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Abstract: The construction progress of a high-rise building is hidden by clutter such as formwork,
wood slats, and rebar, making it difficult to measure its progress through existing automated tech-
niques. In this paper, we propose a method to monitor the construction process of high-rise buildings.
Specifically, by using the target detection technique, unfinished building components are identified
from the top view, and then the identified components are registered to the BIM elements one by one.
This is achieved by comparing the position relationship between the target detection results and the
projection area of the BIM elements on the imaging plane. Finally, the overall construction progress is
inferred by calculating the number of identified and registered components. The method was tested
on a high-rise building construction site. The experimental results show that the method is promising
and is expected to provide a solid basis for the successful automatic acquisition of the construction
process. The use of top view reduces occlusion compared to similar methods, and the identification
of the unfinished component makes the method more suitable for the actual construction sites of
high-rise buildings. In addition, the combination of target detection and rough registration allows
this method to take full advantage of the contextual information in the images and avoid errors
caused by misidentification.

Keywords: high-rise building; construction process monitoring; building component detection;
building information modeling; top view

1. Introduction

Progress measurement is a daily task in construction management, providing reliable
support for decision making in the field. Traditional construction progress measurement
relies heavily on manual work and has been criticized by Architecture, Engineering and
Construction (AEC) practitioners for its repetitiveness, inefficiency and error-prone na-
ture. Over the past decade, many automated technologies have emerged, including radio
frequency identification (RFID), bar codes, ultra-wideband (UWB) tags, global position-
ing systems (GPS), three-dimensional (3D) laser scanning, image-based modeling, and
more. These technologies provide a wealth of support for automated monitoring of the
construction process. In particular, 3D reconstruction (including laser-based scanning
and image-based modeling) is favored by researchers as a result of its ability to visually
reproduce the 3D structure of buildings.

In recent years, the number and height of high-rise buildings around the world have
increased dramatically due to economic development, migration of people from rural to
urban areas, and advances in construction technology and materials [1,2]. Estimates have
predicted that these trends will continue in the future. Tracking the construction process
of such buildings is an important task. However, the existing literature seems to pay less
attention to it, which may be related to the characteristics of tall building construction. For
example, the same unit is repeatedly constructed in the vertical direction; the horizontal
working plane is very narrow and there is usually no suitable platform to install monitoring
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equipment; and the building facades are blocked by scaffolding and protective nets, so
it is difficult to obtain the latest construction progress from the ground level. Therefore,
whether the existing method is applicable to high-rise buildings needs further discussion.

Laser-based scanning allows the direct acquisition of 3D surface models of
buildings [3–6]. This technique has the advantages of being fast, accurate, and independent
of light, however it is not accepted by most companies due to expensive equipment and
high technical requirements [7–10]. As shown in Figure 1, the construction site of a high-rise
building is chaotic, including building materials and construction tools. More importantly,
the building under construction is composed of formwork and steel reinforcement, rather
than the concrete elements themselves. At this time, the point cloud scanned by the laser
technology consists of points that are mostly useless. From this perspective, laser scanning
technology is suitable for scanning completed components, not those under construction.
Therefore, the laser-based measurements are not suitable for high-rise buildings.
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In recent years, image-based modeling has attracted increased attention due to the
low cost of image acquisition [11–19]. Unlike laser scanning, it generates 3D point clouds
from images based on the principle of triangulation imaging. However, in the construction
site of a high-rise building, the concrete elements are surrounded. As shown in Figure 1,
what can be captured are formwork, wood strips, steel bars, and other debris. As with 3D
laser scanning, the generated point cloud contains too much useless information rather
than the components. Therefore, it is clear that the image-based modeling is not suitable
for such a complex environment.

Some scholars project BIM models onto the imaging plane and then infer construction
progress by identifying materials in the projected area [9,20,21]. This approach avoids the
identification of components from noisy point clouds. However, in the available literature,
this technique has not been applied to complex construction sites. The reason is that it
is not possible to capture the latest construction progress as the concrete components are
tightly wrapped by formwork and protective nets. Therefore, it is difficult to monitor the
construction process of high-rise buildings through the materials in the projection area.

In conclusion, the common feature of the above methods is the identification of the
completed components. This is impractical when measuring the construction progress of a
high-rise building. On-site concrete pouring and continuous construction are character-
istics of high-rise construction, which means that it is impossible to visualize the latest
construction progress.

While the above methods do not provide an ideal solution, it has been found that the
construction process of a high-rise building can be observed from an overhead perspective.
Moreover, it is easy to collect daily unordered construction images from the tower crane.
Thus, this paper proposes a method to measure the construction progress of high-rise
buildings from the top view. Specifically, the top view of the construction site is collected
by the tower crane workers; the building components are identified from the top view
and mapped to BIM elements; and the construction progress is inferred from the number
of registered components. The innovations of this study are mainly in the following
three aspects:

1. Identify the auxiliary objects (formwork and reinforcement), not the completed con-
crete elements, according to the actual situation;
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2. Using only the top view to measure construction progress, as monitoring from the
side is not practical for high-rise buildings;

3. The reliability of the results is improved by using rough registration to locate the
target detection results.

The objective of this study is to measure the construction progress of high-rise build-
ings, which is different from existing studies. In order to highlight the uniqueness of this
study, the assumptions are listed as follows:

1. The construction of the high-rise building is carried out by pouring concrete on site,
and the concrete components are wrapped by formwork;

2. The latest construction progress cannot be collected from the ground or sides due to
the obstruction of the protective net;

3. The monitoring object is the latest construction progress of the structure, not the
indoor construction progress.

This paper is structured as follows. First, it starts with an introduction to the related
work about building component detection and construction progress measurement. The
next section outlines the proposed method and explains in detail the three important steps:
target detector training, camera calibration, and registration and reasoning. Next, the
method is validated by tracking and measuring the progress of an actual high-rise building
project. Three results (detection, registration and reasoning) and error cases are analyzed in
detail. Finally, the advantages of the proposed method are summarized and highlighted by
comparing it with similar techniques.

2. Related Work
2.1. Building Component Detection

In the past decade, with the breakthrough of deep learning, target detection technology
has made unprecedented developments. The task of target detection is to find out all
interested targets (objects) within an image and determine their categories and locations,
which is one of the core problems in the field of computer vision. In the AEC industry,
target detection technology has been applied to the detection and tracking of construction
workers [22–25], machines [26,27], equipment [28] and building components [29]. For
example, Park and Brilakis [25] focused on the continuous localization of construction
workers via integration of detection and tracking. Zhu et al. [28] identified and tracked
workforce and equipment from construction-site videos.

As for the recognition of building components, the existing methods can be divided
into three categories:

1. Geometric reasoning (align the 3D point cloud and BIM model, calculate the space
occupied by the point cloud, and infer the components from the geometric point of
view) [11,30];

2. Appearance-based reasoning (the BIM model is projected to the imaging plane, and the
material texture of the projection area is identified to determine the component) [31,32];

3. Target detection (directly using object detection technology to identify building com-
ponents from the image) [29,33].

Each technology has its advantages. Among them, the first two methods have achieved
a lot, while the latter technology is emerging.

At present, building component recognition based on target detection has produced
some results. For example, some scholars use target detection technology to identify con-
crete areas from images. However, since many components are made of concrete, the
detected concrete areas are interconnected, and the building components cannot be subdi-
vided [34,35]. To overcome this limitation, Zhu and Brilakis [36] proposed an automatic
detection method for concrete columns based on visual data. By analyzing the bound-
ary information (such as color and texture) of concrete columns, the structural columns
were separated from the concrete area. Recently, Deng et al. [15] presented a method
that combines computer vision with BIM for the automated progress monitoring of tiles.
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Wang et al. [37] proposed a novel framework to realize automatically monitoring construc-
tion progress of precast walls. Hou et al. [29] proposed an automatic method for building
structural component detection based on the Deeply Supervised Object Detector (DSOD).
In addition, the point cloud is usually inevitable in the 3D reconstruction of the building
structure. Some scholars use a deep learning method to detect building components from
the point cloud. For example, Bassier et al. [38] presented a method for the automated
classification of point cloud data. The data is pre-segmented and processed by machine
learning algorithms to label the floors, ceilings, roofs, beams, walls and clutter in noisy and
occluded environments.

2.2. Construction Progress Measurement

To improve the accuracy and feedback speed of information in the construction site,
quite a few technologies have been studied to realize automatic construction progress
measurement [39–42]. These methods can be classified into two categories: imaging
techniques and geospatial techniques. The advantages and limitations of these technologies
are shown in Table 1.

Table 1. Automatic construction progress measurement.

Type Method Advantage Limitation References

Imaging
techniques

Laser scanning
Automated data collection,
high accuracy, not affected

by illumination

Expensive equipment, high
technical requirements, and
limited texture information

[3–6,43,44]

3D ranging camera Portable, relatively cheap
and rich texture information short range applications [20,45,46]

Image-based modeling

Low cost, low technical
requirements, portable, high
resolution, and rich texture

information

Sensitivity to lighting conditions
and high time complexity [11–14,16,17]

Material classification
of projection area

Low cost, low technical
requirements, portable, high
resolution, and rich texture

information

Sensitivity to lighting conditions
and high time complexity [31,32,47–49]

Geospatial
techniques

GPS Wide positioning range and
strong adaptability

Low precision and limited to
outdoor [50]

Barcode Low cost and simple
operation requirements

Time consuming and easily
damaged [51,52]

RFID Wide practicability and no
need for light

Time consuming, and error
prone in the presence of metals

and liquids
[53–55]

UWB
Reliable signals, longer read
ranges, provide 3D position

estimate

High cost and no mini device or
daily-necessity-embedded too [56]

Imaging techniques include laser scanning, 3D ranging camera, image-based mod-
elling and material classification of projection area. 3D laser scanning technology, based on
laser ranging principle, can quickly reconstruct the 3D model of the measured object by
recording the 3D coordinates, reflectivity and texture of a large number of dense points
on the surface of the measured object [57]. This technology has unique advantages in
efficiency and accuracy, and is not affected by illumination [3–6]. However, there are
also some shortcomings, such as high cost, limited texture information and high technical
requirements for operation [7–10]. Therefore, the small and exquisite 3D ranging camera
is attracting scholars’ attention, and many scholars have carried out research based on
the helmet mounted equipment, especially the Kinect developed by Microsoft [43–46].
The 3D ranging camera is portable, relatively cheap and contains rich texture information.
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Image-based modelling and material classification of the projection area make full use of
the flexibility and convenience of the camera to obtain information [11–17]. The advantage
of camera measurement lies in the low cost of equipment and the high-speed acquisition
of field data. However, the camera measurement technology requires high visible light
intensity of the environment.

Geospatial techniques include GPS, Barcode, RFID and UWB. GPS is a satellite-based
system widely used in position and navigation. The system receives signals from satellites
to locate the position of specific objects. GPS has been used for equipment and material
tracking and progress tracking [50]. Barcodes are widely used in material tracking, in-
ventory management, construction progress tracking and document management due
to its advantages of low cost, high reliability and easy identification [51,52]. RFID stores
data through chips, and some can even transmit active signals. Therefore, the information
stored in it can be easily read and written [53–55]. UWB is a kind of radio technology for
short-range communication. This has characteristics such as low power requirement, the
ability to work indoors and outdoors, long reading range and so on. It has been applied
to material tracking and activity-based progress tracking, especially in harsh construction
environments [56].

3. Methodology

Based on the above analysis, this section will introduce a method to measure the
construction progress from the top view of the construction site. As shown in Figure 2, the
method includes four main steps:

1. Train building component detector in advance, and identify the building components
from the top view;

2. Establish the mapping relationship between the 3D world (BIM model) and the
imaging plane through the camera calibration;

3. Register the detected components with BIM elements by comparing the projection
position of BIM elements in the imaging plane;

4. Infer the construction progress with the number of detected and registered components.

As mentioned in the introduction section, the construction process of high-rise build-
ings is blocked by scaffolding and a protective net, and can only be collected from the top
view. Therefore, the images of this study are collected daily by the tower crane driver. As
such, these images must overlap each other. On the one hand, these images are inputted
into the target detector to obtain the detection results. On the other hand, they are used to
calculate the external parameters of each image to obtain corresponding projection models.
The remaining steps are discussed in detail in the following sections.

3.1. Target Detector Training
3.1.1. Objects to Be Identified

In the construction process, the formation of a building’s structural component mainly
goes through five stages: binding reinforcement cage, supporting formwork at the periph-
ery, pouring concrete, curing concrete, and removing formwork. Considering the construc-
tion technology, due to the mutual connection of components in same layer, the concrete
pouring, concrete curing and formwork removal processes of different components are
carried out at the same time, while the processes of steel bar binding and formwork support
are staggered. Therefore, it is impossible to observe all states of all components, and most
of the time, what can be photographed from the top view is their semi-finished products.

To identify which components and what states can be identified, the construction site
states of a floor in different periods are combed, as shown in Table 2. The time point after
the concrete pouring of the last layer is taken as the start of the construction of this floor.
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3.1.2. Data Acquisition and Annotation

At present, there is no ready-made, open and integrated images dataset of building
components available in the AEC industry for building component recognizer training.
To obtain a data set that can be used to train the component recognizer, a DJI Mavic Air2
unmanned aerial vehicle was used to shoot five construction sites from top view for 45 days.
It was shot twice a day and a total of 450 video clips were collected. Ten images were
intercepted from each video as the training set (4500 images in total), and then 500 images
were intercepted as the test set. To create a comprehensive data set, different perspectives,
zooms and lighting conditions were considered.

Based on the analysis of the construction-site environment, it is obvious that a compo-
nent shows various forms in different periods, and it is unrealistic to recognize all states of
all components from the image due to occlusion. Therefore, in this study, only a few types
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of components are labeled and identified to infer the construction progress. The identified
objects include stacked formwork, walls or columns with formwork, beams enclosed by
formwork, beams with steel cages, slabs with bottom formwork, slabs with steel cages,
and pouring tools. The training set is annotated by the graphic image annotation tool
LabelImg [58], generating XML files in PASCAL VOC format.

Table 2. Construction site states.

Stage Example of Construction Site Main Work Content and
Construction Site States

Recognizable Components
and States

Start (Concrete
curing)
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ports and other tools are piled up on 
the floor, which makes the construc-

tion site  
chaotic. 

Stacked formwork * 

Facade  
construction 

 

Work: Steel bar binding and form-
work supporting for columns and 

shear walls 
State: The back of the formwork oc-

cupies most of the area in the top 
view, and there are many bars ar-

ranged on it, so the construction site 
is relatively regular. 

Walls or columns with  
formwork 

Formwork for 
plane 

 

Work: Formwork for slabs and 
beams 

State: The vertical templates are  
gradually blocked, leaving neatly  
arranged flat templates with obvi-

ous boundaries. 

Slabs with bottom formwork 
and  

Beams enclosed by formwork 

Steel bar  
binding in plane 

 

Work: Steel bar binding for slabs 
State: There are steel cages on the 
slab, and the boundaries between 

the  
formworks become blurred. 

Slabs with steel cages and  
Beams with steel cages 

Work: Steel bar binding for slabs
State: There are steel cages on the
slab, and the boundaries between
the formworks become blurred.

Slabs with steel cages and
Beams with steel cages
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Table 2. Cont.

Stage Example of Construction Site Main Work Content and
Construction Site States

Recognizable Components
and States

Concrete pouring
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Work: Concrete pouring
State: There are steel cages on the
slab. With the pouring of concrete,
the steel cages gradually disappear,

and the boundaries of the
formwork change from fuzzy to

clear and then disappear.

Slabs with steel cages and
Beams with steel cages and

Pouring tools *

* To refine the construction progress information, the stacked formwork and pouring tools are identified to assist
reasoning.

3.1.3. Detector Selection and Training

There are various target detection algorithms in the field of computer vision. Most tar-
get detection algorithms get initial weights from the pre-trained model on image databases
like ImageNet, and build the final model through fine-tuning. There are two advantages:
one is that many models are open source and can be directly used for target detection; the
other is that fine-tuning can quickly get the final model, and the training data required is
relatively small. However, the features of building components (such as beams, columns,
etc.) are extremely similar, and there are huge differences between them and natural objects.
Therefore, in the previous work, Learning Deeply Supervised Object Detectors from Scratch
(DSOD) [59] was selected to detect building components from site images. Combining
DenseNet network [60], the parameters of DSOD model are greatly reduced. More im-
portantly, it breaks the traditional barrier of detector training based on pre-training and
fine-tuning, so the highest level of target detector can be obtained by using limited data
sets and training from scratch.

In this study, two RTX 3080 Ti graphics processing units were used to train and test the
DSOD model [61]. The training set was sent into the neural network after data enhancement
(resize, zoom, flip, crop, illumination adjust, hue adjust). Finally, a building component
recognizer is obtained. Using the trained recognizer, the building components (including
type, state and location) can be detected from the construction-site images. Note: In this
study, the labeled and identified components contain state information, so the recognition
results include three kinds of information: type, state and location. For example, when
“slab with bottom formwork” is recognized, the component type and state are “slab” and
“with bottom formwork”, respectively.

3.2. Camera Calibration

The purpose of camera calibration is to determine the mapping relationship between
the BIM model/3D world and the imaging plane. The mapping relationship is a camera
projection model, which is the basis for establishing the mapping between the BIM elements
and the target detection results in this paper. Camera calibration is the process of solving
the model parameters, including internal and external parameters. The internal parameters
are related to the characteristics of the camera itself, such as the focal length and pixel size,
while the external parameters are the parameters in the world coordinate system, such as
the position and rotation direction of the camera.

To obtain the internal parameters, Zhang’s calibration method was used in this study,
for it has mature application, wide application range, and more reliable and accurate
calibration results [62]. First, a 6 × 8 square black-and-white chessboard is made and
photographed from multiple angles. Then, these images are imported into the Camera Cal-
ibrator toolbox in MATLAB to obtain the camera parameters. Only the internal parameters
are retained.
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To obtain the external parameters, an OpenCV-based program is introduced, which
can be used to infer camera external parameters through feature points between images [63].
As shown in Figure 3, the program consists of the following steps:

1. Extract Scale Invariant Feature Transform (SIFT) points from images [64];
2. Match features using k-nearest neighbor (KNN) classification algorithm [65];
3. Calculate the essential matrix between two images by “findEssentialMat” function;
4. Calculate the external parameter matrices by “solvePnPRansac” function.
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Figure 3. Calibration of external parameters.

In this method, the parameters of the initial image need to be known. Therefore,
multiple known points are manually selected from the initial image, and the initial external
parameters are calculated using the Efficient Perspective-n-Point (EPNP) algorithm [66].
To make the calculation results accurate, the initial image should contain as many known
points as possible, and these known points should not be on the same plane in the 3D
world. In addition, the external parameters are obtained through the corresponding SIFT
points in two images, which is independent of the shooting position. Therefore, the lifting
of the tower crane does not affect the results of camera calibration.

3.3. Registration and Reasoning
3.3.1. BIM-to-Image Rough Registration

This section establishes the mapping relationship between the BIM elements (build-
ing components) and the detected components. It works by calculating the positional
relationship between the BIM projection area and the detection results in the imaging plane.

First, it is necessary to calculate the position of BIM elements in each image plane.
In this study, the coordinates of each corner of BIM element are extracted manually at
once. Through the transformation of the projection model, the coordinates of the corners
of BIM elements in the plane can be obtained. As show in Figure 4, each corner of the
component corresponds to a pixel point, which is named as ‘pixel-corner’. Then, the
exterior pixel-corners are connected to form a convex polygon, named ‘envelope frame’, so
that all the pixel-corners are wrapped in the envelope frame and the component location
can be represented by these pixel-corners on the envelope frame.
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Then, for each detected component, it is compared with the BIM projection areas. The
comparison method is shown in Figure 5. The outer rectangular box is a location frame
generated by target detection, and the inner polygon is an envelope frame generated by
a BIM element projection, which is a convex polygon composed of six pixel-corners. For
each rectangular frame, the mean-square error between it and the envelope frame k could
be calculated by:

Dk =
1
n

n

∑
i=1

dk,i
2, i = 1, 2, . . . , n (1)

where k is the index of the envelope frame; dk,i is the minimum distance from the pixel-
corner i of the envelope frame k to the four edges of the rectangular box; and n is the
number of pixel-corners. The BIM element corresponding to the minimum mean-square
error Dk is chosen, and the registration result is as follows:

K = {k|minDk} (2)

where K represents the envelope frame with index k.
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The purpose of rough registration is to match the building components identified in
images with the items in the BIM element projection library. However, for each registration,
most BIM envelope frames are useless. Therefore, the envelope frames that satisfy any of
the following conditions would be excluded:

1. The envelope frames of components that do not belong to the construction layer;
2. The envelope frames which do not overlap with the rectangular box;
3. The envelope frames with horizontal and vertical dimensions greater than two times

or less than 0.5 times the size of the rectangular box;
4. The envelope frames whose type are inconsistent with the rectangular box.

To visualize the BIM-to-Image registration, a component is taken as an example to
show the experimental process and results. The component is detected from a construction-
site image, which is a rectangular box, as shown in Figure 6a. Its BIM model is a hexahedron,
as shown in Figure 6b. When the hexahedron is projected onto the construction-site image,
it becomes a polygon and is registered with the rectangular frame, as shown in Figure 6c.
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3.3.2. Progress Reasoning

After the registration, the BIM elements corresponding to the target recognition results
are obtained, however they are not the schedule. It is necessary to further infer the
construction progress with auxiliary information. In addition, due to the widespread
occlusion in a construction site, many components are not recognized and registered.
Therefore, through auxiliary reasoning, the influence of occlusion can be avoided as much
as possible to obtain the actual progress.

Using auxiliary information to assist reasoning can greatly reduce the duplication
of effort in the data collection phase and the ambiguity of recognition results. The aux-
iliary information includes physical relations (aggregation, topological and directional
relationships) and logical relations between objects or geometric primitives. Nuchter and
Hertzberg [67] represented the knowledge model of the spatial relationships with a seman-
tic net. Nguyen et al. [68] automatically derived topological relationships between solid
objects or geometric primitives with a 3D solid CAD model. Braun et al. [30] attributed
these relationships to technological dependencies and represented these dependencies with
graphs (nodes for building elements and edges for dependencies).

In this study, the sequential relationship of different components is used as supple-
mentary information for auxiliary reasoning. For example, when the bottom formworks
of slabs are detected and registered, it can be considered that the steel bar binding and
formwork supporting work of facades have been finished. Figure 7 shows the conditions
under which construction can be judged to have entered a new stage. To avoid accidental
errors, the threshold of stage update is set to three. After the concrete pouring, building
components cannot be identified, and the construction progress would be judged to enter a
new floor.
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4. Experiment and Analysis
4.1. Experimental Data Collection and Setup

To verify the effectiveness of this method, an experiment was carried out in a high-
rise building construction site. A tower crane driver was employed to take several top
views of the construction site every day. Within 45 days, a total of 117 images with a
resolution of 4000 × 3000 pixels were collected. The distribution of 117 images was shown
in Figure 8. The calibration results of internal parameters were as follows: focal length is
3144.71 × 3178.63 pixels; principal point is 2062.56 × 1270.47 pixels; and skew is −15.48.
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4.2. Results and Analysis

In the process of obtaining the construction schedule, three results are generated:
detection result, registration result and process reasoning result. In the following, these
results are analyzed to evaluate the performance of the method. The collected image data
belong to different floors and different construction stages, and the content of multiple
images taken at the same time is repeated. To eliminate the influence of sample size, the
images taken at the same time are regarded as a group (64 groups in total), and then these
groups are classified into five construction stages. Therefore, taking the construction stage
as the category and the group as the unit, these data were averaged and analyzed.

The detection results are shown in Table 3, including the detection accuracy of various
components and the time-consuming of each image. In the calculation, the repeated
components in the same group are treated as a component as it only needs to be identified
once to prove that the component already exists.

Table 3. Detection results 1.

Stage Component’s Type # of Comp.
in BIM 2

# of Comp.
in Images

# of Detected
Comp.

# of Correctly
Detected

Comp.

Detection
Accuracy 3

Preparation Stacked formwork 0 17.75 17.75 17.75 100.00%

Facade
construction

Walls or columns with
formwork 82 51.67 37.33 36.25 70.16%

Formwork for
plane

Slabs with bottom
formwork 62 44.65 44.35 43.60 97.65%

Beams enclosed by
formwork 118 81.50 76.75 75.60 92.76%

Steel bar binding in
plane

Slabs with steel cages 62 55.73 41.09 40.00 71.78%
Beams with steel cages 118 105.91 81.09 80.73 76.22%

Concrete pouring
Slabs with steel cages 62 62.00 51.17 50.17 80.91%

Beams with steel cages 118 118.00 101.80 100.40 85.08%
Pouring tools 0 1.00 1.00 1.00 100.00%

1 The average detection time of each image is 65.43 ms. 2 The number of BIM components in one floor. 3 It is the
ratio between the “# of correctly detected comp.” and the “# of comp. in images”.

It can be seen from Table 3 that the algorithm has a better effect on the recognition
of “Stacked formwork” and “Pouring tools”, and the worst effect on the recognition of
“Walls or columns with formwork” and “Slabs with steel cages”. In the preparation phase,
“Stacked formwork” is almost not occluded, and its boundary is so clear that it is easy to be
detected. In the facade construction stage, the construction site is chaotic, and the occlusion
caused by the interaction between walls or columns is serious, so that the recognition effect
is not ideal. In the plane formwork stage, the bottom formwork of slab blocks the results
of steel bar binding and formwork erection in the lower layer, and the bottom formwork
is orderly arranged with clear boundaries. Although there are some errors caused by
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occlusion or half formwork, the recognition effect is better than other stages. In the stage of
steel bar binding in plane and concrete pouring, the content of recognition is the slabs or
beams with steel cages, however the steel cages obscure the bottom formwork and make
the boundaries of components fuzzy, so that the recognition effect is poor. In addition, the
average detection time of each image is 65.43 ms.

The registration results are shown in Table 4, including the registration accuracy of
various components and the registration time of each image. The progress collection ratio
is set to evaluate how much progress information the method has collected from the image
during the whole process.

Table 4. Registration results 1.

Stage Component’s
Type

# of Comp.
in Images

# of
Correctly
Detected

Comp.

# of
Registered

Comp.

# of Correctly
Registered

Comp.

Registration
Accuracy 2

Progress
Collection

Ratio 3

Facade
construction

Walls or
columns with

formwork
51.67 36.25 32.25 32.00 88.28% 61.94%

Formwork
for plane

Slabs with
bottom

formwork
44.65 43.60 42.70 42.20 96.79% 94.51%

Beams
enclosed by
formwork

81.50 75.60 71.80 71.05 93.98% 87.18%

Steel bar
binding in

plane

Slabs with steel
cages 55.73 40.00 38.45 38.00 95.00% 68.19%

Beams with
steel cages 105.91 80.73 76.55 76.00 94.14% 71.76%

Concrete
pouring

Slabs with steel
cages 62.00 50.17 48.67 48.33 96.35% 77.96%

Beams with
steel cages 118.00 100.40 95.80 95.00 94.62% 80.51%

Pouring tools 1.00 1.00 - - - -
1 The average registration time of each image is 50.25 ms. 2 The ratio between the # of correctly registered comp.
and the # of correctly detected comp. 3 The ratio between the # of correctly registered comp. and the # of comp.
in images.

We can see from Table 4 that the registration accuracy of the column and wall is the
lowest, the registration accuracy of slab and beam is similar, and the registration accuracy
of the slab is higher than that of the beam. From an overall perspective, the progress
collection rate of the facade construction stage is the lowest, and that of the plane formwork
stage is the highest. In the plane formwork stage, the progress collection rate of the slab is
higher than that of the beam, however it is opposite to the plane steel bar binding stage
and concrete pouring stage. Overall, the progress collection rate mainly depends on the
effect of detection accuracy, and is less affected by the registration accuracy.

The progress reasoning results are shown in Figure 9, including the actual process, pro-
cess of registration and process after auxiliary reasoning. These data are used to analyze the
recall rate of construction progress information and the effectiveness of auxiliary reasoning.
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Figure 9. Comparison of construction progress.

From Figure 10, the progress collected is behind the actual construction progress, as
there are not enough components in the top view to prove that the construction has started,
and the threshold of the progress update is set so as to avoid any incorrect reasoning in this
paper. In the process of registration, some components are not detected, so the progress
data is intermittent. Considering the number of components cannot be used to evaluate the
construction progress at the beginning and preparation stage, the construction progress
of registration is not marked. In other construction stages, the ratio of the number of
registered components to the number of components in images is used as the construction
progress of registration. Among them, the concrete pouring stage starts from the detection
of pouring tools, and the progress is calculated by the missing slabs and beams with steel
bar cages. From the data, it can be concluded that the progress of facade construction,
steel bar binding in plane and concrete pouring is fuzzy, while the progress of formwork
for the plane is clear. After auxiliary reasoning, the construction progress of each stage is
completed before the next stage, so the final construction progress is consistent with the
actual construction progress in general, although there are some delays.

4.3. Analysis of Error Cases

Error cases are illustrated from three aspects: recognition, registration and reasoning.
The causes of detection errors are diverse, including occlusion, light intensity, richness of
training set data and so on. Figure 10 shows four detection error cases. The formwork of
a wall in Figure 10a is not detected as it is shaded by reinforcement cages. The beams in
Figure 10b are not detected as their features are not obvious. In contrast, the support bars
of a bottom formwork in Figure 10c are identified as a wall. A formwork is detected in
Figure 10d, however it is actually a formwork supported for other components, which is
not expected.
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The reason for registration error lies in the inaccurate detection results, and the camera
calibration has little impact on the registration results. Figure 11 shows three cases of
registration errors. Figure 11a shows that the formwork is identified as small blocks due
to the obvious interference lines inside the formwork after raining. The formwork in
Figure 11b is being assembled and therefore identified as small pieces. The recognized
types of these components are correct, however the wrong registration occurs due to the
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large size difference. The three formworks in Figure 11c are actually stacked, although they
are identified as bottom formworks, which lead to improper registration.
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Figure 11. Registration error cases: (a) The interference of messy lines after rain; (b) Incomplete
formwork; (c) Difficult distinction between stacked formwork and bottom formwork.

The reason of reasoning error lies in two aspects: one is that some components cannot
be detected, and the other is that the threshold to determine that the progress has changed
is set. Among them, the setting of threshold is the necessary cost to avoid more serious
errors. Figure 12 shows two examples of reasoning errors. No member is identified in
Figure 12a, so it is assumed that the construction has entered the concrete curing stage,
although the opposite is true. In Figure 12b, two bottom formworks are detected, however
since the number is less than three, it is not determined that the construction has entered
the plane formwork support stage.
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To sum up, errors occur in different stages, and the main reason is the low detection
accuracy caused by occlusion and light. However, most detection errors can be eliminated
during registration, so the registration process can improve the accuracy of the final result.
Although there are errors in the camera calibration process, these errors are very small and
hardly affect the final result. In the progress reasoning stage, auxiliary conditions are used
to ensure the reliability of the obtained progress information. These auxiliary conditions
will cause the obtained progress to be slightly delayed. The threshold set in this paper is
three components, which has an acceptable impact on the timeliness of data.

5. Discussion
5.1. Why Target Detection?

The method used to obtain progress information in this paper is one of target detection,
rather than one in that identifies materials in the back-projected area. Target detection has
many outstanding advantages:

1. Target detection can identify component categories with texture and context informa-
tion in the image. In construction, many components are made of concrete, which
makes it difficult to tell whether the components are beams, slabs, columns, or walls
only according to the material. Compared with the method of inferring component
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types by measuring the space occupied by the point cloud, object detection can make
full use of the texture information of the material in the image. Furthermore, compared
with the method of identifying material in the back-projected area, target detection
can make full use of the context information in the image;

2. Target detection identifies the actual components rather than the planned ones in the
schedule. When using the back projection method, it is unrealistic to project all the
components into the image, so it is necessary to determine which components are
projected each time, and which is the root of the problem. The general construction
progress can be planned by referring to historical experience, however the specific
implementation of these plans in practice is affected by many factors. When a few
components are projected, there is uncertainty as to whether these components will
be built first and while many components are projected, the occlusion relationship
among these components cannot be determined. Therefore, the number of projected
components and the order of schedule implementation will impact the effect of
schedule tracking. In contrast to this method, target detection directly identifies
the existing components from the image without the planned information, which is
more flexible;

3. Target detection can be extended to the identification of other objects on the construc-
tion site. In this paper, target detection is used to identify formwork, steel cages,
pouring tools and so on, which is necessary for progress reasoning in this paper. In
future research, more components, tools, materials, machinery and personnel can
be identified to enrich the collected construction progress details or expand other
management functions based on this technology.

5.2. The Role of Rough Registration

In fact, the construction progress can be inferred from the target detection results. For
example, the ratio of the number of detected components to the total number of components
can be used as the construction progress, and the appearance of new components, can be
used as the updated condition of the construction stage. However, rough registration is still
used in this paper to specify the schedule to each component. This is case as the authors
want to improve the accuracy of recognition, which is helpful to expand other functions of
this technology in the future. In addition, the method refines the progress to the component
level, which makes it applicable to a flat building structure. Most importantly, the rough
registration can eliminate most of the components that are wrongly detected, which makes
up for the defect of low recognition rate.

5.3. Coherence of Images

This method requires at least one group of data to be collected every day, during
which the construction site changes greatly. Therefore, it is necessary to collect a certain
proportion of the surrounding background to achieve the registration of the front and back
images and obtain the external parameters of new images. When the tower crane is lifted,
the construction site before and after lifting should be recorded to avoid too many changes
affecting the registration effect.

5.4. Advantages

Above all, the advantages of this method are mainly shown in the following five aspects:

1. Top view: The high-rise building is constructed in layers, and the components of
each layer overlap less in the vertical direction, although they overlap seriously in
the horizontal direction. With the help of a tower crane, the construction site can be
photographed clearly with less shielding;

2. Auxiliaries rather than concrete members: The material used to infer construction
progress in this paper is the auxiliary of building components. This includes a form-
work, support, reinforcement cage and pouring tool. Compared with the method
of identifying concrete components, this method is more suitable for the actual con-
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struction site, the reason being that in the construction site of a cast-in-place concrete
structure it is these auxiliary materials that can be collected rather than the concrete
component itself;

3. Target detection rather than material identification: Compared with material iden-
tification, target detection considers not only the texture of the material, but also
the context information in the image. In this way, the detection results can be spe-
cific to the type of components, which is more accurate and avoids the confusion of
adjacent components;

4. Rough registration: In the process of registration between the target detection results
and BIM model projection, four constraints are set to exclude irrelevant components,
which improves the registration efficiency and accuracy. In addition, rough regis-
tration is not strict registration, which provides a certain fault tolerance space and
ensures the accuracy of registration;

5. Point cloud avoidance: The current 3D reconstruction process mainly relies on the
point cloud, however, there are some inherent shortcomings in point cloud-based 3D
reconstruction. Firstly, it is time-consuming to remove all points of the backgrounds
and the objects of no interest, and there is no guarantee on the completeness of the
point clouds. In addition, the point clouds also have problems such as high noise,
difficulty in segmentation and registration. The proposed method does not need to
infer the progress by calculating the space occupied by feature points, so the trouble
caused by the point cloud is avoided.

5.5. Limitations

The limitations of this method include the following two aspects:

1. External parameter error accumulation: The quality of the lens, the inaccuracy of the
manual estimation of the coordinates of the known points in the initial image, the
registration error between images and other factors will cause the inaccuracy of the
estimated external parameters. After several iterations, the five errors accumulate
continuously. Therefore, external parameters need to be adjusted regularly to keep
them accurate;

2. Incompatibility with indoor scenes: The indoor space is limited, and the camera is
very close to the subject. If you want to include all the scene details as much as
possible, you need to take a lot of photos. The more photos, the lower the accuracy of
camera calibration results. Multiple start scenes must be set to improve the registration
accuracy. However, each initial scenario requires manual participation, which is not
in line with the original intention of automatically collecting progress information.
Therefore, this method needs to be further improved to adapt to indoor scenes in
the future.

5.6. Application

There are many manual working steps for target detector training, camera calibration,
registration and progress reasoning. When this method is applied to other high-rise
building projects in the future, the repeatability and automation of different steps are
different, as shown in Table 5. Most of the steps are automated and the workload of manual
operation is small.
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Table 5. Repeatability and automation of steps in future applications.

Stage Step Repeatability and Automation

Target detector training Image collection and labeling Data can be supplemented, and this step
is unnecessary to repeat.

model training Unnecessary repetition

Camera calibration
Internal parameter calibration Need to be repeated, and calibrated once

for each camera

Initial external parameter acquisition Need to be repeated, and calibrated once
for each scene

External parameter update Need to be repeated, and updated
through automated iterations

Registration
Projection Need to be repeated, and automated
Screening Need to be repeated, and automated

Rough registration Need to be repeated, and automated

Progress reasoning Progress reasoning Need to be repeated, and automated

6. Conclusions and Future Works

Monitoring the construction process of high-rise buildings is the weak part of the
research as the concrete components are obscured by formwork, wooden strips, steel bars
and other sundries. This paper presents a solution by realizing the automatic tracking
of high-rise building construction process. Using the target detection technology, the
method first identifies the building components in different states from the top view of
the construction site. Secondly, based on the principle of triangular imaging, the mapping
between the 3D world (BIM) and the imaging plane is established to make the 3D BIM
elements and the components in the image comparable. Then, the rough registration
algorithm is used to match the BIM elements with the target detection results one by one.
Finally, the construction progress is inferred from the number of components in each state
in one floor. When compared to similar methods, this paper uses the top view to reduce the
occlusion and identify the auxiliary objects of the construction site instead of the concrete
components, and uses the target detection instead of the material classification, which is
more simple, efficient and practical. In addition, the combination of target detection and
rough registration makes the method make full use of the context information in the image
and avoid the error caused by false recognition.

Nevertheless, there are still some open research challenges that need further investiga-
tion. For instance, in this paper, the detection effect of building components is not ideal.
The reason for this is that the data set used for training is very small, so a larger data set is
needed for recognizer training in the future. In addition, it is a wise choice to use video
instead of manually collected images for monitoring, which can make the construction
progress update in real time. However, the tracked construction progress is still slightly
delayed, so in the future, other clues in the construction site can be used to replace the
number of detected or registered components to update the construction stage.
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