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Abstract: The Continuous Surface Cap Model (CSCM) is one of the most widely used concrete
models in LS-DYNA. The model is capable of capturing many important nonlinear mechanical
behaviors of concrete well. The model has a built-in auto calibration procedure based on CEB-FIP
code data. However, the built-in calibration procedure estimates material properties with significant
errors, especially for tensile strength. Our study highlights the imperfection of the built-in automated
material calibration procedure by the example of one-element uniaxial tension and compression
tests. A calibration procedure is proposed, which significantly improves the accuracy of the material
properties calculation: tensile and compressive strength and fracture energy. It is shown that the
model with the proposed calibration procedure can describe the structure defamations and the
fracture zone patterns more accurately.

Keywords: concrete; constitutive model; numerical simulation; LS-DYNA; CSCM; impact;
progressive collapse; fracture; damage

1. Introduction

Ansys LS-DYNA finite element (FE) code provides more than ten internal constitutive
models specially developed for concrete material simulation. Among them you can find
such models of concrete as Holmquist–Johnson–Cook (HJC), Riedel–Hiermaier–Thoma
(RHT), Karagozian&Case concrete (KCC) and Continuous Surface Cap Model (CSCM). The
descriptions of the theory behind these models could be found in software user manuals [1]
and publications of many applied researchers [2–5].

The CSCM (Continuous Surface Cap Model) [6,7] model, considered in this paper,
is based on Frank L. DiMaggio’s work [8], published in 1971. The current CSCM model
implementation in LS-DYNA is calibrated according to CEB-FIP 1990 Model Code [9]. The
material model is developed at the request of the Federal Highway Administration of the
U.S. Department of Transportation.

The CSCM model implementation in LS-DYNA has numerous essential features
that simulate concrete material mechanics with a high level of accuracy. The model uses
isotropic constitutive equations and three stress-invariant strength surfaces with translation
for pre-peak hardening, and a hardening cap that expands and contracts. Independent
tensile (brittle) and compressive (ductile) damage-based softening tracking allows sim-
ulating virtual crack closings in compressive stress or strain states. The rate effects for
high strain rate applications influence material strength and fracture energy release es-
timation. The model has a built-in energy regularization mechanism that reduces mesh
sensitivity. Material erosion is supported for FE simulation of perforation and scabbing; the
model also supports meshless particle discretization methods, such as Smoothed Patrice
Hydrodynamics (SPH) and Smoothed Patrice Galerkin (SPG).
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Moreover, the model has an easy input regime that activates an internal auto model
calibration procedure. The model could automatically generate all material input paraments
based on unconfined compressive strength and average aggregate size due to easy input
regime. This capability is essential since it can simulate concrete objects on the design stage
when no experimental data on material properties are available. This internal calibration
works for concrete with unconfined strength is 20–58 MPa, but the best accuracy is achieved
for the range of 28–48 MPa [6]. The fracture energy calculation works correctly for a
characteristic aggregate size range of 8–32 mm.

Due to all advantages mentioned above, the CSCM model has been widely used in
simulations of concrete structures subjected to drop-weight impact [10–12], projectile pene-
tration [13–15], progressive collapse [16–20], vehicle collision [21–23] and explosion [24–27].

Numerous studies have shown a good agreement between numerical results and
experimental data. Bermejo et al. [17] conducted an accurate scale test of a two-floor
structure that loses a penultimate bearing column; a related numerical validation with
the CSCM concrete model showed actual displacements and construction failure modes.
Qian et al. [28] found a good match of displacements, crack patterns, and a small mesh
size dependency in the simulation of RC slab under a two-column loss scenario. Zhang
et al. [25] simulated the simply-supported reinforced concrete (RC) beams subjected to the
combination of impact and blast loads and obtained correct vertical displacements, reaction
forces and crack distribution. Yu et al. [19] quasi-statically investigated the effect of masonry
infill walls on the progressive collapse resistance of RC frames. Results obtained from
numerical simulation and experiments agree in non-ultimate loading levels. Grunwald
et al. [29] simulated column loss for a two-dimensional frame structure under blast load and
confirmed that the vertical displacement from the numerical model is in good agreement
with test data, but crack patterns are not described correctly.

At the same time, many authors have noted an imperfect correlation with experiments
when using default parameters of CSCM. Kim S.B. et al. [10] used the auto-generated
CSCM parameters to simulate the RC beams under drop weight loading conditions. They
concluded that the strength is overvalued, and the vertical displacement is underestimated.
Numerical models of missile impacts on RC plates developed by Chung et al. [15] overesti-
mated the residual displacements and rebound in bending impact tests and showed a more
significant maximum displacement in a punching impact test.

Many authors have attempted to calibrate the model manually for a more accurate
description of concrete structures subjected to dynamic actions. Levi-Hevroni et al. [30]
based experiments on the tension split Hopkinson bar, and suggested an increase in
fracture energy and parameters governing the strain rate effects, since the numerical
results did not correspond well with the test data. Yu et al. [20] found that default model
parameters caused stiffer and more significant resistance of RC beam-slab substructures
under perimeter column loss. The reduction of elastic modulus and fracture energy allowed
them to get a good match in cracking and displacements.

Thus, the CSCM model with automatically generated parameters can lead to incorrect
simulation results for RC structures. As mentioned above, many researchers have attempted
to calibrate the material model parameters more accurately. However, these studies are
fragmentary, and to date there is no unified methodology for calibrating the CSCM model.

The object of the study in this paper is the concrete material model CSCM implemented
in LS-DYNA as *MAT_CSCM(_CONCRETE)/*MAT_159 card. The goal of this research is
to create a model calibration methodology and to validate the developed methodology on
two problems of dynamic deformation of reinforced concrete with known experimental
data: under low-velocity impact [23] and under progressive collapse [31].

The proposed procedure for model parameter identification and calibration is assumed
that all input parameters will be identified on the material density, cylindrical strength, and
fracture energy/characteristic aggregate size. Other input parameters are calculated based
on a combination of the relations presented in [6,9,32,33]. A material model calibrated in
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this way should show more accurate compliance with strength standards [32,33] and work
for a broader range of concrete strength classes.

2. Materials and Methods
2.1. A Mechanics Problem

Concrete is a strongly heterogeneous material that consists primarily of aggregate
and mortar and exhibits a complex nonlinear mechanical behavior. Although it has cracks
and discontinuities on a microscopic scale, the stress-strain relationships of concrete in
the CSCM are described with classical equations of continuum mechanics. The following
subsections will show a summary of these classical relations, such as equation of motion
and conservation laws.

2.1.1. Equation of Motion

Consider the deformation in time of an arbitrary fixed volume Ω0 bounded by a
smooth, closed surface Γ = Γ1 ∪ Γ2 ∪ Γ3. The equation of motion can be written as:

ρ
..
xi = σij,j + ρ fi (1)

Three types of boundary conditions can be imposed on Equation (1) in the general case:

• At the boundary Γ1, essential boundary conditions: σijnj
∣∣
Γ1

= τi(t);

• At the boundary Γ2, natural boundary conditions: ui(t)|Γ2
= Ui(t);

• At the boundary Γ3, contact boundary conditions:
(

σ+
ij − σ−ij

)
nj

∣∣∣
Γ3

= 0.

where σij is stress tensor, fi is volume force,
..
xi is acceleration, nj is external normal for

boundary, σ+
ij , σ−ij is stress tensors for bodies in contact and ui is displacement vector.

2.1.2. Conservation Laws

Mass conservation law can be written in the form:

ρV = ρ0V0, (2)

where ρ0, ρ is initial and current density and V, V0 are initial and current volume, respectively.
The energy conservation law has the form:

.
e = Θsij

.
εij − p

.
Θ, (3)

where sij is stress tensor deviator,
.
εij is strain rate tensor, p is pressure, Θ is specific volume

and e is internal energy per unit volume.
The deformations and displacements are related through geometric relations:

εij =
1
2
(
ui,j + uj,i

)
. (4)

To close the written equations, it is necessary to set physical relations linking stresses,
strains, strain rates, temperature, etc. In this paper, the CSCM material model is used
to describe the deformation of concrete material, the physical relations of which are de-
scribed below.

2.2. Concrete Material Model

The subsection provides information about the CSCM mathematical model features.
The section content is a synthesis of the materials presented in [6,7,34].

2.2.1. Elastic Behavior

In the elastic region, concrete is considered isotropic, and Hooke’s Law is used for the
elastic stress–strain relationship.
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2.2.2. Strength Surface

Within this model, the strength surface has the form:

f (I1, J2, J3, χ) = J2 −ω2F2
f Fc, (5)

where I1 = σii is the first invariant of the stress tensor, J2 = 1
2 sijsij is the second invariant of

the stress tensor deviator, J3 = 1
3 sijsjkski is the third invariant of the stress tensor deviator,

Ff is meridional surface, Fc is elliptical cap surface,ω is Rubin’s scaling function and χ is
cap surface hardening parameter. A view of the strength surface is shown in Figure 1d.
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J2 − Ff

2Fc = 0; (d) complete strength surface, J2 −ω2Ff
2Fc = 0.

2.2.3. Triaxial Compression

The stresses calculated from the elastic relations are hereinafter referred to as the trial
elastic stresses where σT

ij , denotes their corresponding invariants IT
1 , JT

2 , JT
3 . The material

behaves elastically when f
(

IT
1 , JT

2 , JT
3 , χ0

)
≤ 0. When f

(
IT
1 , JT

2 , JT
3 , χ0

)
> 0, the material

begins to behave elastically–plastically, in which case the algorithm returns the stresses to
the strength surface, so that f

(
IP
1 , JP

2 , JP
3 , χ

)
= 0, wherein this case the associated flow law

applies. Meridional surface Ff is described by the following equation:

Ff (I1) = α + θ I1 − λe−βI1 , (6)

where α, β, θ, λ are material parameters obtained from triaxial compression tests (TXC)
on concrete cylinders. The general shape of concrete model yield surface in the Principal
Stress Space (PSS) is shown in Figure 1a.
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2.2.4. Cap Surface

The elliptical surface Fc describes the change in volume due to collapsing pores in
concrete. This surface has the form:

Fc(I1, χ) = 1− (I1 − L(χ))(|I1 − L(χ)|+ I1 − L(χ))
2(X(χ)− L(χ))2 , (7)

where L(χ) is defined as:

L(χ) =
{

χ
χ0

for χ > χ0
for χ ≤ χ0

. (8)

The equation for Fc at I1 ≤ L(χ) equates to one, at I1 > L(χ) it describes an ellipse.
The cap surface and the lateral surface intersect at I1 = χ. χ0 is the value of I1 at the
intersection of the cap and the lateral surface before the beginning of hardening (before the
cap moves).

Intersection of the cap with the PSS hydrostatic axis occurs at the point I1 = X(χ).
This point depends on the ellipticity parameter R:

X(χ) = (χ) + RFf (L(χ)). (9)

The cap movement simulates a plastic change in volume. When the cap expands (X(χ)
and χ increase), it simulates volume contraction; when it shrinks, it simulates volume
expansion, i.e., dilatation. The cap movement is subject to the following law of hardening:

εP
V = W

(
1− e−D1(X−X0)−D2(X−X0)

2)
, (10)

where εP
V is the plastic volume strain, W is the maximum plastic volume strain, D1 and D2

are material parameters and X0 and X are the initial and current points of hydrostatic axis
with the cap intersection, respectively.

The shear surface in the PSS is shown in Figure 1b. The combined surface J2− F2
f Fc = 0

is shown in Figure 1c.

2.2.5. Triaxial Extension and Torsional Conditions

It has been experimentally established that concrete begins to fail in triaxial tensile and
torsional conditions at lower values of J2 than in three-axis compression. This fact suggests
that the strength surface depends on the third invariant of the stress tensor deviator J3. The
three-invariant strength surface takes the form of a triangle or hexagon in the deviator plane.

2.2.6. Scaling Function

The scaling functionω introduces the dependence of any stress state at the strength
surface on the triaxial compression stress state as ωFf . ω depends on the angle β̂, which
varies within −π

6 < β̂ < π
6 and is expressed through J2 and J3 as:

sin 3β̂ = Ĵ3 =
3
√

3J3

2J3/2
2

, (11)

where Ĵ3 is a normalized invariant, whose values lie within −1 < Ĵ3 ≤ 1. In this case, for
three-axis compression Ĵ3 = 1, for torsion Ĵ3 = 0 and for triaxial tension Ĵ3 = −1.

The equations for determining the scaling functionω are as follows:
ω =

−b1+
√

b2
1−4b2b0

2b2
;

b2 =
(
cos β̂− a sin β̂

)2
+ b sin2 β̂; b1 = a

(
cos β̂− a sin β̂

)
; b0 = − (3 + b−a2)

4 ; b = (2Q1 + a)2 − 3;

a =
−a1+
√

a2
1−4a2a0

2a2
; a2 = Q2; a1 =

√
3Q2 + 2Q1(Q2 − 1); a0 = 2Q2

2(Q2 − 1).

(12)
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The functions Q1 and Q2 are functions of I1, which allows the section of the strength
surface of the deviator plane to change from a triangle to an irregular hexagon and a circle
as the pressure increases. The dependence of Q1 and Q2 on I1 is as follows:

Q1 = α1 − λ1e−β1 I1 + θ1 I1, (13)

Q2 = α2 − λ2e−β2 I1 + θ2 I1, (14)

where α1, λ1, β1, θ1 и α2, λ2, β2, θ2 are material parameters. ω = Q1Ff in triaxial tension
andω = Q2Ff in torsion.

The functions Q1 and Q2 control the shape of the surface only at compressive loads.
At tensile loads these functions take the values Q1 =

√
3/3 and Q2 = 0.5, which leads to a

triangular section of the limiting surface by a deviator plane.

2.2.7. Damage

Concrete exhibits softening (strength reduction) in the tensile and low to moderate
compressive regimes, which is simulated by introducing damage as:

σd
ij = (1− d)σvp

ij (15)

The damage formation is applied to the stresses after they are updated by the viscoplas-
ticity algorithm. Here, d is a scalar damage parameter that transforms the stress tensor
without damage σ

vp
ij into the stress tensor with damage σd

ij. Damage d can increase from 0
to 1 and is subdivided into brittle and ductile damage. The damage starts to accumulate
when the strength surface reaches – damage accumulation for fc = 50 MPa concrete is
shown in Figure 2.
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Ductile damage begins to accumulate when the pressure P is compressive (positive)

and the value of term τc =
√

1
2 σijεij exceeds the threshold value τ0c. The ductile damage dc

itself is determined by the equation:

dc =
dmax

B

(
1 + B

1 + Be−A(τc−τ0c)
− 1
)

, (16)

Brittle damage begins to accumulate when the pressure P is tensile (negative) and the
value of the term τt =

√
Eε2

max exceeds the threshold value τ0t. Here, εmax is the maximum
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principal deformation, where E is the Young’s modulus of undamaged concrete. The
damage is determined by the equation:

dt =
0.999

D

(
1 + D

1 + De−C(τt−τ0t)
− 1
)

, (17)

where values A, B, C, D, dmax are material parameters.
The maximum current ductile or brittle damage, d = max(dt, dc), is chosen to substi-

tute in Equation (3).

2.2.8. Strain Rate

The strain rate has a significant influence on the strength properties of concrete. As
the strain rate increases, the material hardens. The effects are considered in viscoplastic
form in the CSCM model [12].

The viscoplastic algorithm interpolates between elastic trial stresses σT
ij and unviscous

plastic stresses σP
ij (without regard to rate hardening) at each time step to obtain viscoplastic

stresses (including rate hardening):

σ
vp
ij = (1− γ)σT

ij + γσP
ij , γ =

∆t/η

1 + ∆t/η
. (18)

This interpolation depends on the effective yield factor η and the time step ∆t. The
coefficient η is calculated through the given material parameters using the equation for
tension loads:

η = ηs +

(
−I1√

3J2

)PWRT
(ηt − ηs), (19)

and for compression loads:

η = ηs +

(
I1√
3J2

)PWRC
(ηc − ηs), (20)

where ηs = SRATE·ηt, ηt = η0t
.
ε

Nt
, ηc = η0c

.
ε

Nc ,
.
ε is strain rate; SRATE, η0t, η0c, Nt, Nc and

PWRT, PWRC are the material parameters.

2.2.9. Material Model Calibration

The *MAT_CSCM_CONCRETE model could be initialized with only three mechanical
parameters direct input: material density ρ, compressive cylindrical strength fc and average
aggregate size dmax. Thus, all other model parameters will be calculated with the so- called
easy input initialization procedure.

Paper [35] proposed a calibration procedure for the *MAT_SCHWER_MURRAY_CAP_
MODEL model, similar to the CSCM strength surface and cap surface. But the procedure
could not be directly translated to the CSCM model, since *MAT_SCHWER_MURRAY_CAP
_MODEL has different relations for calculating the fracture energy parameters and the
material rate-dependent parameters. *MAT_SCHWER_MURRAY_CAP_MODEL cannot
regularize the fracture energy to also reduce the influence of mesh effects on the damage
accumulation.

It was thus decided to replace the original equations for strength surface with the
equation proposed in [35]. All other data is generated based on revised actual equa-
tions [6,9,32,33]. The new proposed set of equations allows calculating *MAT_CSCM input
parameters based on the same scope of input parameters: ρ, fc and dmax. These changes
are aimed at improving the accuracy of the strength properties of the material and a better
description of its failure process.

The proposed set of equations is presented in the Appendix A of the paper.
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2.3. Original Verification

The results of the CSCM model with the proposed external calibration must be ver-
ified with a full-scale simulation of concrete structures. Several studies on concrete and
reinforced concrete (RC) structures under extreme loads [36] simulation with proposed
CSCM calibration have been published already. Thus, simulation of low-speed impact on
reinforced concrete beams [37], RC slab blast loading [38] and pane concrete slab perfora-
tion by a rigid missile with adaptive solid-to-SPH switching [13] was successfully done
with the proposed CSCM calibration. All this research shows a good correlation between
numerical results and experimental data. Despite a wide range of verification cases, there
is no direct simulation results comparison between built-in auto and proposed external
calibration for CSCM. This comparison is done in the current paper.

Two verification cases are selected for this purpose. The first one is the original
verification from the Evaluation of LS-DYNA Concrete Material Model 159 manual [23].
This experiment is used for CSCM auto calibration fitting. It is expected that the new
proposed calibration should not deteriorate the predictability of the model result.

The second case is related to a two-story frame progressive collapse [31]. This case
is selected as an example worth lading scenario for an auto procedure. The frame con-
crete strength is on the border of the accuracy application range for built-in auto CSCM
calibration. The collapse of the structure occurs mainly under tensile loads.

Both verification case simulations are performed with the pure finite element method
(FEM) in the Lagrange equation. Since element erosion can introduce an additional unphys-
ical fitting parameter into the calculation [39], the feature is always turned off. The concrete
material softening could be simulated due to correct damage mechanism work only.

2.3.1. Single Element Strength Estimation

Quasistatic single FE unconfined compression and tension tests are performed at the
first stage of the model response studies. The boundary conditions for the model are shown
in Figure 3, where u(t), or the function of the constant rate of compression or tension of the
model. This test should show the correctness of material peak strength estimation.
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The peak compressive strength that *MAT_CSCM_CONCRETE model estimates is
compared with the compressive cylindrical strength fc, used for model initialization. The
peak tensile strength ft could be estimated as shown in Equation (21) [9,32,33].

ft =

{
0.3( fc)

2
3 ; fc ≤ 50 MPa

2.12 ln(1 + 0.1( fc + ∆ f ); fc > 50 MPa
; (21)

where ∆ f = 8 MPa. The values fc and ft are compared with numerical results from tests
with unconfined elements.
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2.3.2. Single Element Fracture Energy Estimation

Concrete fracture energy GF on par with strength is one of the most critical material
properties determining the material’s post-peak behavior. The model should be able to
show correct fracture energy response that agrees with the input data.

Default tensile fracture energy could be estimated as:

GF = GF0

(
fcm

fcm0

)0.7
, (22)

where GF0 are the base values of fracture energy, as found in Table 1.

Table 1. Base values of fracture energy GF0.

dmax (mm) GF0 (N/mm)

8 0.025
16 0.030
32 0.038

Base values of fracture energy from Table 1 could be interpolated with (4).

GF0 = 0.021 + 5.357·10−4dmax (23)

The fracture energy calculations are made for the single finite element tension. The av-
erage aggregate size dmax is set to 16 mm. GF is calculated as an area under the descending
branch of the stress-crack opening curve and compared to CEBFIP 1990 [9].

2.3.3. Impact on the RC Beam

The original verification case set «4» with impact on over-reinforced concrete beams
from the Evaluation of LS-DYNA Concrete Material Model 159 manual [23] is selected. The
LS-DYNA FE models from set «4» are published freely by the solver developers [40]. This
case contains a good set of experimental data and could be simulated without material
erosion. The FE model sensitivity studies boundary conditions, mesh size and other solve
process settings carried out in the original manual [23]. Thus, we can use the original
developers’ FE models from set «4» as is and focus only on the material model calibration
influence on the results.

The case set contains three test cases with a deflection history measurement. The
beams are impacted by two steel 32 mm diameter cylinders and supported on each end by
32 mm diameter cylinders. Basic model dimensions are presented in Figure 4.
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The nominal compressive concrete strength is 28 MPa and a 10 mm aggregate is
assumed [23]. The stress–displacement behavior of the rebar was also measured. The initial
yield strength of the steel reinforcement was 457 MPa, with an ultimate stress of about
614 MPa.

The concrete is modeled with 8.5 mm hex elements—the mesh size introduced in
original verification models [40]. The reinforcement is modeled with beam elements with
common nodes with the concrete hex elements. The Cowper–Simonds strain rate model
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with parameters C = 40 s−1, p = 5 is used for steel rebar viscous effect captured during
dynamic loads [41].

The impactors and supporting cylinders are modeled with hex elements and assumed
rigid. The model used in the simulation can be seen in Figure 5.

Buildings 2022, 12, x FOR PEER REVIEW 10 of 22 
 

The nominal compressive concrete strength is 28 MPa and a 10 mm aggregate is as-
sumed [23]. The stress–displacement behavior of the rebar was also measured. The initial 
yield strength of the steel reinforcement was 457 MPa, with an ultimate stress of about 614 
MPa. 

The concrete is modeled with 8.5 mm hex elements—the mesh size introduced in 
original verification models [40]. The reinforcement is modeled with beam elements with 
common nodes with the concrete hex elements. The Cowper–Simonds strain rate model 
with parameters 𝐶 = 40 𝑠ିଵ, 𝑝 = 5 is used for steel rebar viscous effect captured during 
dynamic loads [41]. 

The impactors and supporting cylinders are modeled with hex elements and as-
sumed rigid. The model used in the simulation can be seen in Figure 5. 

 
Figure 5. RC beam FE model overview. 

Concrete interacts with rigid cylinders through segment-based symmetric contact 
with constant friction assumed as 0.45. Belytschko–Bindeman assumed strain co-rota-
tional stiffness hourglass control is used with hourglass suppression coefficient 0.03. 

Three test cases with different drop weight and impact speed are considered (Table 
2). Drop weight changes modeled but rigid cylinder density changes. 

Table 2. Load cases. 

Case Name Drop Weight (kg) Impact Velocity (m/s) 
B 31.75 7.3 
C 47.86 6.0 
D 63.93 5.2 

2.3.4. Two-story Frame Progressive Collapse 
The reference experiment on progressive collapse is presented by removing a corner 

column of an RC two-story frame with loads, geometry and mechanical properties reflect-
ing design conditions [31,42]. The bays above the removal column were loaded with con-
crete blocks imitating dead and live loads and the weight of outside walls. The cylinder 
compressive strength of concrete is about 30 MPa, and the yield strength for the whole 
reinforcement was 500 MPa. During the experiment, the vertical displacements near the 
failed column P3 were recorded by four LDVT sensors, named P2_11V, P23_1/3V, 
P23_2/3V and P3_11V. Details of geometry and positions of the LDVTs are shown in Fig-
ure 6. 

Figure 5. RC beam FE model overview.

Concrete interacts with rigid cylinders through segment-based symmetric contact
with constant friction assumed as 0.45. Belytschko–Bindeman assumed strain co-rotational
stiffness hourglass control is used with hourglass suppression coefficient 0.03.

Three test cases with different drop weight and impact speed are considered (Table 2).
Drop weight changes modeled but rigid cylinder density changes.

Table 2. Load cases.

Case Name Drop Weight (kg) Impact Velocity (m/s)

B 31.75 7.3
C 47.86 6.0
D 63.93 5.2

2.3.4. Two-Story Frame Progressive Collapse

The reference experiment on progressive collapse is presented by removing a cor-
ner column of an RC two-story frame with loads, geometry and mechanical properties
reflecting design conditions [31,42]. The bays above the removal column were loaded with
concrete blocks imitating dead and live loads and the weight of outside walls. The cylinder
compressive strength of concrete is about 30 MPa, and the yield strength for the whole rein-
forcement was 500 MPa. During the experiment, the vertical displacements near the failed
column P3 were recorded by four LDVT sensors, named P2_11V, P23_1/3V, P23_2/3V and
P3_11V. Details of geometry and positions of the LDVTs are shown in Figure 6.
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Figure 6. Geometry of the two-story reinforced concrete frame with sensors P2_11V (violet), P23_1/3V
(blue), P23_2/3V (green), P3_11V (red).

Three-dimensional FE models consist of 8-node solid elements for the concrete and
2-node beam elements for the reinforcement parts. The complete FE model of the two-story
RC frame consists of 47,053 solids and 77,218 beams, with an average element dimension
equal to 100 mm.

An embedded reinforcement approach provides a perfect bond between reinforcement
elements and surrounding concrete material. This approach is implemented using the
*CONSTRAINED_BEAM_IN_SOLID [43,44] keyword in LS-DYNA. The bottom faces of
the frame columns and slab supports are fixed from any displacements. The detailed FE
model overview is shown in Figure 7.
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3. Results and Discussion
3.1. Single Element Strength Estimation

Figure 8 shows the internal model auto calibration results in the concrete strength
range of 20–60 MPa. From these data, we can see the peak tensile strength prediction
estimation error. The C60 stress–strain curve turns out to be lower than the C50 curve,
which is an obvious error (see Figure 8b).
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The single element unconfined tensile and compression testing performed for both
auto internal and proposed external calibration procedure and the results of the calculations
are shown in Figure 9.

There is significant inaccuracy of up to 56% for tension and 23% for compression in
the model performance with auto internal calibration. Table 3 gives the estimate of the
inaccuracy. Significant errors in strength estimation persist even in the narrower concrete
strength application range of 28–48 MPa, as recommended by the developers [6]. The
proposed external calibration significantly increases the accuracy of the material model.
The error in strength estimation is reduced to a few percent.

Table 3. Strength estimation precision for different CSCM calibration.

fc (MPa)

fc Overestimation (%) ft Underestimation (%)

Auto Internal
Calibration

Proposed External
Calibration

Auto Internal
Calibration

Proposed External
Calibration

20–60 +0.7–+23.0 +1.5–+5.4 +18.6–+56.2 −2.8–+5.8
30–50 +5.1–+23.0 −0.5–+0.6 +18.6–+56.2 +0.9–+1.9
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3.2. Single Element Fracture Energy Estimation

Figure 10 shows the result of the comparison—fracture energy underestimation—for
both auto internal and proposed external calibration procedures.
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Figure 10. CSCM Auto internal and CSCM Proposed external calibration fracture energy comparison.

Table 4 presents in-fracture energy underestimation error summary. A dramatic
decrease in the error of the fracture energy border of the extended CSCM concrete model
application range with auto internal calibration is observed. It could be seen that new
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proposed calibration significantly improves the prediction of fracture energy from [+8.8%;
+20.9%] to [+6.8%; 0.0%].

Table 4. Fracture energy estimation precision for different CSCM calibration.

fc (MPa)
GF Underestimation (%)

Auto Proposed

20–60 +5.8–+31.8 −2.3–+11.7
30–50 +8.8–+20.9 +6.8–0.0

3.3. Impact on RC Beam

Figures 11–13 show the unaverage, nonsmoothed visualization of damage field distri-
bution results for the considered three cases simulated with auto internal and proposed
external CSCM model calibration procedures.
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It could be seen that the total volume of material with maximal damage value is
always more significant for the model with internally fitted parameters. The formation of
such large areas of damage indicates the presence of zones of material fragmentation rather
than single cracks caused by tensile loads.

The results obtained with the proposed calibration procedure show minor damage.
They instead look like single cracks in the material, and no crushing is observed.

Detailed images of natural crack patterns in concrete beams for cases B–D are not
presented in the Evaluation of LS-DYNA Concrete Material Model 159 manual [23]. Upon
impact, multiple cracks primarily initiate on the tensile face of the beam and propagate
towards the compressive face.

Figure 14 shows a comparison of experimental and numerical beam deflection history.
Peak deflection value and divergence from experiment for different CSCM calibrations is
shown in Table 5. The model with the proposed CSCM calibration procedure shows better
agreement with the experimental data. Thus, in the most favorable for auto calibration
scenario, the new proposed calibration procedure not only does not worsen the results of
calculations, but in many respects also improves the qualitative and quantitative description
of concrete structures behavior.

Table 5. Peak deflection value and divergence from experiments for different CSCM calibration.

Case
Peak deflection value (mm) Divergence from experiment (%)

Experiment Auto Proposed Auto Proposed

B (31.75 kg, 7.3 m/s) −24.94 −28.43 −22.94 −14% 8%
C (47.86 kg, 6.0 m/s) −26.47 −35.04 −26.36 −32% 0%
D (63.93 kg, 5.2 m/s) −31.25 −35.60 −28.50 −14% 9%
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3.4. Two-Story Frame Progressive Collapse

First, the concrete damage field could be studied from the visualization presented in
Figure 15. The damage pattern is the expected pattern for both concrete model settings. It
can be noted that CSCM Auto shows larger damage zones compared to CSCM Proposed.

Next, let us proceed to the comparison of the model key points displacement history
shown in Figure 6. Figure 16 shows the results of the simulation in comparison with the
experiment. It could be seen that CSCM Proposed shows excellent agreement with the
experiment for all considered points. At the same time, CSCM Auto shows an overestima-
tion of the displacements by almost two times. The peculiarities of the loading conditions
explain such unsatisfactory results for CSCM Auto. The two-store frame model uses C30
concrete, which lies on the bottom border of the CSCM Auto accuracy application range.
The material expects primarily tensional loading during the frame collapse; this is the
regime with the most inaccurate strength and fracture energy estimation for CSCM Auto.
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Figure 15. Concrete damage pattern: (a) CSCM Auto, isometric view; (b) CSCM Proposed, isometric
view; (c) CSCM Auto, isometric bottom view; (d) CSCM Proposed, isometric bottom view.
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4. Conclusions

The CSCM model has massive potential for concrete structures simulation under
dynamic and static load. Since the automatic adjustment of model parameters in LS-DYNA
leads to significant errors, this paper attempts to develop a methodology for calibrating
model parameters for concretes of classes C20–C60, most commonly found in civil engineer-
ing. The proposed external calibration procedure can significantly improve the qualitative
and quantitative description of concrete structure behavior.

Single elements strength studies on default Automatic CSCM model calibration show
an overestimation of compressive strength of up to 23.0% and an underestimation of tensile
strength up to 56.2%. The fracture energy underestimation is up to 31.8%. The developed
calibration procedure reduces these deviations 3.5–10 times: 5.4% on compressive strength,
5.8% on tensile strength and 11.7% on fracture energy.

Due to the lower tensile strength of concrete and low fracture energy, the default Auto
CSCM model calibration dramatically underestimates the lifetime of building structures.
Two examples of dynamic deformation of RC structures with low loading rates typical for
civil structures were considered to validate the calibration procedure.

The first example, the low-velocity impact of a rigid impactor on an RC beam, shows
a significant improvement in the detailed description of the fracture process. The crack
pattern is more realistic; the peak displacement error for case B decreased from 14% to 8%,
for case C, from 32% to 0% and for case D, from 14% to 9%.

The second example is the progressive collapse of a two-story building frame local
failure of a corner column. Simulation using the default Auto CSCM parameters calibration,
due to significant underestimation of the tensile strength and fracture energy, leads to
significant deviations from the experimental data: up to 100% error. Calculations using
the proposed parameters of the CSCM model are much better in agreement with the
experiment; the errors do not exceed 7%.

Thus, the developed calibration procedure improves the performance of the CSCM
model over a range of concrete classes from C20 to C60 at low loading rates. Validation of
the proposed procedure at higher loading rates will be the next stage of this study.
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Appendix A

Appendix A.1. Concrete Petameters from CEBFIP 1990 Analysis

Some additional material parameters could be estimated with the help of CEBFIP
1990 [9]. The tangent modulus of elasticity assumed as default elasticity modulus since not
only elastic concrete analysis is performed:

E = Ec0
3

√
fc + ∆ f

fcm0
, (A1)

where: Ec0 = 21.5·103 MPa, · f = 8 MPa, fcm0 = 10 MPa. Poison ratio assumed to be
constant for all rage of applicability ν = 0.2.

Modulus of elasticity [9].
Shear modulus and bulk modulus could be estimated as:

G =
E

2(1 + ν)
(A2)

K =
E

3(1− 2ν)
(A3)

Optional kinematic hardening could enable hardening initiation and hardening rate
parameters set no equivale to zero [23]. Prepeak nonlinearity is more pronounced in
compression than in tension or shear. This equation is optional and not default because it is
not essential to the good performance of the model.

NH = 0 (A4)

CH = 0 (A5)

NH parameters could be estimated in case of kinematic hardening for compression, to
be taken into account [45] as:

NH =
f 0.855
c
60

. (A6)

A second parameter, CH, determines the rate of hardening (amount of nonlinearity)
and could be fitted with a single element compression test.

Appendix A.2. Parameters for Compressive Meridian (TXC)

The compressive meridian curve for the strength surface of the concrete is given in
the form:

TXC = Ff (I1) = α + θ I1 − λe−βI1 , (A7)
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where α, θ, λ, β are direct input parameters of *MAT_CSCM, according to Table A1.

Table A1. TXC parameters.

*MAT_CSCM Variable Units Equation

ALPHA MPa α = 13.9846e(
fc

68.8756 ) − 13.8981

THETA - θ = 0.3533− 3.3294·10−4 fc − 3.8182·10−6 f 2
c

LAMBDA MPa λ = 3.6657e
fc

39.9363 − 4.7092

BETA MPa−1 β = 18.17791 f−1.7163
c

Appendix A.3. Parameters for Shear Meridian (TOR)

The shear meridian curve for the strength surface of the concrete is given in the
form [35]:

TOR = Q1(I1)Ff (I1), Q1(I1) = α1 + θ1 I1 − λ1e−β1 I1 , (A8)

where α1, θ1, λ1, β1 is direct input parameters of *MAT_CSCM, according to Table A2.

Table A2. TOR parameters.

*MAT_CSCM Variable Units Equation

ALPHA1 - α1 = 0.82

THETA1 MPa−1 θ1 = 0

LAMBDA1 - λ1 = 0.2407

BETA1 MPa−1 β1 = 0.33565 f−0.95383
c

Appendix A.4. Parameters for Tensile Meridian (TXE)

The shear meridian curve for the strength surface of the concrete is given in the
form [35]:

TOR = Q2(I1)Ff (I1), Q2(I1) = α2 + θ2 I1 − λ2e−β2 I1 , (A9)

where α2, θ2, λ2, β2 is direct input parameters of *MAT_CSCM, according to Table A3.

Table A3. TXE parameters.

*MAT_CSCM Variable Units Equation

ALPHA2 - α2 = 0.76

THETA2 MPa−1 θ2 = 0

LAMBDA2 - λ2 = 0.26

BETA2 MPa−1 β2 = 0.285 f−0.94843
c

Appendix A.5. Cap Surface Parameters

Direct input parameters of *MAT_CSCM for cap surface could be found in Table A4 [35].
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Table A4. Cap surface parameters.

*MAT_CSCM Variable Units Equation

R - R = 4.45994e−
fc

11.51679 + 1.95358

X0 MPa X0 = 17.087 + 1.892 fc

W - W = 0.065

D1 MPa D1 = 6.110·10−4

D2 MPa2 D2 = 2.225·10−6

Appendix A.6. Damage and Energy Parameters

Direct input parameters of *MAT_CSCM for damage and fracture could be found in
Table A5 [6].

Table A5. Damage and energy parameters.

*MAT_CSCM Variable Units Equation

B - B = 100

D - D = 0.1

GFC MPa·mm GFC = 100·GF

GFT MPa·mm GFT = GF

GFS MPa·mm GFS = GF

PWRC - pwrc = 5

PWRT - pwrt = 1

PMOD - pmod = 0

Appendix A.7. Strain Rate Parameters

Direct input parameters of *MAT_CSCM for strain rate effects consideration could be
found in Table A6 [6].

Table A6. Strain Rate Parameters.

*MAT_CSCM
Variable Units Equation

ETA0C - η0c = 1.2772337·10−11· f 2
cpsi
− 1.0613722·10−7· fcpsi + 3.203497·10−4

NC - ηc = 0.78

ETA0T - η0t = 8.0614774·10−13· f 2
c +−9.77736719·10−10· fc + 5.0752351·10−5

NT - ηt = 0.48

OVERC - owerc = 1.309663·10−2 · f 2
c − 0.3927659· fc + 21.45

OVERT - overt = 1.309663·10−2 · f 2
c − 0.3927659· fc + 21.45

SRATE - Srate = 1

REPOW - repow = 1
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