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Abstract: The size, shape, gradation and appearance of aggregate have a significant impact on the
road performance of asphalt mixtures, which is directly related to the deformation characteristics
and fatigue resistance of asphalt mixtures. In order to be able to design a long-life asphalt pavement,
the aggregate must have reasonable morphology and morphological characteristics. In order to
quantitatively analyze the shape characteristics of the road coarse aggregate, a high-precision three-
dimensional scanner is used to obtain the characteristic lattice of the aggregate surface, and the solid
model of the coarse aggregate particles is established. The two-dimensional and three-dimensional
morphological indicators of the aggregate are analyzed and discussed. Meanwhile, aggregates
processed by typical quarries in Guangdong Province are collected, and the influence of different
processing techniques on the morphology of aggregates are analyzed. The results show that the
difference between the perimeter and projected area of the aggregate contour under different viewing
angles is relatively large, which is closely related to the flatness index of the aggregate. It can
better characterize the three-dimensional shape of the aggregate. The closer the aggregate is to
the cubic state, the greater the sphericity value; the ellipsoid index calculated based on the three-
dimensional circumscribed ellipsoid can better characterize the angularity of the aggregate. The
worse the angularity of the aggregate, the larger the corresponding ellipsoid value. The sphericity of
the aggregate processed by counter-breaking is lower, and the angularity is better. The sphericity of
the aggregate processed by the shaping process is the best, but the angularity is lower. According
to actual needs, different processing techniques can be combined and blended to obtain aggregate
finished products with a more balanced grain shape and angularity. The richer the angularity of
the coarse aggregate, the better the high-temperature stability and fatigue resistance of the asphalt
mixture. However, the stability of performance indicators will become worse. In practical engineering
applications, it is recommended to further combine the screening efficiency of the hot material screen
of the mixing plant with the stability of the hot material gradation and the uniformity of construction
quality to select a suitable aggregate processing technology.

Keywords: coarse aggregate; three-dimensional scanning; two-dimensional profile; sphericity;
ellipticity; processing technology

1. Introduction

Natural aggregate is the most widely used material in highway construction, and
its mass proportion in asphalt pavement can usually reach more than 90%. Therefore,
considering the proportion of material quality, the quality of an asphalt pavement is largely
determined by the quality of the aggregates. Engineers and technicians generally believe
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that the performance of an asphalt pavement mainly depends on the quality of the asphalt
binder, which only accounts for 5% to 10% of the weight of asphalt concrete. In order to
change the traditional and limited view that “asphalt performance determines pavement
performance”, it is necessary to systematically study aggregates and analyze the influence
of aggregate properties on the performance of the mixture [1].

For a long time, construction management personnel have also had prejudices in the
understanding of aggregates, that is, they have strict requirements on the original properties
of aggregates, such as the type of aggregate, crushing value, abrasion value, polishing value,
density and water absorption. However, they do not pay enough attention to the processing
characteristics, such as the content of needle and flake particles of stone, the proportion of
broken surface of broken gravel, mud content, angularity, grading composition, and the
roughness and angularity of machine-made sand [2]. Previous studies have shown that the
size, shape, gradation and morphology of aggregate have a significant impact on the road
performance of asphalt mixture, which is directly related to the deformation characteristics
and fatigue resistance of asphalt mixture [3]. In order to be able to design a long-life
asphalt pavement, the aggregate must have reasonable morphology and morphological
characteristics. Therefore, how to control aggregate quality from the source, evaluate the
performance of the asphalt mixture and predict its road performance is an urgent problem
to be solved [4].

The properties of coarse and fine aggregates used in hot-mix asphalt mixtures and
cement concrete mixtures have an important impact on the performance of a pavement.
Among them, the shape, texture and corners of the aggregate properties have a huge
impact on the performance of the aggregate [5]. In recent years, several methods have
been developed to measure the shape, texture and corners of aggregates. According to
the research on aggregate testing methods, the methods of describing aggregate shape
characteristics can be roughly summarized into two categories, namely, the indirect method
and direct method [6].

The indirect method refers to the use of test methods to combine the characteristics of
the particles, that is, to measure the overall macroscopic properties of aggregates that are
stacked or formed in a certain way, such as the loose porosity of the aggregates, the internal
friction angle and so on [7]. The measured overall properties are taken as the characteristic
values of the particles [8]. At present, the representative indirect test methods for the
morphological characteristics of aggregates include: (1) the uncompacted porosity method
of coarse/fine aggregate (AASHTO TP56/T304), (2) the compacted aggregate resistance
test method (CAR), (3) the Florida bearing ratio test method, (4) the direct shear test method
(AASHTO T236/ASTM D3080), and (5) the gauge method (ASTM D4791) [9].

Prowell and Weingart studied the test accuracy of ASTM D4791 and found that the
coefficient of variation for a single operation could reach 26.1%, and the coefficient of
variation between laboratories could reach 35.3% [10]. The angularity of coarse aggregates
by manually counting the fracture surfaces is evaluated in the ASTM D5821 [11]. The
indirect method is time-consuming and laborious, and the accuracy of the test depends
on the proficiency and experience of the operator. In addition, AASHTO TP56 and ASTM
D3398 cannot separate the shape, corners and texture characteristics of aggregates [12].

The direct method refers to the use of test methods to accurately determine the specific
shape of each aggregate particle, such as the use of a caliper to determine the needle-
like content of the aggregate, that is, to quantitatively describe the characteristics of the
particles (shape, corners and texture) [13]. At present, the representative direct test methods
of aggregate morphology characteristics are: (1) the coarse aggregate broken particle
percentage test method (ASTM D5821), (2) the coarse aggregate needle flake content test
method (ASTM D4791) and (3) the multi-magnification rate analysis (MRA) [14].

Masad E. et al. developed the aggregate image analysis system AIMS. Based on the
change in the radius of the image contour line, they proposed the form index and radius
angularity index to characterize the shape and angularity of aggregates [15]. Masad E.
developed the second-generation AIMS II, which eliminated the interference of ambient
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light by setting a closed dark box, and used a stable LED light source to control the light
intensity during the measurement process to achieve uniform exposure and scanning
effects [16]. Similar to China’s T0311 method (using a vernier caliper to measure particles
with the ratio of maximum length to minimum thickness of coarse aggregate greater than
3 times), other standard methods commonly used in the world, such as the British BS EN
933-4 method, mainly use a particle slide gauge to measure the shape index of aggregate,
expressed by the ratio of the mass of all particles greater than 3:1 to the total mass of each
grade of aggregate. The flakiness index of aggregate is measured by British BS EN 933-3
method. Each grade of aggregate is screened by a reinforcement screen. The particles
passing through bar sieves are expressed by the ratio of sheet mass to total mass. These
methods can characterize the needle and flake particle content of aggregate and are widely
used in engineering. However, there are also some limitations: first, the whole process
must be completed manually, which inevitably brings subjective errors. In addition, due
to the complexity of the three-dimensional shape of aggregate, it is difficult to find the
accurate position of the length, width and thickness of aggregate. In contrast, the three-
dimensional analysis method of aggregate can more comprehensively reflect the spatial
shape of aggregate. Through the operation of the program, the maximum length, width and
thickness of aggregate can also be accurately determined, and then the three-dimensional
shape can be evaluated by indicators from multiple angles.CT tomography technology is
currently the mainstream platform for obtaining the mesoscale of the internal structure of
the mixture. A series of continuous tomographic two-dimensional slice images output by
the scan are the basis for the two-dimensional feature extraction and three-dimensional
information reconstruction of the aggregate [17].

Aggregate morphology has three scales: shape, angularity and texture. With the
development of image and computer technology, the evaluation of aggregate morphology
has basically realized the change from time-consuming, labor-intensive and subjective
manual testing methods to automated objective evaluation methods based on computer
technology [18]. Meanwhile, Wang et al. found that the rotational speed of VSI is affected by
the input power of the machine on the particle size. In the crushing process, the higher the
speed, the more cracks on the aggregate. In addition, the correlation between the particle
shape characteristics affected by mineral composition and its collision behavior is discussed
according to the test results [19]. Regression analysis shows that the percentage of layered
silicate minerals in rocks is positively correlated with water content and total porosity. In
mafic and ultramafic rock samples, the relationship between secondary layered silicate
minerals and their physical and mechanical properties shows that the total amount of
secondary layered silicate minerals has a negative impact on their physical and mechanical
properties. On the other hand, the proportion of layered silicate minerals in volcanic rocks
is low, so its engineering properties cannot be determined [20]. The ratio of secondary min-
erals to primary minerals (SEC/PR) of the studied ultramafic rocks has a good correlation
with their physical, physicochemical and mechanical properties, indicating that alteration
has a negative impact on the engineering properties of ultramafic rocks [21].

In the early stages of morphological evaluation, the two-dimensional images of aggre-
gates were mainly used for their morphological evaluation. With the development of 3D
modeling technology, the three-dimensional morphological evaluation of aggregates has
become a research hotspot. Industrial CT and 3D laser scanning are the current mainstream
3D modeling methods for aggregates. In this study, the two modeling methods are used
to model the coarse aggregate samples collected from nine stockyards. On this basis, the
three-dimensional morphological evaluation index is constructed by using the spatial geo-
metric characteristics of the aggregate geometric model. Finally, the relationship between
the aggregate particle size, aggregate lithology and aggregate geometric characteristics is
systematically studied.



Buildings 2022, 12, 293 4 of 19

2. Method and Equipment
2.1. Three-Dimensional Scanning Test of Natural Aggregate

In this study, AutoScan DS-EX 3D scanner (SHINING 3D, AutoScan DS-EX, Dongguan,
China) is used, with a camera resolution of 1.3 million pixels, a scanning accuracy of
≤0.015 mm, a scanning range of 100 mm × 100 mm × 75 mm, a scanning time of 120 s and
a temperature range of 10–30 ◦C. The size of the scanner is 260 mm × 270 mm × 420 mm,
the weight is 5 kg, the data output format is STL and OBJ, the interface is USB3.0, and
the power supply is DC24V. This equipment can perform splice scanning to obtain high-
precision complete three-dimensional morphological data of different coarse aggregates, as
shown in Figure 1.
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Figure 1. Aggregate HD Scan.

Materialise magics software (Ver 20.0.3.11, 2016, Materialise; Leuven, Belgium) is
used to analyze the surface area, volume, sphericity and flatness of selected aggregates.
Rhinoceros software (Ver 7.0, 2020, Robert McNeel & Assoc; Seattle, WA, USA) is used to
analyze the perimeter, area, roundness and morphological factors of the selected aggregate
projection.

2.2. Aggregate Scanning
2.2.1. Aggregate Pretreatment

The working principle of the 3D scanner is to project specific light rays to the surface
of the object to be measured through the scanning device, and the light is reflected by the
camera of the scanning device to reproduce the 3D data of the object being measured in the
software through the special algorithm of the scanning software. Therefore, the scanning
device receiving the reflected light of the measured object is a necessary factor for obtaining
three-dimensional data, and dark colors and reflective spots cannot be scanned during the
scanning process.

Part of the surface of the crushed stone after treatment is reflective, and some com-
ponents such as quartz stone appear black and the color is too dark. It is unfavorable for
completing the three-dimensional scanning in the two situations. In the experiment, a
thin layer of zirconia powder with a particle size of 50 nm is applied on the surface of the
gravel to solve the problem of light reflection. For the spots on the gravel that are black and
the powder is too thin to be easily scanned, contrast agent is applied to the aggregate to
enhance the scanning effect, so as to achieve the weakening of the dark or reflective parts
of the gravel and achieve the scanning conditions.
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2.2.2. Image Mosaic

Fix the gravel on the scanning table, scan the gravel with a three-dimensional scanner
to obtain the appearance data. When scanning, the environment where the gravel is located
(such as a scanning table, etc.) will inevitably be scanned. The data obtained have a lot
of noise data. Data processing is required to delete the noise. After removing the noise
data, image stitching is performed. Because the contact point between the rubble and the
scanning platform cannot be scanned, the experiment first scans the upper half of the rubble,
and then reverses it to scan the lower half of the rubble. Therefore, the experiment must
use the stitching scanning method, and this is carried out after the stitching is completed.
The data are merged to form a complete three-dimensional image. Due to the noise in the
scanning process, after the image is completed, the computer can automatically perform
basic calculations based on the surrounding feature points to fill in the vacancies and form
a relatively perfect gravel shape (see Figure 2).
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2.2.3. Image Restoration and 3D Reconstruction

The scanned data are mainly point cloud data. When the triangle patch is automatically
generated, the point cloud data become model data, because the point cloud scan does not
only acquire one layer but a multi-layer overlay form, which will have a certain degree of
coincidence. This experiment uses Max software (V20.3, Autodesk company, SAN Rafael,
CA, USA) to repair it. After completing the hole filling and repairing, the model is basically
completed, as shown in Figure 3. Finally, it is converted to STL format or other graphic
formats for export.
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3. Results and Discussion
3.1. Two-Dimensional Profile Analysis and Characterization of Aggregate
3.1.1. Two-Dimensional Morphological Characterization of Aggregate

The Rhinoceros software is used to characterize the two-dimensional morphology of
the crushed stone, and the three-dimensional projection map of the crushed stone is derived,
and then data collection and morphological characterization are performed on the lateral
projection map of the crushed stone. Fifteen aggregates are randomly selected as a sample,
and the results of the perimeter and area of the projected two-dimensional images of the
aggregates at different viewing angles (x-axis, y-axis and z-axis, as shown in Figure 4) are
counted, respectively, as shown in Table 1. The projections of gravel in different directions
have great differences in the measured perimeter and area. Among them, the particle size of
the small gravel is 4.75~9.5 mm, the circumference of the projection surface is in the range
of 30~50 mm and the projection circumference range in different directions (the difference
between the maximum and minimum viewing angle) can reach more than 20 mm. The
particle size of the bigger gravel is 19~26.5 mm, the perimeter of the projection surface is in
the range of 50~95 mm and the range of the projection perimeter in different directions can
reach more than 40 mm. From the area statistics results, the projected area of small gravel
is in the range of 35~115 mm2, and the maximum range of area is 77 mm2. The projected
area of large gravel is in the range of 150~535 mm2, and the maximum range of area is
339 mm2. It can be seen that even if the same gravel is viewed from different perspectives,
the outline perimeter and projected area are quite different, and it is difficult for a single
aggregate projected two-dimensional geometric index to characterize the morphological
characteristics of the aggregate.
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Table 1. Three-dimensional projection test results.

Type Number
Perimeter/mm Area/mm2

x-axis y-axis z-axis Range x-axis y-axis z-axis Range

Small gravel

1 39.6 51.0 29.7 21.3 91.7 75.7 56.9 34.8

2 40.7 34.3 58.3 24.1 115.8 74.0 57.1 58.8

3 34.5 34.1 31.6 3.0 85.4 79.2 72.6 12.8

4 34.3 34.2 32.7 1.6 84.6 86.5 76.2 10.2

5 37.7 34.9 25.8 11.9 99.3 74.3 44.0 55.3

6 42.0 37.0 26.8 15.2 113.9 70.2 36.8 77.1

7 33.3 36.1 31.5 4.6 76.1 97.3 71.1 26.2

8 36.3 33.3 29.4 6.9 98.6 79.2 60.3 38.3
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Table 1. Cont.

Type Number
Perimeter/mm Area/mm2

x-axis y-axis z-axis Range x-axis y-axis z-axis Range

Larger gravel

1 81.4 75.9 86.6 10.7 447.2 388.2 534.5 146.3

2 84.6 80.8 78.2 6.4 514.3 447.2 433.1 81.1

3 77.8 68.3 65.6 12.2 443.3 328.4 307.4 135.9

4 86.9 86.9 65.8 21.1 513.2 498.2 317.2 196.0

5 70.7 75.7 65.6 10.1 327.6 414.5 309.1 105.4

6 75.4 81.3 73.0 8.3 368.3 450.1 361.5 88.6

7 93.1 87.3 50.1 43.1 489.0 335.2 149.9 339.1

3.1.2. Correlation Analysis of Two-Dimensional Outline Variability and Aggregate Shape

The variation in the projection shape of the aggregate from different viewing angles is
mainly related to the irregularity of the aggregate. During the test operation, it is found that
the results of different operators have great variability, up to more than 25%. According
to the collected aggregate model, the flatness rate index of the crushed rock is calculated
by extracting the long and short axis parameters of the crushed rock. The mathematical
expression is

D =
b
a

(1)

where: D represents the flatness (slenderness ratio) of the gravel, a is the length of the
longest axis of the gravel, b is the length of the shortest axis of the gravel and the value
range of D is 0–1.

According to the test regulations (JTG E42-2005), when D is less than 0.333, it can
be regarded as needle flake particles. The range can be used to evaluate the degree of
dispersion of the two-dimensional outline index of the aggregate with the same sample
number and the same size ratio, but for aggregates of different size ratios, the magnitude
of the perimeter and area indicators will change due to the difference in scale. Therefore,
the coefficient of variation is used to characterize the degree of dispersion of the test
results of aggregate samples of different size ratios in the study. In order to study the
relationship between the variability of the two-dimensional outline index of the aggregate
under different viewing angles and the shape of the aggregate, the flatness rate index of the
small gravel and the large gravel are calculated, respectively, and the trend charts of the
variation coefficient of the perimeter and area of each aggregate and flattening rate index
in different viewing angles are plotted, as shown in Figures 5 and 6.

It can be clearly seen that the coefficient of variation of samples from different viewing
angles for the perimeter and area indicators of the two-dimensional outline has a good
linear relationship with the flatness rate index of the aggregate. With the decrease in
the flatness rate index of aggregates, the aggregate outline indexes of different viewing
angles also change significantly, and the coefficient of variation of the perimeter and the
area have a significant increasing trend. Combined with the morphological analysis of
the aggregate, when the aggregate particles are shorter and smaller, that is, the more
square the aggregate, the closer the projection shapes in all directions are. The flatter
or more slender the aggregate, the greater the difference in the projection outline of the
aggregate under the three-dimensional viewing angle. Therefore, the representativeness of
the two-dimensional outline index of the aggregate mainly depends on the square shape
of the aggregate particles. According to the 95% guarantee rate standard in engineering
application, when the flattening rate of the aggregate is about 0.7 or more, the variation
coefficient of the two-dimensional outline index can be controlled within 5%. For needle
flake aggregate particles, the variation coefficient of the two-dimensional outline index of
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the aggregate is 30–50%. At this time, the variation in the projected two-dimensional outline
index is too large, and it is difficult to fully represent the morphological characteristics
of the aggregate. It is suggested that for aggregates with a flattening rate of more than
0.7, conventional two-dimensional indicators can be directly used for characterization
and application. In addition, when there are too many flat particles in aggregate, it is
easy to cause quality problems such as production gradation variation and construction
segregation of the asphalt mixture.
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3.2. Characterization of Aggregate Particle Size

We collected the basic data of the crushed stone through Materialise Magics, exported
the three-dimensional map of the crushed stone through the software (see Figure 7), col-
lected the surface area, volume and other data of the crushed stone in the three-dimensional
space and then were able to characterize the sphericity of the crushed stone. Sphericity is
mainly used to evaluate the degree of crushed stone biased towards balls. In engineering
applications, after the stone processing line is over-grinded and reshaped. The aggregate
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particles tend to be cubic and the sphericity value increases. For the calculation of sphericity,
refer to the calculation method of aggregate sphericity of AIMS II [22], and the calculation
formula is as follows

SP =
3

√
dsdI
dL

(2)
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Within this formula, ds is the length of the minor axis of the aggregate in mm, dI is the
length of the minor axis of the aggregate in mm and dL is the length of the major axis of a
single particle in mm.

The maximum value of the sphericity index is 1. At this time, the three-axis length
of the aggregate is equal, and the shape of the aggregate is similar to a cube or close to
a sphere.

It can be seen from Figure 7 and Table 2 that the calculated aggregate particle sphericity
index is in good agreement with the aggregate shape. At the same time, the index of flatten-
ing rate is calculated. With the increase in flattening rate, the sphericity of aggregate also
shows a consistent increasing law. Both indicators can characterize the three-dimensional
shape of aggregate on a certain level, but the characterization of sphericity index is more
comprehensive. The reason is that the flattening rate index is mainly related to the long axis
and short axis, while the calculation of sphericity index involves the length of aggregate
axis in three directions, and the characterization range is closer to the three-dimensional
particle shape of aggregate. Therefore, the sphericity index can better characterize the
overall particle cube shape of aggregate. Combined with test conditions and engineering
experience, under the conditions of this study, when the sphericity of aggregate is greater
than 0.90, it is close to a cube; when 0.8 ≤ sphericity < 0.9, it presents as a subcube shape;
when 0.7 ≤ sphericity < 0.8, the aggregate is slender; when the sphericity is less than 0.70,
the flattening rate is low and reaches the degree of a needle flake. Although the sphericity
index is suitable for evaluating the poor particle type of aggregate, it cannot distinguish the
roughness or angular characteristics of aggregate particles. Therefore, a single sphericity
index has difficulty reflecting the quality of aggregate, and the angular index of aggregate
needs to be further established.
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Table 2. Sphericity statistics of samples.

Number 1 2 3 4 5 6 7 8

Sphericity 0.725 0.766 0.901 0.983 0.678 0.633 0.881 0.856

Flattening 0.434 0.479 0.72 0.803 0.464 0.321 0.684 0.646

Describe Slender Slender Stereoscopic Stereoscopic Needle
flake

Needle
flake

Sub stereo-
scopic

Sub stereo-
scopic

3.3. Evaluation of Angularity of Aggregate

The angularity of the aggregate helps to improve the stability of the compaction
between the aggregates. Reference [23] proposed to use the ratio of the perimeter of
the two-dimensional aggregate contour to the equivalent ellipse contour to define the
angularity. Reference [24] proposed a three-dimensional angularity index based on the
three-dimensional shape of the aggregate, which more comprehensively characterizes the
three-dimensional angular shape of the aggregate (see Figure 8), and the index is unique.
This is calculated as follows

E =
V1

V2
(3)

where, E is the three-dimensional angularity index; V1 is the three-dimensional volume
of the aggregate, mm3; V2 is the minimum ellipsoid volume circumscribed by the aggre-
gate, mm3.
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The judgment standard is proposed in reference [25], and the angularity index of the
sample is summarized in Table 3. Combining the morphology of aggregate samples and the
discrimination criteria, there is a greater risk of fracture and damage for sharp and angular
particles with an ellipsoid value less than 0.71. For angular particles with an ellipsoid value
in the range from 0.71 to 0.79, and an ellipsoid with sub-angular particles in the range
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from 0.79 to 0.88, the aggregate particles are rich in edges and corners without being too
sharp, which can effectively improve the inter-aggregate embedding capacity of the asphalt
mixture. When the ellipsoid value is greater than 0.88, the aggregate appears as subcircular
or sub-elliptical, and the edges and corners are basically rounded, which is not conducive
to the embedding effect of the asphalt mixture.

Table 3. Angularity statistics of samples.

Number 1 2 3 4 5 6 7 8

Ellipsoid 0.686 0.703 0.736 0.882 0.891 0.664 0.868 0.754

Type Sharp
corners

Sharp
corners Angular Subcircular Subcircular Sharp

corners
Sub-

angular Angular

3.4. The Influence of Crushing Process on the Morphology of Coarse Aggregate

The instability of aggregate processing quality is currently a major problem in do-
mestic quarries. With the standardized management of high-grade highway construction
in recent years, higher requirements have been placed on the grain size of aggregate pro-
cessing, especially the wear layer of asphalt pavement. It is expected that the aggregate
particles produced are square and rich in edges and corners to improve the performance
of the road surface. In order to analyze the impact of different crushing processes on
the size of coarse aggregates, the aggregate conditions processed by Furong Quarry in
Guangdong Heyuan were investigated, and the aggregates of 10~15 mm specifications of
three processing processes were collected, respectively: 1© Process 1: counterattack crush-
ing is the main method, that is, jaw crushing (JW1060, South Road Machinery Co., Ltd.,
Quanzhou, China), cone crushing (VC1500, South Road Machinery Co., Ltd., Quanzhou,
China) and counterattack crushing (IH1316, South Road Machinery Co., Ltd., Quanzhou,
China); 2© process two: plastic crushing involves mainly jaw crushing (JW1060, South Road
Machinery Co., Ltd., Quanzhou, China), cone crushing (VC1500, South Road Machinery
Co., Ltd., Quanzhou, China) and shaping (S3-1030S3, South Road Machinery Co., Ltd.,
Quanzhou, China); 3© process three: this involves 50% counterattack crushing and 50%
shaping process, that is, right semi-blended two processing aggregates.

In total, 100 aggregates under different processes were randomly selected, and the
sphericity and ellipsoid index of the coarse aggregate under the three processing processes
were calculated. The aggregate proportion is the ordinate, and the distribution diagram is
drawn, see Figures 9–11. It can be clearly seen that the sphericity and ellipsoid values of
the coarse aggregate under different processing techniques have obvious peaks, showing a
kurtosis distribution. However, the kurtosis of the aggregate test results under different
processes is different, and there is a partial peak state. Gaussian distribution fitting is
performed on the histogram, and the statistical results are shown in Table 4.

Table 4. Aggregate form index statistics.

Craft
Sphericity Ellipticity

Mean Value Standard Deviation R2 Mean Value Standard Deviation R2

Craft 1 0.734 0.072 0.868 0.731 0.071 0.952

Craft 2 0.826 0.057 0.926 0.821 0.064 0.927

Craft 3 0.785 0.059 0.933 0.777 0.081 0.975



Buildings 2022, 12, 293 12 of 19

Figure 9. Aggregate morphology distribution of process one. (a) Sphericity. (b) Ellipticity.
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From Figures 9–11 and Table 4, it can be seen that the sphericity and ellipsoid values
of the aggregate shape processed by the quarry meet the Gaussian distribution, and the
correlation coefficient of the fitting can reach more than 0.8.

From the point of view of the sphericity index, the average value of sphericity of
process two is the largest, followed by process three and process one is the smallest,
indicating that the coarse aggregate produced directly by the shaping process is closer to
the cube state as a whole. The direct use of counter-breaking processing technology has a



Buildings 2022, 12, 293 14 of 19

low sphericity index, a relatively large proportion of flat particles and a large fluctuation
range of particle shape among aggregate particles.

From the point of view of the ellipsoid index, the ellipsoid value of process two is
the largest, followed by process three and process one is the smallest. This rule is more
consistent with the sphericity index, but the ellipsoid value is slightly smaller than the
sphericity value, mainly due to angularity. The ellipsoidal index of the first process is the
smallest, indicating that the aggregate particles produced by counter-breaking have the
best angularity, while the aggregate particles processed by the shaping process have the
largest ellipticity and the weakest angularity.

In summary, the cube and angularity index reflected by the sphericity and ellipticity
is a self-contradictory index. Excessive pursuit of the cube shape of coarse aggregate will
cause the angularity to be easily worn during processing. The use of process three “50%
counterattack crushing and 50% shaping process” is mixed with each other to achieve a
balanced state of particle shape and angularity. Therefore, engineering projects can adjust
the combination of aggregate processing and production technology in combination with
design and use requirements, and further improve the stability of aggregate processing
quality.

3.5. The Influence of Different Processed Aggregates on the Performance of Asphalt Mixture

There are many studies on the effect of needle-like particles on the performance of
asphalt mixtures. Some scholars have found through experimental research that the volume
index of the asphalt mixture is greatly affected by needle-like particles. When the needle
flake particles increase, the corresponding high-temperature stability, water stability and
fatigue performance of the asphalt mixture will be significantly attenuated [26,27]. However,
the “Highway Engineering Aggregate Test Regulations” define needle-like particles as the
ratio of aggregate length to thickness greater than 3 times. In fact, in the actual production
process of the quarry, a considerable proportion of the flake crushed stone has a length to
thickness ratio of 2 to 3 times. Although it can be judged as qualified, it is rich in needle-like
flake aggregates or excessively shaped aggregates. The influence of the material on the
performance of the asphalt mixture needs to be studied.

This article extract the aggregates produced by the previous three processing tech-
niques and conducts the needle flake test and the mixture test. In order to keep the
proportion of needle-like flakes of different process aggregates at the same level, manual
removal is used to screen the excessive needle-like particles. Finally, the content of the
needle-like particles of the three aggregates is in the range of 6.0% to 6.5%. The main per-
formance indicators of the coarse material are shown in Table 5. Limestone machine-made
sand is used for fine aggregate, and ordinary SBS modified asphalt (PG76-22) is used for
asphalt.

Table 5. Coarse aggregate performance index.

Inspection Index Unit Results

Stone crushing value % 6.2

Los Angeles abrasion loss % 9.7

Apparent relative density — 2.946

Water absorption % 0.42

Robustness % 1.8

Water washing method < 0.075 mm particle content % 0.6

Soft stone content % 0.9

Adhesion to ordinary asphalt class 4

With reference to the application experience of the middle surface layer of the asphalt
pavement in Guangdong Province, the framework-dense GAC-20C asphalt mixture grada-
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tion is selected, and the mixing ratio parameters are shown in Table 6. The whetstone ratio
is 4.4%.

Table 6. Gradation design of asphalt mixture.

Size (mm) 26.5 19 16 13.2 9.5 4.75 2.36 1.18 0.6 0.3 0.15 0.075

Passing rate (%) 100 97 83.6 70.4 55.7 33.3 25.1 17.8 13.7 10.1 7.3 5.5

For the asphalt pavement used in Guangdong, with a high temperature and rain in
summer, the high temperature resistance of the asphalt mixture is particularly important.
Three kinds of processes are used to process coarse aggregates; the rut plate specimens are
formed according to the mineral gradation in Table 6, and the rutting test at 60 ◦C and 70 ◦C
is carried out in accordance with the asphalt mixture test procedure. The rutting plate test
piece of 300 × 300 × 50 mm is formed, and the flat rubber solid tire (outer diameter 200 mm,
wheel width 50 mm) is used for round-trip rolling (the speed is 42 times/min). The contact
pressure between the test wheel and the test piece is 0.7 MPa. The test temperature is 60 ◦C
and 70 ◦C. An automatic rut tester (hyce-5, Beijing Aerospace Measurement & Control
Technology Co., Ltd., Beijing, China) is used to measure the number of wheel rolling
corresponding to 1 mm deformation of the asphalt mixture specimen, so as to characterize
the high-temperature rutting resistance of the asphalt pavement. The test results are shown
in Figure 12. It can be seen that the rutting test indexes of asphalt mixtures formed by
coarse aggregates of different processing technologies are different. Under the condition of
60 ◦C, the dynamic stability index of process 3 is slightly greater than that of process 1, and
process 2 is the smallest, because the dynamic stability has exceeded 6000 times/mm. At
this time, the instrument and equipment display a large numerical error. Therefore, the
70 ◦C high temperature test is supplemented. At 70 ◦C, the dynamic stability value of the
asphalt mixture is between 4000~5500 times/mm. Among them, the dynamic stability of
the mixture of process one is the largest, followed by process three, and process two is the
smallest. Therefore, it can be considered that when the aggregate needle flake indicators
are qualified and the level difference is not large, the more angular the coarse aggregate,
the more stable the mineral aggregate embedding, and the better the high-temperature
stability of the asphalt mixture. In addition, a phenomenon is also found that the greater
the angularity of the coarse aggregate, the higher the coefficient of variation of the parallel
test, that is, the performance indicators of the asphalt mixture are prone to fluctuate, which
is a test for the stability of construction quality.
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Asphalt pavement will have strength attenuation under the repeated actions of vehi-
cles, which will cause cracking and damage. The fatigue test is generally based on the 50%
initial value of the remaining stiffness modulus of the mixture as the basis for fatigue failure.
The number of loading times often needs to reach dozens or even millions of times. The
test volume is large, the cycle is long and the cost is high. An impact toughness test method
based on the principles of fracture mechanics and the energy method is proposed [28],
and the correlation between impact toughness and fatigue life is constructed. The ba-
sic test operation of impact toughness is as follows: 1© Compact and shape with a wheel
roller forming machine to prepare a plate-shaped specimen of 300 mm × 300 mm × 50 mm.
2© Use a high-precision double-sided saw (SRC-600, SR Consulting Ltd., Klaukkala, Fin-

land) to cut the molded solidified specimen into a length of 250 mm ± 2 mm and a width
of 250 mm ± 2 mm. The prism trabecula with a height of 30 mm ± 0.5 mm and a height
of 35 mm ± 0.5 mm has a span of 200 mm ± 0.5 mm. 3© Use the MTS testing machine
(MTS-810, MTS Systems Corporation, Minneapolis, MN, USA) for loading at a loading
rate of 500 mm/min. 4© Put the cut specimens into an environmental incubator for heat
preservation and curing at 15 ◦C for more than 4 h and, finally, conduct an impact toughness
test, as shown in Figure 13.
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Impact toughness mainly refers to the ability of materials to absorb deformation work
and fracture work under impact load. It is an important index to evaluate the toughness
of materials. When the material bears the external load, the material itself will produce a
certain stress and lead to the corresponding strain. After the material produces fatigue crack
under repeated load, it will produce a certain stress–strain field at the crack. Therefore,
when the material breaks, it is accompanied by a loss of energy. The energy value can be
calculated by the area surrounded by the load displacement diagram, that is, the impact
toughness value (unit: n·mm). According to the research results of the research group on
the bridge deck pavement of Hong Kong Zhuhai Macao Bridge, the correlation coefficient
between the impact toughness index and fatigue performance index of asphalt mixture is
more than 0.9 [29]. The impact toughness can be used to evaluate the fatigue performance
of asphalt concrete. It can be seen from Figure 14 that the impact toughness value of process
one is the largest, process three is the smallest and process two is the smallest. Among
them, the impact toughness value of the asphalt mixture processed by process one is higher
than that of the process two mixture by about 23%, indicating that the angularity of coarse
aggregate is beneficial to improve the fatigue life of asphalt pavement, which in the final
analysis is also related to the effect of embedding between coarse aggregates. The fatigue
performance of the semi-reshaping and semi-repulsive coarse aggregate of process three
is slightly lower than that of process one by about 5%, which is relatively close. In actual
engineering applications, it is recommended to further combine the screening efficiency of
the hot material sieve of the mixing plant and the stability of the hot material grading to
further select a suitable aggregate processing technology.
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4. Conclusions

(1) The X, Y and Z projection profile indicators of the aggregate are analyzed. The
perimeter and the projection area of the aggregate profile under different viewing
angles are quite different. The closer the aggregate is to the cube, the smaller the
variation in the contour index of each viewing angle; when the flatness of the aggregate
is about 0.7 or more, the coefficient of variation of the two-dimensional contour index
can be controlled within 5%.

(2) As the sphericity value increases, the aggregate is closer to the cubic state; the el-
lipsoid index calculated by the three-dimensional circumscribed ellipsoid can better
characterize the angularity of the aggregate. The larger the ellipsoid value, the worse
the angularity of the aggregate. Using two indicators of sphericity and ellipticity, the
three-dimensional shape of the aggregate can be fully characterized.

(3) Comparing the aggregate forms processed and produced by the three quarries, the
sphericity of the aggregate processed by counter-breaking is low and the angularity is
better. The sphericity of the aggregate processed by the shaping process is the best
but the angularity is low; it can be combined with actual needs to choose the form
of combination and blending of different processing techniques to obtain aggregate
finished products with a more balanced grain shape and angularity.

(4) When the aggregate needle flake indicators are all qualified and the level difference
is not large, the more angular the coarse aggregate, the more stable the aggregate
embedding, and the better the high-temperature stability of the asphalt mixture.

(5) The coarse aggregate produced by the impact breaking process has richer angular
characteristics, and the fatigue performance of the corresponding asphalt mixture can
be improved by about 23%. In practical engineering applications, it is recommended
to further combine the screening efficiency of the hot material sieve of the mixing
plant with the stability of the hot material grading to further select a suitable aggregate
processing technology.
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