Eyecon
system [99].

Figure 9. Schematic representation of the digitally-focused array signal capturing scheme [99].

Haach et al. [102] used ultrasonic tomography to qualitatively evaluate concrete and
conducted experimental research on holes, concrete composition, transducer arrangement,
and transducer frequency on concrete prisms. The results indicated that the image quality is
dependent on the size and arrangement of sensors and the distribution of measuring points.
Karabutov et al. [11] proposed an ultrasonic spectroscopy method based on high-sensitivity
piezoelectric detection of broadband acoustic pulses to evaluate the effects of micro dis-
persed holes and expanded interlayer in CFRP. Bogas et al. [10] used the nondestructive
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ultrasonic pulse velocity method to evaluate the compressive strength of lightweight aggre-
gate concrete with various structures. Based on the correlation between the ultrasonic pulse
velocity, concrete density, and elasticity, a simulated doubling expression was proposed to
estimate the compressive strength of concrete.

At present, UT is widely used in the detection of concrete-filled steel tubes [103],
but it is difficult to inspect structures with complex shapes. In addition, the surface to
be inspected is required to have a certain degree of finish. A coupling agent is required
to fill the void between the probe and the inspected surface to ensure adequate acoustic
coupling [104]. For some coarse-grained castings and welds, it is difficult to apply because
of the disorderly reflection wave. UT can penetrate over long distances, but this penetration
test requires two opposite test surfaces [105]. A judgment can be made only by testing
multiple points and processing the data with statistical probability through comparative
comparison. In addition, ultrasonic inspection is not intuitive to the display of defects,
as it is easily affected by subjective and objective factors. Ultrasonic testing also requires
experienced inspectors to perform operations and judge test results.

3.4. Infrared Thermography

In recent years, IRT has been applied to civil engineering structures to detect defects
and anomalies. A part of the structure of the object being researched is heated by using
internal or external heat sources, and the instantaneous heat flow is observed by recording
the change in surface temperature with time [106,107]. IRT is suitable for the detection of
voids and honeycombs in concrete. Reflected infrared observations were used to detect
prestressed concrete structures (as shown in Figure 10). Concrete covering, concrete cracks,
and prestressed reinforcement pipe cavities below 10 cm can also be evaluated [108–111].
Sham, J.F.C. et al. [12] used infrared continuous surface temperature monitoring technology
(CSTM) to measure the heat released by different building fabrics. It was found that the
cooling methods of building fabrics of different sizes are the same, and the measurement
results are significantly affected by the differences between materials. Sensible heat is the
heat transferred from the surface to the surrounding air when a temperature difference
exists [112,113]. When the heat transfer volume of the object is constant and the temperature
of the entire object is uniform, the magnitude of the internal energy is the product of the
object mass m, the specific heat capacity c, and the temperature change ∆T, as shown
in (24):

∆IE = ∆SH = mcp∆T = ρVCP∆T (24)

where m is the mass of the object [kg]; CP is the specific heat capacity [J/kg◦C]; ∆T is
the surface temperature change [◦C]; ρ is the density

[
kg/m3]; and V is the volume m3.

If the thermal characteristics and temperature difference of the material are known, the
energy released by the object during cooling can be calculated. According to the first energy
conservation law of thermodynamics, the change of thermodynamic energy is equal to the
gain or loss of total heat [114]. The total sensible heat release (∆SH) per unit area

[
J/m2] of

an object is equal to the radiant heat flow and total convective heat flow from the object
to the surrounding environment in a certain period of time. The total heat flux qw can
be obtained by a combination of convective and radiative transfer [115]; the functional
relationship can be expressed as follows:

qw = hu[TS(t)− T∞(t)] + hr[TS(t)− Trad(t)]dt
[
W/m2

]
(25)

where
[
W/m2] is the heat flux density of the surface; TS[

◦C] is the surface temperature
of the object measured by the infrared camera; T∞[◦C] is the air temperature measured
by the thermometer, and Trad[

◦C] is the radiant surface temperature of the surrounding
environment; hr

[
J/s m2] and hu

[
J/s m2] are radiative and convective heat transfer coeffi-

cients, respectively.
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Figure 10. Reflection observation of the active IR in the EB technique [106].

The thermal camera can measure the infrared radiation emitted by an object and then
convert this radiation into an electrical signal. Infrared radiation is part of the electromag-
netic spectrum and can be transformed into temperature using the Stephen Boltzmann
law [116]:

E = εσT4 (26)

where E is the radiant energy emitted by the surface
[
W/m2]; ε is the emissivity of the

material; σ is Stephan–Boltzmann constant (usually taken as 5.67× 10−8 W/m2/k4); T is
the absolute temperature.

The radiation Equation (27) describes the calculation of the temperature from the
measured radiation intensity. The radiation recorded in the thermal imaging phase of the
observed object is composed of the radiation emitted by the atmosphere between the object
and the camera detector, the radiation emitted by the object, and the radiation reflected by
the object to the environment [117]:

I′ = τ
[
εIobj + (1− ε)Ire f

]
+ (1− τ)Iatm (27)

By adjusting the equation, the radiation emitted by the object being measured can be
calculated [118]:

Iobj =
1
ετ

I′ − 1− ε

ε
Ire f −

1− τ

ετ
Iatm (28)

where Iobj is the radiation emitted by the object
[
W.m−2.sr−1]; I is the radiation detected

by the thermal camera
[
W.m−2.sr−1]; Ire f is the environmental reflected radiation; Iatm is

the atmospheric radiation
[
W.m−2.sr−1]; and τ is the atmospheric transmission coefficient.

IRT has been used in experimental research on concrete delamination detection. Schol-
ars have developed and analyzed the heat transfer model of concrete blocks with artificial
stratification to explore the effective use of sensitive parameters of IRT. Consequently, it
was confirmed that the stratification area has a greater impact on the detection ability of
IRT than the thickness and volume [119]. Omar et al. [120] proposed an automatic program
for detecting and classifying the delamination of concrete bridge decks. The flow of the
method is shown in Figure 11. A specially written code was used to create the splicing
thermal map of the entire bridge deck from a single image. Field detection showed that the
program could effectively identify the layered area of the bridge deck.
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Figure 11. Proposed IRT methodology [120].

Another study proposed a method to identify the delamination boundary and area.
In the sample (Figure 12), 16 artificial delamination with different parameters were created.
The specific experimental settings are shown in Figure 13. The test results showed that
the presence of a surface-covering mortar and water reduces the accuracy of detection.
The size and depth of stratification were positively correlated with the detection ability.
In addition, the method could successfully identify layered areas with a size of at least
50 mm × 50 mm [121]. Francois, A. et al. [103] proposed a novel in situ characterization
method for thermal bridges. The temperature and heat flux of the wall surface was
measured using contact sensors in the sound area, and the wall’s thermal resistance was
estimated by employing inverse technology. UAV infrared thermal imaging technology
was applied to the detection of delamination in a concrete bridge deck [122]. This method
does not need to interrupt traffic or contact the bridge deck, which greatly reduces the cost
of detection. Vavilov et al. [123] summarized the fundamental principles of pulsed thermal
nondestructive testing, including theoretical solutions, data processing algorithms, and
practical applications. IRT can also be applied to the detection of reinforcement corrosion
because it is affected by the thermal characteristics of corroded objects. Goffin [124] studied
the effect of corrosion of epoxy-coated reinforcement and uncoated reinforcement on the
thermal properties of reinforced concrete. The thermal measurement results showed that
the thermal insulation of the uncoated reinforcement was corroded. The corrosion of the
epoxy-coated reinforcement resulted in the cracking of the coating and reduced the thermal
insulation performance of the reinforcement.

IRT has the advantages of high efficiency, convenience, non-contact, and safety. It is
widely used in many fields such as fatigue load, underground pipeline, metal crack, and so
on [125,126]. IRT can only measure heat on the surface of the instrument [127]. Although
IRT detects the quality of the structure by measuring the heat difference, in most cases, the
heat emitted from the back of the structure is not the same as the surface temperature [128].
If the integrity of the structure is determined simply by detecting the surface temperature
of the structure, it will produce a large error. IRT requires high-tech equipment and is very
expensive to build. In addition, due to the limitation of field test conditions, it is difficult to
use acquisition equipment in engineering practice.
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Figure 12. Methods to manufacture artificial delamination [121].
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Gharawz et al. [129] developed a fully automated data processing pipeline by using
the progress of adaptive signal and image processing, which can effectively detect defects
at different depths in concrete. The results showed that defects with detection depths
greater than 3 inches could be improved by analyzing the time-frequency response of the
surface temperature. The ID signal with a series of scaled and shifted basis functions was
convoluted by wavelet analysis to obtain the time-frequency representation. The sum
of signals over time multiplied by the scaled and shifted version of the wavelet is called
wavelet transform. The continuous wavelet transform function f (T) can be expressed
as [130]:

W f (S, T) =
∫ +∞

−∞
f (t)hST

∗(t)dt = Re + jIm (29)

hST(t) =
1√

s
h
(

t− T
s

)
and h(t) = ejwte(−t2/2) (30)

where W f is the wavelet transform; S is the scale factor; T is the translation factor; Re is
the real part; Im is the imaginary part; hST is the sub wavelet; hST is defined by the parent
wavelet h.

3.5. Ground Penetrating Radar

GPR is a well-known technology of earth science practitioners, which penetrates tens of
meters into the earth at a frequency of approximately 1–3 GHz [13]. The acquisition system
records and analyzes the energy change caused by changes in material characteristics [131].
GPR measurement is employed in the nondestructive diagnosis of roads and bridges,
specifically to measure the thickness of the pavement and determine its position and
orientation. It can display the internal image of the slab, the damage and change of structure,
the condition of reinforcement, and estimate the water content in different areas [132–135].
Lai et al. [136] studied the dispersion of the GPR wave phase velocity in plywood and
concrete with different moisture contents under different broadband frequencies. The
results indicated that the velocity of low-frequency waves is much slower than that of
high-frequency waves, and the velocity of the ground wave has a large dispersion in the
low-frequency region. In addition, the age of concrete was found to have no effect on the
ability of GPR to detect defects, and defects with radius depth ratio (R/d) as small as 0.15
were also detected [137].

Maierhofer’s research on concrete inspection showed that the maximum penetration
at a high frequency (2.5 GHz) was 500 mm and the inspection resolution was 20 mm [138].
Hugenschmidt and Mastrangelo [131] proved that when detecting the thickness of concrete
covering embedded reinforcement at 1.2 GHz, the detection resolution error in the depth
direction is approximately 10 mm. Other scholars have verified that the delamination of
multi-layer GFRP composite bridge decks can be detected 50–100 mm below the upper
surface [139]. However, when using a frequency of 900 MHz [140], delamination can
be detected in concrete decks up to 355 mm in thickness. Further, for the thickness of a
concrete slab greater than 200 mm, the 2600 MHz antenna cannot accurately identify the
layout of the bottom reinforcement layer [141]. When the ratio of the signal wavelength to
the delamination thickness in concrete was less than 50, the delamination in unreinforced
concrete could be detected. The depth of delamination relative to adjacent reinforcement
affected the visibility in GPR images [142].

Zhang et al. applied GPR signals to provide a recognition model for the rapid diagnosis
of water damage in asphalt pavements [122]. A ground-coupled 2.3 GHz GPR antenna
was used to detect the asphalt pavement on the bridge deck. The water damage area was
detected and visually recognized by the processed GPR B-scan image. Finally, the neural
network model was used to evaluate the data, and the evaluation results were found to
be consistent with the B-scan characteristics of GPR. Tong et al. [123] summarized the
application of the deep learning method and GPR method in civil engineering detection,
and the data types were classified. Figure 14 provides a general pipeline for processing
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a set of GPR data. Through a comparative study, it was confirmed that A-scan data are
slightly better than B-scan and C-scan data.

Figure 14. Generic pipeline for processing a group of GPR data [143].

GPR is among the most effective sensors for detecting dielectric cylindrical objects in
concrete. Chang et al. provided the physical and theoretical models along with test results
of embedded reinforcement. The results showed that this method could estimate the radius
within 7% of the actual size [144]. Orlando applied a high-frequency multi-component
2 GHz GPR antenna to evaluate the deformation of a hollow pier caused by mechanical
stress; the data interpretation is supported by the theoretical model of pier GPR [145].
Diamanti et al. [146] established the GPR numerical model, studied the properties of the
reflected signals of various objects in the bridge structure, and conducted a GPR numerical
analysis by using the finite difference time domain (FDTD) method [14]. Jazayeri et al. [147]
established the geometric structure (Figure 15) and analyzed the propagation time of steel
bar diffraction electromagnetic pulse:

d =

√(
x− xT −

δx
2

)2
+ (y + r)2 − r (31)

φ = arctan
x−

(
xT + δx

2

)
y + r

(32)

h = y + r(1− cosφ) (33)

x0 = x− rsinφ (34)

dT =

√
(x0 − xT)

2 + h2 (35)
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dR =

√(
x0 − xT −

δx
2

)2
+ h2 (36)

tTO′R =
dT + dR

C/
√
(ε)

+ t0 (37)

where dT is the distance between the transmitting (T) antenna and the beam incident
point on the reinforcement circumference (O′); dR is the distance between the receiving
(R) antenna and the beam incident point on the reinforcement circumference (O′); xT is
the position of the transmitting antenna on the ground; xR is the position of the receiving
antenna on the ground, δx is the antenna offset; r is the steel bar radius; the steel bar is
located at the horizontal position x, which top is located at the depth y below the surface;
c is the propagation speed of light; ε is the relative dielectric constant; and tTO′R is the
bidirectional propagation time of steel bar diffraction electromagnetic pulse.

Figure 15. Geometry for cylinder detection using ground-coupled common-offset GPR antennas. The
cylinder size is exaggerated for clarity [147].

Barnes et al. used the threshold established by amplitude time correction to signifi-
cantly improve the spatial and quantitative prediction ability of GPR to describe corrosion
damage [128]. Liu et al. [129] identified and analyzed the GPR signal characteristics of
different prestressed pipeline defects. It was observed that when the pore was filled with
water, the reflection interface became weaker. When grouting was qualified, the reflection
interface was the weakest. A mobile GPR system is an effective tool for obtaining informa-
tion such as reinforcement depth, concrete damage under pavement, and asphalt pavement
thickness [130].

GPR is widely used in tunnel lining and road void detection [148]. However, the
detection results are not ideal for smaller uncompacted defects, the internal defects of
metal pipes, and steel arches with large buried depth [149]. The conflict between depth
and resolution is insurmountable. The interference of multiple waves and other clutter is
serious. It is difficult to obtain the necessary velocity data due to the inhomogeneity of
the medium [150]. Single send and single receive data collection methods could provide
limited information for post-processing and interpretation. The defect detection rate is
related to defect size, spacing, and distribution of measurement lines. In order to improve
the detection rate of defects, the number of radar detection lines should be appropriately
increased in actual work. In addition, the influence of target burial depth on radar detection
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results is much greater than that of target size. Increasing the transmitting power of radar
or decreasing the center frequency of the antenna could help to detect the target with a
larger buried depth.

3.6. Piezoelectric Transducers

In recent years, scholars worldwide have applied sensors in the field of structural
health monitoring to solve the reliability problem of concrete infrastructure in different
stages of its service life [151–155]. The latest research results in the field of health monitor-
ing sensors for concrete infrastructure have been reviewed, including sensors developed
to monitor parameters such as pH value, temperature, corrosion rate, humidity, and
stress/strain, as well as sensors based on optical fiber, Bragg grating, piezoelectric, electro-
chemical, wireless, and self-sensing technologies. Figure 16 shows an illustration of each
sensor technology [156]. PZT offers the advantages of a wide frequency response range,
including easy processing, low cost, simple preparation process, and fast response speed,
which is a common material for bridge SHM [151].

Figure 16. Illustration of a sample (a) optical fiber sensor, (b) fiber Bragg grating sensor, (c) piezoelec-
tric sensor, (d) electrochemical sensor, (e) wireless sensor system, and (f) self-sensing concrete [156].

In terms of structural corrosion detection, relevant detection research using sensors
has been conducted. Ahmadi et al. [157] applied the electromechanical impedance method
(EMI) to structural health monitoring and corrosion nondestructive diagnosis (Figure 17).
Based on the change of impedance curve during corrosion, a method for detecting corrosion
rate, corrosion direction, and corrosion initiation time was proposed. The sensitivity of
PZT to the compressive strength of concrete was studied by experiments. Li et al. [152]
combined the new domestic electromagnetic monitoring sensor with accelerated corrosion
AE analyzer to monitor the whole corrosion process of reinforced concrete beams. The
results showed that stirrups suffer chloride-induced corrosion earlier than longitudinal
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reinforcement, and the corrosion-resistant steel is confirmed to have higher chloride corro-
sion resistance than carbon steel. Zheng et al. [158] used AE sensors to study the corrosion
process and cracking behavior of large reinforced concrete (RC) piles in simulated marine
environments, where the tide has a significant impact on the AE signal. In addition, the
joint analysis of the AE signal and fractal dimension of overburden cracks during the
whole corrosion period could detect the pile damage caused by local corrosion globally.
Ramani et al. [139] proposed a method to monitor the damage to concrete structures caused
by reinforcement corrosion using a lens plastic optical fiber (LPOF) strain sensor. The
test results could estimate the damage degree in the process of reinforcement corrosion,
predict the remaining service life of the structure, and monitor the bending damage of the
concrete structure.

Buildings 2022, 12, x FOR PEER REVIEW  22  of  38 
 

of PZT to the compressive strength of concrete was studied by experiments. Li et al. [152] 

combined the new domestic electromagnetic monitoring sensor with accelerated corro‐

sion AE analyzer to monitor the whole corrosion process of reinforced concrete beams. 

The results showed that stirrups suffer chloride‐induced corrosion earlier than longitudi‐

nal reinforcement, and the corrosion‐resistant steel is confirmed to have higher chloride 

corrosion resistance  than carbon steel. Zheng et al.  [158] used AE sensors  to study  the 

corrosion process and cracking behavior of large reinforced concrete (RC) piles in simu‐

lated marine environments, where the tide has a significant impact on the AE signal. In 

addition, the joint analysis of the AE signal and fractal dimension of overburden cracks 

during the whole corrosion period could detect the pile damage caused by local corrosion 

globally. Ramani et al. [139] proposed a method to monitor the damage to concrete struc‐

tures caused by reinforcement corrosion using a lens plastic optical fiber (LPOF) strain 

sensor. The test results could estimate the damage degree in the process of reinforcement 

corrosion, predict  the  remaining service  life of  the structure, and monitor  the bending 

damage of the concrete structure. 

 

Figure 17. The electromechanical impedance method (EMI) is applied to structural health monitor‐

ing and corrosion nondestructive diagnosis [157]. 

Researchers have also conducted extensive research on the grouting compactness of 

prestressed bridges using sensors. Jiang et al. [159–161] proposed a new method for de‐

tecting the longitudinal grouting quality of prestressed curved reinforcement ducts based 

on active sensing. Then, they established a two‐dimensional finite element model for mon‐

itoring the grouting compactness of prestressed reinforcement pipes with PZT (Figure 18). 

The grouting level of the prestressed curved reinforcement duct was estimated under the 

grouting state by comparing the voltage signal, power spectral density (PSD) energy, and 

wavelet packet energy of the piezoelectric sensor under different voltages.  In a similar 

manner, scholars have proposed an active detection method for grouting defects of the 

grouted joint casing (GSS) based on direct stress wave measurement [162,163]. Tian et al. 

[164] applied the lead zirconate titanate (PZT) time‐reversal method to monitor the grout‐

ing quality, which can quantitatively indicate the existence of grouting and evaluate the 

grouting quality by analyzing  the peak change of  time‐reversal  focus signal. Similarly, 

scholars have proposed an active sensing time inversion method based on stress waves to 

monitor the  loosening state of a wedge anchorage system [165]. Zhou et al. applied an 

intelligent aggregate sensor and combined it with the time‐reversal method to improve 

Figure 17. The electromechanical impedance method (EMI) is applied to structural health monitoring
and corrosion nondestructive diagnosis [157].

Researchers have also conducted extensive research on the grouting compactness
of prestressed bridges using sensors. Jiang et al. [159–161] proposed a new method for
detecting the longitudinal grouting quality of prestressed curved reinforcement ducts
based on active sensing. Then, they established a two-dimensional finite element model
for monitoring the grouting compactness of prestressed reinforcement pipes with PZT
(Figure 18). The grouting level of the prestressed curved reinforcement duct was estimated
under the grouting state by comparing the voltage signal, power spectral density (PSD)
energy, and wavelet packet energy of the piezoelectric sensor under different voltages.
In a similar manner, scholars have proposed an active detection method for grouting
defects of the grouted joint casing (GSS) based on direct stress wave measurement [162,
163]. Tian et al. [164] applied the lead zirconate titanate (PZT) time-reversal method to
monitor the grouting quality, which can quantitatively indicate the existence of grouting
and evaluate the grouting quality by analyzing the peak change of time-reversal focus
signal. Similarly, scholars have proposed an active sensing time inversion method based on
stress waves to monitor the loosening state of a wedge anchorage system [165]. Zhou et al.
applied an intelligent aggregate sensor and combined it with the time-reversal method to
improve the signal-to-noise ratio [147] to obtain the amplitude of the overall regional focus
signal, and a grouting state evaluation method considering wavelet packet transform and
Bayesian classifier was proposed (as shown in Figure 19). The experimental results showed
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that a Bayesian classifier with an input energy vector could accurately identify different
grouting conditions [148].

Figure 18. The mesh details of the finite element model. The blue is concrete, the light gray is grouting,
the gray is duct, the yellow is PZT and SA, the green is coupling, and the sky blue is constraint [160].

Figure 19. Overview of the proposed grouting quality evaluation method [166].

Scholars have also conducted extensive research on the detection of other aspects of
concrete structures. Lin et al. conducted long-term experimental research on the perfor-
mance of intelligent sensor labels based on sensor coding to detect concrete crack leakage.
The experimental results indicated that this method can accurately reflect the water seepage
in concrete cracks and is more effective than frequency [167]. Wang et al. [168] used three
types of capacitance tomography array capacitive sensors that were developed to monitor
the moisture content in cement-based materials. Under similar excitation conditions, the
capacitive sensor with an internal electrode showed higher sensitivity to changes in mois-
ture content. In addition, with the increase in relative humidity, the capacitance signal of
cement mortar was observed to increase exponentially. Park et al. [169] applied advanced
deep learning technology and structured light technology composed of vision and two
laser sensors to the detection and quantification of surface cracks of concrete structures.
They performed real-time detection of cracks and lasers with accuracies of 94 and 98%,
respectively. Su et al. [170] verified the reliability of monitoring the strength gain process of
cementitious materials by the first peak of phase angle resonant frequency (PARF) directly
extracted from the phase angle spectrum. Barriaset et al. [171] and Ye et al. [172] studied the
fatigue performance of reinforced concrete members using distributed optical fiber sensor
(DOFS), which verified the long-term monitoring ability and good performance of (DOFS)
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on bridge structures. Cheng et al. [173] verified the effectiveness of the new capacitive
sensor in accurately measuring the size and position of concrete-covered reinforcement
through numerical simulation and experiments. Other scholars have applied sensors to
study the resistivity of concrete structures [153,174,175].

Accurate safety inspection and diagnostic evaluation are the basis for ensuring struc-
tural safety and long service life [176,177]. PZT plays an important role in the whole-life
health monitoring of structures [178,179]. However, the sensor’s effective response to
damage is within a certain range. When the distance between the damage position and
the piezoelectric sensor exceeds a certain range, the sensor will not be able to detect the
damage. There are many related factors affecting the damage response range, such as the
form of the main structure, the physical parameters of the sensor, and the frequency sweep
range. In addition, it is difficult to provide specific damage information for structures with
complex damage forms with PZT. However, most civil engineering structures are bulky
and complex. It is inconvenient to obtain specific information about structural damage
with a single sensor or a few sensors. Therefore, more penetrators should be arranged
in the structure according to certain rules. Finally, an optimized algorithm is used for
post-processing the obtained data, which is expected to realize the real intelligent detection
and monitoring of structural health.

3.7. X-ray Computed Tomography Technique

At present, X-ray methods are also extensively used in the field of nondestructive
testing. The principle of X-ray computed tomography involves reconstructing the [176]
attenuation profile from a series of projection images [180]. Scholars have conducted a lot
of research on concrete structures using the X-ray method [181]. Suzuki et al. quan-
titatively evaluated the damage of freeze–thaw concrete by AE and X-ray computed
tomography [66,67,182]. The durability index was related to the statistical characteris-
tics of CT numbers. With the increase in damage, the variance of the CT number appeared
to increase, while the durability index correspondingly decreased. X-ray tomography could
determine the evaluation of crack healing and the characteristics of pores directly, which is
the most effective method for nondestructive testing of concrete self-healing [183]. Further,
through the coupling of X-ray CT test and digital image analysis technology (Figure 20),
Zhu et al. conducted a comparative study on the mesoscale damage evolution of concrete
specimens [184]. The results indicated that the micro-defects of heterogeneous concrete
specimens could be identified based on the relative gray value of CT images. The micro-
defects can be characterized by quantitative indexes such as aggregate fraction, mortar
fraction, voids, CT number mean, and variance.

In terms of corrosion detection of reinforced concrete, scholars have also conducted
relevant research. Michel et al. [185] tested reinforced mortar samples under accelerated cor-
rosion conditions by using the X-ray attenuation method. The applicability of this method
in monitoring corrosion products and crack formation and propagation of cementing mate-
rials was verified. The development of corrosion products with time and the propagation
of corrosion cracks could be tracked by X-ray attenuation measurement. Zhou et al. [180]
used X-ray microcomputer tomography (µCT) (Figure 21) to study the corrosion of steel
fiber-reinforced polymer composite reinforcement (SFCBs) and quantitatively analyzed
the number of corrosion products. The results showed that fiber type, the microporous
structure of fiber coating, and the manufacturing process are the main factors affecting
the corrosion resistance of SFCBs. Van et al. [65] applied micro-focused X-ray computed
tomography to verify the feasibility of locating and characterizing corrosion damage of
reinforced concrete by AE. The gamma-ray detection method can be used to evaluate
steel wire rope coated or covered with materials [186]. Skarzynski et al. [165] conducted
experimental and numerical studies on the shear fracture of rectangular concrete beams
with longitudinal and basalt reinforcements under quasi-static three-point bending. The
experimental and numerical results were consistent with the failure mechanism, bearing
capacity, and cracking mode. In addition, ray imaging technology was also observed to
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have a good effect on the nondestructive testing of low-carbon steel welded joints [166].
Freij et al. [187] used gamma-ray tomography (GRT) to verify test tendons with strands
and grout voids, un-hydrated grout, and excess water. The results showed that GRT could
detect complete voids, external voids, and un-hydrated grouting, but it is difficult to detect
small internal voids.
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Figure 21. Schematic of X-ray µCT [180].

Nondestructive evaluation of composite materials has been studied for several decades
and is widely used in aerospace, marine, construction and transportation, petrochemical,
and energy fields [188]. Gao et al. [15] studied the application of high-speed synchronous
X-ray phase-contrast imaging (PCI) in the real-time damage characterization of glass fiber
reinforced composites (GFRCs) under dynamic loading. It was found that high-speed X-ray
PCI has sufficient phase contrast. The crack initiation could be characterized in 920ns with
a spatial resolution of 20 µm.

Besides medical applications, X-ray is currently used in industrial flaw detection
because of its strong penetration [189,190]. However, radiation is harmful to health. It is
difficult to recover the developing fixer solution, and direct discharge causes environmental
pollution [191]. X-ray films and other equipment are expensive and slow to examine [192].
It is only appropriate to detect porosity, shrinkage, and other volumetric defects. X-ray is
not suitable for hollow structures. It is difficult to find cracks with small gaps and internal
delamination defects of tubular profiles. Considering economy, safety, and applicability, it
will take a long time for X-rays to be widely used in the field of engineering structures.

4. Selection of Nondestructive Testing Technology

The basic working principle, technical application, and respective advantages and
disadvantages of seven NDT methods for reinforced concrete structures (see Table 1)
are important in the selection of testing technology. In addition to ensuring the test-
ing quality and accuracy, the economy and environmental protection of testing methods
should also be considered. In this study, the characteristics of various NDT methods were
compared and analyzed, which provides a technical reference for the rapid selection of
follow-up researchers.

NDT is a comprehensive application technology to detect the material mechanical
properties, defects, damage, durability, and microstructure degradation of structures with-
out damage, which can evaluate the properties and quality of structures and components
qualitatively and quantitatively. Based on the summary of existing research results, this
study provides several common defects and applicable NDT methods (see Table 2). There
are many nondestructive testing methods, and the basic principles of various methods
involve many disciplines such as physics, materials science, chemistry, microelectronics,
computer technology, and communication technology. Therefore, the development of
nondestructive testing technology is closely related to the development of these disciplines.
If researchers desire a deeper understanding of the application of detection technology, the
subject knowledge involved in the basic principles must be learned.

Appropriate testing methods must be correctly adapted to achieve satisfactory testing
results. In addition to understanding the application scope and limitations of the selected
NDT methods, researchers should familiarize themselves with construction technology,
structural performance, and damage mechanisms. Knowledge of relevant construction
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technology aids in determining the exact location of possible abnormalities in concrete.
Therefore, it is suggested that relevant knowledge should be preliminarily learned before
selecting NDT methods [16]. Because NDT is affected by many factors, to obtain satisfactory
testing results, different methods can be used for testing and comprehensive comparison to
improve the reliability of testing results [193].

Table 1. Advantages and limitations of various NDT methods.

NDT
Methods Detection Principle Technology Application Advantages Limitations

Acoustic
Emission

(AE)

The material
performance or

structural integrity is
evaluated by receiving

and analyzing the
acoustic emission signal

of the material.

(1) Delamination [57]
(2) Void [57]
(3) Concrete crack [57,63,70]
(4) Corrosion of reinforced

concrete [65–67]
(5) Density of sleeve grouting

connection of prefabricated
structure [62]

(6) Real-time damage detection [61]
(7) Global monitoring [61]

(1) Simple operation
(2) High sensitivity
(3) Real-time dynamic

detection
(4) Well-adapted
(5) Integral evaluation

(1) Vulnerable to
electromechanical
noise

(2) Sensitive to
materials

(3) Appropriate
loader

(4) Irreversibility

Impact echo
(IE)

A short-time mechanical
impact is used to

propagate the generated
stress wave to the

interior of the structure.

(1) Structural thickness
detection [73,76]

(2) Stripping of structural
cladding [78,79]

(3) Defect location [76]
(4) Grouting compactness test [83,89]
(5) Detection of concrete defects [76]
(6) Cavity detection [90]
(7) Compressive strength of concrete

(1) Single test surface
(2) Less signal attenuation
(3) Less clutter
(4) Convenient operation
(5) Uncoupling

requirement

(1) Low detection
efficiency

(2) Slow judgment
(3) Low precision

Ultrasonic
Testing (UT)

Ultrasonic wave will be
reflected at the interface

of two media with
different acoustic

impedance.

(1) Bond quality between steel and
concrete [96]

(2) Delamination of concrete
slab [77,100]

(3) Void inclusion [11]
(4) Structural thickness [97]
(5) Grouting quality [98]
(6) Micro and macro-scale defects or

damages to concrete [101]
(7) Compressive strength of

concrete [10]

(1) Large propagation
energy

(2) Good directivity
(3) Easy to locate defects
(4) Suitable for large

thickness
(5) High detection

sensitivity
(6) Short cycle and low

cost

(1) Susceptible to the
size of defect

(2) Poor adaptability
(3) Strict

requirements for
structure surface

Infrared Ther-
mography

(IRT)

IRT uses photoelectric
technology to detect the
infrared-specific band

signal of object thermal
radiation and convert
the signal into images

and graphics that can be
distinguished by vision.

(1) Concrete cover [114]
(2) Concrete crack [111]
(3) Void [121]
(4) Concrete deck layering [120,122]
(5) Corrosion of reinforcement [124]
(6) Internal defects of carbon fiber

reinforced steel structure [84]

(1) Result visualization
(2) Easy to judge
(3) Test different materials

(1) Limited
measurement
depth

(2) Strict
requirements for
testing time and
process

(3) Time-consuming

Ground
Penetrating

Radar (GPR)

The transmitting
antenna transmits

electromagnetic waves
to the structure, and the

receiving antenna
processes and analyzes
the radar echo signal to
obtain the characteristics

of the target.

(1) Thickness of structural layer [141]
(2) Deck layering [139]
(3) Void [133]
(4) Estimating concrete

properties [131]
(5) Corrosion of reinforced concrete

bridge deck [118]
(6) Buried depth of

reinforcement [107]
(7) Identify buried objects [166]

(1) Fast measurement
speed

(2) Continuous detection
process

(3) High resolution
(4) Easy Operation
(5) Low detection cost

(1) Susceptible to
metals

(2) Incomplete target
feature extraction

(3) False alarm or
missing alarm
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Table 1. Cont.

NDT
Methods Detection Principle Technology Application Advantages Limitations

Piezoelectric
Transducers

(PZT)

Based on the
piezoelectric effect of

dielectric, the charge is
generated on the surface
of dielectric under the
action of external force

so as to realize
non-electric

measurement.

(1) Corrosion of reinforced concrete
beams [157,158]

(2) Compactness of pipeline
grouting [159,161]

(3) Concrete crack leakage [167]
(4) Strength of cementitious

material [170]
(5) Fatigue behavior of reinforced

concrete members [171]
(6) Prestress loss of prestressed

bridge [172]

(1) Easy to process
(2) Low cost
(3) Wide frequency

response range
(4) Fast response
(5) Simple preparation

process

(1) Moisture-proof
treatment is
required

(2) Small output DC
response

X-ray

Due to the different
absorption coefficients

of materials with
different densities to
rays, the intensity of
rays irradiated to all
parts of the film will

also be different.

(1) Crack [183]
(2) Grouting void [187]
(3) Damage to freeze–thaw

concrete [66,182]
(4) Concrete self-healing [183]
(5) Corrosion of reinforced

concrete [185]
(6) Real-time damage of

composites [15]

(1) High flaw detection
sensitivity

(2) Short cycle and low
cost

(3) Flexible, convenient,
and efficient

(4) Wide use area
(5) Intuitive result

(1) High cost
(2) Harmful to health
(3) Slow detection

speed

Table 2. Common testing methods for different defects.

Defect Types Detection Methods

Delamination AE, UT, GPR
Void IE, UT, GPR

Crack AE, PZT, IRT, X-ray
Corrosion of reinforced concrete AE, IRT, GPR, P ZT, X-ray

Density of sleeve grouting AE
Real-time damage detection AE

Structural layer thickness IE, UT, GPR
Grouting compactness of prestressed duct IE, PZT, AE, UT, IRT

Buried depth of reinforcement GPR
Compressive strength of concrete IE, UT, PZT

Bond quality between reinforcement and concrete UT
Fatigue behavior of reinforced concrete members PZT

Prestress loss PZT

When selecting the detection method, the appropriate one should be determined
only after the type and nature of structural defects are fully estimated according to the
site, conditions, materials, and construction technology. The evaluation of the test results
should integrate as much information as possible. At present, there are many kinds of NDT
equipment. Selecting advanced equipment with high precision is of great help in improving
detection accuracy. However, the quality of testers will also have a certain impact on the
test results, which requires testers to reduce their dependence on experience and strictly
follow the test standards. At the same time, the testing instruments must be regularly
maintained and measured, and the equipment must be tested and cleaned on time.

With the rapid development of infrastructure construction, new structures, materials,
and construction technologies are constantly being proposed in the field of civil engineering,
which also poses new challenges to the application of nondestructive testing technology.
Future testing technologies and equipment should satisfy the following requirements:

(1) The development of the NDT theory should meet the actual needs;
(2) Nondestructive testing technology should conform to the concept of green, economic,

environmental protection, and energy savings;
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(3) Digitization, portability, and intelligence of testing instruments;
(4) Automation of data processing;
(5) Visualization of test results.

5. Conclusions

This paper summarizes seven nondestructive testing methods for reinforced concrete
structures. The testing principles, application scope, advantages, limitations, and research
status of various testing methods were introduced. The research results are expected to
provide a technical reference for engineering application selection and future research
direction of NDT technology. The main conclusions of this study are as follows:

(1) The theoretical research and engineering applications of acoustic emission (AE), such
as the detection of structural delamination, cracks, and steel corrosion, have achieved
remarkable achievements. In field detection, noise interference and long propagation
distance will lead to signal attenuation. The quantitative study of AE damage is not
mature enough, and the parameters for quantitative description of structural damage
degree are not uniform.

(2) IE has strong penetration and a long wavelength. IE is effective in detecting concrete
structure thickness, surface crack depth, and internal defects in concrete. In the
quantitative detection of grouting compactness of prestressed pipeline, the accuracy
is better than UT, GPR, and X-ray.

(3) UT is widely used in the detection of micro and macro defects of reinforced concrete,
compressive strength of concrete, and grouting quality of prestressed air ducts, espe-
cially in the evaluation of concrete slab layering and holes. The location detection of
defects is not accurate enough. In addition, UT is greatly affected by the reinforcement
mesh in the structure. IRT can quantitatively evaluate defects and damage in the
near-surface area of various structures. IRT is widely used in the detection of bridge
deck delamination, but the existence of a bridge deck covering, mortar, and water
reduces the accuracy.

(4) GPR has a good visualization effect, showing the internal image of the structure,
damage, and change of the structure. It is suitable for the quality assessment of
roads and bridges and has a good effect on the empty-out and positioning detection
of concrete structures. However, the electromagnetic wave is susceptible to being
interfered with by the dense metal layer inside the measured structure, which will
increase the difficulty of analysis and reduce the test accuracy.

(5) In the field of structural health monitoring, PZT could solve the reliability problem
of concrete infrastructure in different life stages. In addition, PZT has achieved
remarkable results in the detection of concrete strength, reinforced concrete corrosion,
and compactness of prestressed grouting pipe.

(6) The gradual application of X-rays in the field of nondestructive engineering testing is
good proof of the continuous progress of science and technology. X-ray tomography
technology is mainly used in the nondestructive evaluation of reinforced concrete
corrosion, concrete cracks, gaps, and composite materials. The method is efficient,
flexible, and highly visualized. Given the harm of radiation, protective measures are
necessary for the detection process.

6. Recommendations for Future Research

Although researchers have done a lot of research on NDT methods, in order to further
promote their safety, accuracy, and efficiency, some new subjects and learning methods
need further study:

(1) Study on unmanned aerial vehicle (UAV) detection technology (a) UAV visual in-
spection. (b) UAV infrared thermal image detection. (c) UAV digital radiographic
detection. (d) UAV with ultrasonic detection technology or impact echo detection
technology. The application of drones in the engineering field could greatly reduce
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manpower and financial resources and could greatly reduce the potential risks in the
detection process.

(2) Study on wireless remote sensing technology and wireless sensor technology
(a) At present, the development of modern sensing technology and wireless remote
sensing technology has provided new ideas for the development of nondestructive
testing technology in our country. Wireless remote sensing technology can record
information and transmit data; at the same time, it can combine wireless sensing
technology to transmit the collected data to a designated location. (b) In order for
the intelligent bridge nondestructive testing technology to be incorporated into the
modern bridge management system and make the bridge management system more
complete, researchers need to do more research on these two technologies.

(3) Study on machine learning Machine learning is a multi-field interdisciplinary sub-
ject involving probability theory, statistics, approximation theory, convex analysis,
algorithm complexity theory, and other subjects. The following algorithms can be
studied in detail: (a) Decision Tree Algorithm (DT), (b) Naive Bayes Algorithm (NB)
and Support Vector Machine Algorithm (SVM), (c) Random Forest Algorithm (RA),
(d) Boosting and Bagging Algorithm, (e) Association Rule Algorithm (AR), (f) Expec-
tation Maximization (EM) Algorithm.

(4) Study on deep learning Deep learning enables machines to imitate human activities
such as audio-visual and thinking and solves many complex pattern recognition
problems and has made great progress in artificial intelligence-related technologies.
It mainly involves three types of methods. (a) Neural network system based on
convolution operation (CNN). (b) The self-encoding neural network based on multi-
layer neurons includes two types: Auto encoder and Sparse Coding. (c) Pre-training
is carried out in the way of a multi-layer self-encoding neural network and then
combined with the identification information to further optimize the deep belief
network (DBN) of the neural network weight.

In conclusion, various NDT methods have their respective advantages in the engineer-
ing field. Given the differences in testing methods and analytical methods, there is still
room for improvement in each method. The sensitivity of AE to material characteristics
and noise should be reduced. In addition, the testing efficiency of IE needs to be improved.
The applicability of UT to complex structures and the coupling effect of structural surfaces
should be studied extensively. Reducing the electromagnetic interference of metal objects
to GPR is an engineering problem to be solved, and there is still a lot of work to be done for
the applicability and economy of IRT and X-ray for field detection. With the progress of
science and technology, NDT will be more widely used and make greater contributions to
the engineering field.
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