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Abstract: Machine learning techniques are widely applied in the field of building energy analysis
to provide accurate energy models. The majority of previous studies, however, apply single-output
machine learning algorithms to predict building energy use. Single-output models are unable to
concurrently predict different time scales or various types of energy use. Therefore, this paper
investigates the performance of multi-output energy models at three time scales (daily, monthly,
and annual) using the Bayesian adaptive spline surface (BASS) and deep neural network (DNN)
algorithms. The results indicate that the multi-output models based on the BASS approach combined
with the principal component analysis can simultaneously predict accurate energy use at three time
scales. The energy predictions also have the same or similar correlation structure as the energy data
from the engineering-based EnergyPlus models. Moreover, the results from the multi-time scale
BASS models have consistent accumulative features, which means energy use at a larger time scale
equals the summation of energy use at a smaller time scale. The multi-output models at various time
scales for building energy prediction developed in this research can be used in uncertainty analysis,
sensitivity analysis, and calibration of building energy models.

Keywords: building energy prediction; machine learning; multi-output model; time scales

1. Introduction

In 2020, the construction and operation of buildings already account for 36% of global
energy use and 37% of global CO2 emissions [1]. The energy use of the construction industry
has a significant impact on the environment and the economy. Hence, it is important to
reduce the energy use of buildings reasonably and efficiently [2,3]. The key to building
energy conservation is to accurately compute building energy use, so as to formulate a
reasonable energy conservation plan according to the characteristics of energy use [4,5].

Machine learning methods have a wide range of applications in the field of building
energy prediction [6,7]. Most researchers use single-output models to predict building
energy use in which the different energy outputs are predicted by the separately individual
models. According to time scales, the research in daily, monthly, and annual time periods
would be discussed in the following three paragraphs, respectively [8].

Firstly, the application of a single-output machine learning model to predict the daily
energy of buildings is introduced. Liu et al. [9] used the support vector machine (SVM)
method to predict the daily cooling energy use. The average relative error of the model
was 5.03%, indicating that the method had excellent prediction accuracy, and the authors
proposed an energy use diagnosis method based on energy use prediction. Alobaidi
et al. [10] proposed an ensemble artificial neural network (ANN) method with a resampling
technique to predict daily building energy use, which has high generalization ability and
robustness. Hong et al. [11] applied seven machine learning methods including light
gradient boosting machine (lightGBM) and random forest (RF) to predict daily electricity
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consumption. The results show that the coefficient of variation of the root mean square
error (CV(RMSE)) of the seven models is less than 10%, in which the lightGBM model has
the best performance with the minimum CV(RMSE) of 4.1%. Jetcheva et al. [12] used the
neural network-based ensemble model method for daily power consumption prediction,
and compared it with the seasonal autoregressive integrated moving average (SARIMA)
model; the results indicate that the neural network model had better accuracy. Ferrantelli
et al. [13] defined an analytical bottom-up model for predicting any daily consumption
given a benchmark daily profile by comparing regression curves obtained with a frequentist
inference to Bayesian inference.

Secondly, the application of a single-output machine learning model in predicting
the monthly energy use of a building is described. Wang et al. [14] proposed a method by
combining a network model with a long-short-term memory learning model to predict
monthly building energy use. Compared with traditional ANN and SVM, the performance
of this model was better; the mean absolute error and root mean square error were 6.66%
and 0.36 kWh/m, respectively. Tran et al. [15] proposed an ensemble model named the
evolutionary neural machine inference model (ENMIM), which consisted of least squares
support vector regression (LSSVR) and the radial basis function neural network (RBFNN).
The model was used to predict the monthly cooling/heating loads and achieved excellent
results. Tian et al. [16] adopted a full linear model to predict monthly power and heating
energy use respectively, and obtained excellent results, providing a reliable statistical
energy model for model calibration. Zhu et al. [17] used five machine learning models
including multivariate adaptive regression splines (MARS) to predict the monthly power
consumption of buildings, which provided a basis for estimating unknown parameters
based on the approximate Bayesian calibration. Koschwitz et al. [18] proposed a novel
recurrent neural network method to predict the monthly thermal loads of buildings, and
the results show that the method is more accurate than support vector machines. Jahani
et al. [19] used the Genetic algorithm-based numerical moment matching (GA-NMM)
method to predict the monthly electricity consumption of buildings. Lin et al. [20] used RF,
SVM, and ANN to predict the monthly electricity consumption of buildings.

Thirdly, the application of a single-output machine learning model to predict the
annual energy use of buildings is presented. Olu-Ajayi et al. [21] used ANN, gradient
boosting (GB), deep neural network (DNN), RF, stacking, K-nearest neighbor (KNN), SVM,
decision tree (DT), and linear regression (LR) methods to predict the annual energy use of
buildings, and the DNN model has the highest prediction accuracy. Tian et al. [22] used
10 machine learning methods to predict the annual energy use of buildings in London, and
conducted variable importance analysis of the learning model and local spatial analysis of
model differences. Tian et al. [23] used five machine learning methods to accurately predict
the annual energy use of buildings for Dempster-Shafer theory uncertainty analysis and
global sensitivity analysis. Building annual energy use forecasts can also use a combination
of machine learning methods and statistical methods to further explore the linear or
nonlinear relationship between annual energy use and certain factors, including building
geometry, occupant, and climate-related factors [24]. A novel multiple linear regression
model can predict building energy use based on changes in climate parameters and the
intensity of the urban heat island effect, which leads to the conclusion that the urban heat
island effect can reduce building energy use in heating-dominated cities [25]. In summary,
energy use at three different time scales (day, month, and year) can be accurately predicted
using different single-output machine learning methods.

There are very limited studies to explore the multi-output models of building energy
and most previous studies use single-output machine learning models. Luo et al. [26]
used heating, cooling, lighting load, and building integrated photovoltaic (BIPV) electrical
power as the output for prediction, and the multi-output model selected SVM and ANN.
The results showed that the ANN model obtained higher accuracy and the SVM model
took less computation time. Liu et al. [27] proposed a multi-input multi-output (MIMO)
strategy based on recurrent neural networks for hourly building energy use prediction. The
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absolute percentage error of each time step was analyzed to explore the building’s energy-
saving performance, thus establishing an energy quantification system for the building.
Li et al. [28] developed a MIMO strategy by returning data information in a single-time step,
which avoids accumulated errors compared to recursive strategies and direct strategies.

These previous studies provide useful information on the characteristics of multi-
output models in building energy analysis. However, there is still a lack of sufficient studies
to explore the predictive performance of multi-output machine learning models in building
energy analysis, especially focused on output correlation. Moreover, the accumulative
features are not explored yet in creating multi-output models at various time scales (such
as daily, monthly, and annual).

In order to address these research gaps, this paper is focused on the construction
and performance analysis of multi-output machine learning models for building energy
assessment. Two multi-output machine learning methods are Bayesian adaptive spline
surface (BASS) and deep neural network (DNN). The performance of multi-output models
is evaluated from three aspects: computational time, model accuracy, and output correlation.
The main new contributions of this study are:

(1) This study compares the predictive performance of single-output and multi-output
learning models in building energy analysis. This would provide guidelines on how
to choose the single-output and multi-output models in creating machine learning
models for building energy assessment.

(2) This study explores the performance of two multi-output models (BASS and DNN) in
which the main difference of the two models is whether to maintain output correlation.
This would provide the guidelines on how to choose the learning models with or
without considering output correlation.

(3) The additive or accumulative features are investigated in creating various time scale
models for building energy analysis. This would provide insight on the methods of
obtaining building energy use from a smaller time scale to a larger time scale.

The remaining part of this paper is organized as follows. Section 2 introduces the
research methods, including data acquisition methods, modeling techniques, and perfor-
mance evaluation metrics. In Section 3, the final tuning hyper-parameters from the machine
learning models are first presented. Then, the results and discussion of the multi-output
machine learning model for predicting cooling and heating energy are presented in turn.

2. Method

The research framework based on multi-output machine learning models at different
time scales is shown in Figure 1. The analysis procedure can be divided into four steps: data
preparation, multi-output models, model performance evaluation, and guidelines. The
first step is to prepare the data required to establish the multi-output models as described
in Section 2.1. The second step presents the construction of the two multi-output models–
Bayesian adaptive spline surfaces (BASS) and deep neural networks (DNN). The third step
is model performance evaluation. The fourth step is to provide guidelines for applying the
multi-output models in building energy analysis. All the above steps are implemented in
R language.

2.1. Data Preparation

This section describes the process of acquiring the data required to build machine
learning models. Firstly, an L-shaped four-story office building as shown in Figure 2 is
created as the basic building energy model. The choice of this building type is due to its
simplicity and generalizability compared to other building types (residential or commercial
buildings). Each floor of this model has six peripheral zones and two core zones. The
building model has a total of 32 thermal zones with a floor area of 1600 m2. The fan coil unit
is set to provide ventilation, heating, and cooling for the building. The air-cooled chiller
and gas boiler provide cold water and hot water, respectively [29]. The internal heat gain
schedule of the building is derived from the China national standards of buildings [30].
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The building used in this research is located in Tianjin, China. Therefore, the meteorological
data of Tianjin in the Chinese standard weather data (CSWD) is used for the calculation of
the building energy model.
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Figure 2. A four-story office building.

A basic building energy model is constructed based on deterministic parameters,
and then uncertain parameters using the Latin Hypercube sampling (LHS) method are
imported into the basic model to obtain a complete standard building energy model. The
ranges of uncertain parameters are shown in Table 1, which are derived from previous
studies [16,17] and Chinese national standards [30,31]. The building envelope parameters
include the U-values of external walls, windows, and roofs. Internal building heat gains
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include light power density and equipment power density. Heating and cooling set-point
temperatures are also considered in this study. The construction of the modeling data set is
divided into two steps. The first step is to perform Latin hypercube sampling within the
parameter ranges to obtain 2000 sets of parameter combinations and then generate 2000 idf
(EnergyPlus Input Files) format files. The 2000 sets of energy use data at different time
scales are obtained by running the EnergyPlus (V22.1.0) program, in which 1000 sets of
data are used for model training, 500 sets are used for model validation, and 500 sets are
used for model testing. The second step is data preprocessing to create the daily, monthly,
and annual energy models. The cooling time periods for this office building is from May 1st
to September 30th, and the heating time period is from November 1st to March 31st. The
heating and cooling energy on weekends and holidays in this office building is zero and
thus excluded from this analysis. As a result, the numbers of daily and monthly cooling
energy data are 105 and 5, respectively. The numbers of daily and monthly heating energy
data are 102 and 5, respectively.

Table 1. Variation of building input parameters.

No. Parameters Short Names Range Unit

1 Exterior wall U-value EWU 0.1–0.25 W/(m2K)
2 Roof U-value RU 0.15–0.3 W/(m2K)
3 Window U-value WU 1–2.4 W/(m2K)
4 Solar heat gain coefficient SHGC 0.2–0.48 -
5 Infiltration rate INF 0.5–0.8 ACH
6 Lighting power density LPD 5–10 W/m2

7 Equipment power density EPD 9–15 W/m2

8 Occupancy density OPD 9–14 m2/person
9 Heating set-point HSP 20–22 ◦C

10 Cooling set-point CSP 24–26 ◦C

2.2. Multi-Output Models

This section describes the construction process of multi-output machine learning
models. The Pearson correlation coefficient (PCC) is used to assess the correlation between
the output data before the model is established. The computation of the Pearson correlation
coefficient is as follows:

r =
∑n

i=1(ai − a)
(

bi − b
)

√
∑n

i=1(ai − a)2
√

∑n
i=1

(
bi − b

)2
(1)

where r represents the Pearson correlation coefficient, ai represents the ith sample a, bi
represents the ith sample b, a represents the average of sample a, and b represents the
average of sample b. The PCC value is between −1 and 1. The PCC is close to 1 to indicate
that there is a strong positive correlation. In contrast, a strong negative correlation can be
suggested by the PCC value close to −1.

Two types of machine learning methods– BASS and DNN–are chosen based on these
capability of multi-output models.

The BASS method is similar to Bayesian multivariate adaptive regression splines
used to learn a set of basis functions from historical data, which are tensor products of
polynomial splines. The BASS model can adaptively select the number of basis functions
and adjust the number of variables and nodes in each basis. While most hyper-parameters
of the BASS model are determined automatically, the priors in the BASS model can be
modified to reduce overfitting. The main adjusted parameters include the number of
principal component analysis n.pc and the number of iterations nmcmc. The principal
component analysis (PCA) method is used to calculate the principal components of multiple
outputs and then fit a regression model. The R-BASS package (V1.2.2) is used to implement
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the multi-output machine learning technique in this research. The advantages of using this
BASS package include scalable capabilities to handle large numbers of observations and
predictions. In addition, not only regression models but also classification models can be
created using the BASS package [32].

The DNN method is one of the current mainstream methods for analyzing building
energy, including an input layer, multiple hidden layers, and an output layer. The deep
feedforward neural network is selected in this research, and neuron signals are transmitted
forwardly between layers without feedback signal transmission. In other words, each
layer can only receive the signal of the previous layer, and then pass it to the next layer.
The signal transfer between layers depends on the connection of nonlinear functions.
By determining the weight and bias terms of the function, the signal of the previous
layer is effectively transmitted to the next layer. It is worth noting that there is no signal
transmission between neurons in the same layer of a feedforward neural network [33]. The
main hyper-parameters of the feedforward neural network include the number of hidden
layers, the number of hidden layer neurons, the loss function, and the number of iterations.
The DNN parameter adjustment method generally adopts empirical adjustment. The keras
and tensorflow packages in the R environment are used to implement the establishment of
DNN models.

2.3. Performance Evaluation

The predictive performance of learning models is evaluated using three indicators:
CV(RMSE) (coefficient of variation of the root mean square error), MAPE (mean absolute
percentage error), and R2 (coefficient of determination). The calculation formulas for these
three indicators are as follows:

CV(RMSE) =

√
∑n

i=1(yi−ŷi)
2

n
1
n ∑n

i=1 yi
(2)

MAPE =
1
n∑n

i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100% (3)

R2 = 1 − ∑n
i=1

(yi − ŷi)
2

(yi − yi)
2 (4)

where n represents the sample size, i represents the ith sample, yi represents the ith true
value, and ŷi represents the ith predicted value. The CV(RMSE), MAPE, and R2 values are
all dimensionless numbers, which are not affected by the order of magnitude of the data
and can more effectively express the accuracy of the model. CV(RMSE) and MAPE reflect
the error of the model–the smaller, the better. The value of R2 ranges from 0 to 1, which
reflects the relative error of the model relative to the direct average value. The closer to 1,
the better.

The computational time of creating machine learning models is also an important
indicator to assess the performance of learning algorithms.. The computing time includes
the modeling time and the prediction time when using the machine learning techniques in
building energy analysis. The computing time is counted using the system.time function in
the R language environment. Simulations were performed on a workstation with an Intel
Xeon CPU (E5-2650 2.3 GHz) and 64 GB RAM.

For the multi-output learning models, it is necessary to investigate whether the ma-
chine learning model maintains the correlation structure between the outputs of the energy
data from the training set. In this research, the cluster dendrogram method is used for
model output correlation analysis [34], which can hierarchically cluster multidimensional
data to aggregate highly similar data into one category. Through this dendrogram, the
clusters and the number of objects belonging to each cluster can be determined [35]. The
dendrogram is plotted by computing the distances between clusters according to the Lance–
Williams dissimilarity update formula by obtaining the dissimilarities prior to forming
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the new cluster. The complete linkage method, one of hierarchical classification methods
that uses the distance between the most distant elements from each cluster, is used for
hierarchical clustering [36]. The cluster analysis in this research is implemented using the
R package tidyverse and hclust functions.

3. Results and Discussion
3.1. Results of Model Hyperparameter Tuning

Table 2 shows the optimal hyper-parameters for machine learning models. The SO-
BASS and MO-BASS denote the single-output models and multiple-output models, respec-
tively, based on the BASS technique. The same rules are also applicable to the SO-DNN
and MO-DNN models. In the BASS models, the degree represents the degree of interaction
between the input parameters. The degree of interaction between the input parameters of
daily cooling energy is lower than that of daily heating energy. For the MO-BASS model,
the n.pc represents the number of principal components used. The daily cooling energy
use can be fitted with fewer principal components than the daily heating energy while
still producing good results. Therefore, it is easier to predict daily cooling energy use. The
nmcmc represents the number of iterations, and all BASS models can achieve excellent
accuracy after 10,000 iterations. Note that the hyper-parameters for cooling and heating
energy are the same for month-to-month and multi-time scale energy models, indicating
the same difficulty in predicting cooling and heating energy use.

The final hyper-parameters from the DNN models are also listed in Table 2. For the
SO-DNN model, there is only one neuron in the output layer. The three layers of the SO-DNN
hidden layer are selected in the daily and monthly energy use prediction. The activation
function of monthly energy use is different from that of daily energy use. For the MO-DNN
model, the output layer neurons should be adjusted according to the number of outputs. For
example, if the building has 105 cooling days throughout the year, then the MO-DNN must
have 105 output layer neurons. The number of hidden layers selected by the MO-DNN model
is four layers for daily energy use and three layers for monthly energy use.

Table 2. The optimal tuning parameters from machine learning models.

Model Hyperparameters
Daily Monthly Multi-Time

Cooling Heating Cooling Heating Cooling Heating

SO-BASS
degree 3 4 4 -
nmcmc 10,000

MO-BASS
n.pc 7 10 5 7

degree 3 4 4 3
nmcmc 10,000

SO-DNN

activation tanh,relu,liner tanh,elu,relu,liner
-number of

hidden layers 3

output layer neurons 1

MO-DNN
activation tanh,elu,relu,liner

number of hidden layers 4 3 4
output layer neurons 105 102 5 111 108

3.2. Results of Multi-Output Cooling Energy Models

Section 3.2.1 presents the results of daily cooling energy models and Section 3.2.2
describes the results of monthly cooling energy models. Section 3.2.3 discusses the results
of multi-time scale models that simultaneously predict daily, monthly, and annual cooling
energy. Section 3.2.4 presents the results from the models in which monthly and annual
energy can be directly or accumulatively obtained.
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3.2.1. Daily Cooling Energy Models

The correlation coefficient of daily cooling energy in the work days from the training
set of size 1000 is shown in Figure 3. The correlation coefficients are all above 0.8, and
most of them are above 0.9, as is evident from the color labels in Figure 3. As a result,
daily cooling energy use in this office building is strongly positively correlated, hence, it is
important to include it in the correlation structure account when creating machine learning
models for daily cooling energy use.
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Figure 4 shows the predicted performance of the multi-output daily energy cooling
model. Figure 4a demonstrates that the four models of SO-BASS, MO-BASS, SO-DNN, and
MO-DNN have median CV(RMSE) of 0.008, 0.006, 0.008, and 0.015, respectively. For the
day with the worst prediction accuracy of the four models (SO-BASS, MO-BASS, SO-DNN,
and MO-DNN), the largest CV(RMSE) values are 0.059, 0.027, 0.035, and 0.038, respectively.
The median and maximum values of the CV(RMSE) from the four models indicate that
the MO-BASS model performs the best in this case study. Figure 4b shows that the MO-
BASS model has the smallest median MAPE, followed by SO-BASS and SO-DNN. The
MO-BASS model has better predictive performance due to the small variations of MAPE
in comparison with the SO-BASS although the median MAPE values of the two BASS
models are similar. This is because the MO-BASS model considers the output correlation
to avoid the extreme errors from the single-output models. Hence, the MO-BASS model
has the best performance in terms of the MAPE. Figure 4c indicates that the coefficients of
determination (R2) are very high, except for three data points in SO-BASS. Most of the R2

values are l greater than 0.9 to indicate that all these four models have good performance.
Among them, the two models with the largest R2 are MO-BASS and SO-DNN. Further
comparison of the median and interquartile range shows that the R2 from the MO-BASS
model is larger than that of SO-DNN. From the above analysis, the MO-BASS model is the
best daily cooling energy model in this case study.

Table 3 lists the computational time for single-output and multi-output models of cool-
ing energy for BASS and DNN algorithms at different time scales models. The comparison
of computational time for daily cooing energy use will be described in this section. The
discussion of computational time for monthly and multi-time scales would be presented in
Sections 3.2.2 and 3.2.3, respectively. The computation time for the multi-output models is
less than the computation time for the single-output models for daily cooling energy use.
For the BASS models, the modeling time of the multi-output BASS model for daily cooling
energy is 19.6 times that of the single-output BASS model. This is due to the fact that the
output number in the BASS multi-output model would be same as the principal component



Buildings 2022, 12, 2109 9 of 30

number, which is much less than the original correlated outputs in the single-output models.
The modeling time of the multi-output DNN model is 27.7 times that of the single-output
DNN model for daily cooling energy. Hence, adopting the multi-output models can signifi-
cantly reduce modeling time and increase the model’s efficiency, presuming the accuracy
of the model is acceptable. The DNN models require more computational cost compared
with the BASS models. For the single-output models, the computational time for the DNN
model is almost two times that of the computational cost for the BASS model.
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Table 3. The computational time of different time-scale cooling energy models (unit: s).

Models Daily Monthly Multi-Time Scale

SO-BASS 2032.2 98.7 -
MO-BASS 103.9 81.1 197.2
SO-DNN 3807.2 361.7 -
MO-DNN 137.3 72.2 236.3

Figure 5 shows the correlated structure tree diagram from the training set and the four
machine learning models on the daily cooling energy in July. The numbers in Figure 5
represent a specific day in July in which the weekends and the holidays have been excluded
since there is no cooling energy use. For example, 1 represents the first day of July. From
the top of Figure 5a, there are two groups of data in which the left tree has 14 data and
the right tree has nine data. The group can be further divided into sub-groups based on
the similarity of cooling energy use. The cooling energy in the 3rd and 22nd are the most
similar as the height of the link that joins them together is the smallest in Figure 5a. By
comparing Figure 5a with the other four dendrograms, Figure 5a–c have the most similar
clustering distributions. Thus, the MO-BASS model can properly maintain the output
correlation of the original training set from the EnergyPlus models. Figure 5b,d,e show
that there are significant differences from the training set. Therefore, the MO-BASS model
can be more in line with the training data set from the engineering-based building energy
models from the perspective of the correlation structure of building cooling energy use.
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3.2.2. Monthly Cooling Energy Models

The correlation coefficients of monthly cooling energy are shown in Figure 6. All
correlation coefficients are above 0.98, indicating that there is a strong correlation between
monthly cooling energy. Therefore, it is of great significance to create multi-output machine
learning models for monthly cooling energy.
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Figure 7 shows the predicted performance of four monthly cooling energy machine
learning models. The MO-BASS model has the smallest CV(RMSE), followed by the SO-
BASS model. The CV(RMSE) of both BASS models is below 0.005, indicating that these
two models have good performance. The CV(RMSE) values of the SO-DNN models are
between 0.075 and 0.025, slightly larger than the CV(RMSE) of the two BASS models. From
Figure 7b, similar conclusions can be drawn as in Figure 7a. Finally, it can be discovered
from Figure 7c that all four models have R2 values higher than 0.93, with two BASS models
having R2 values close to 1. In summary, the best performance models for monthly cooling
energy prediction are the MO-BASS in this case study.

The modeling time of the four monthly cooling energy machine learning models
is listed in Table 3. The modeling time of the two single-output models (SO-BASS and
SO-DNN) is higher than that of the two multi-output models. For the monthly cooling
energy model, the modeling time of the BASS single/multi-output model has no significant
differences since the number of monthly cooling energy data is only 5. There is still a
marked difference in the modeling time of the two DNN models, and the multi-output
model is around five times that of the single-output model. Overall, the multi-output
monthly cooling energy models are more time-saving compared to the single-output
monthly cooling energy models, especially for the DNN models.

Figure 8 shows the correlation structure tree diagram of five monthly energy use
models. Figure 8a shows the dendrogram of engineering-based building energy models,
and the adjacent months of July and August have the highest correlation. Hence, the
hottest two months have similar patterns of cooling energy from the air-conditioning
system in this office building. The two transitional months, May and September, are closely
correlated because they have similar climatic conditions including outdoor temperature
and solar radiation. The two BASS models for monthly cooling energy (Figure 8b,c) can
both retain the same correlation structure as the engineering-based model. In contrast, the
two monthly cooling DNN models (Figure 8d,e) are unable to maintain the same correlation
as the patterns illustrated in Figure 8a. As a result, the multi-output BASS models can
maintain inter-output correlation when predicting both month-by-month and day-by-day
cooling energy in this office building as shown in Figures 5 and 8.
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3.2.3. Multi-Time Scale Cooling Energy Models

The prediction performance of the multi-time scale cooling energy models is shown
in Figure 9. The features of these multi-time scale models can predict the cooling energy
at daily, monthly, and annual time scales, simultaneously. First, the performance of daily
cooling energy prediction from the multi-time scale models is analyzed. The medians of
CV(RMSE), MAPE, and R2 of MO-BASS and MO-DNN models are 0.007 and 0.02, 0.005
and 0.016, 0.99 and 0.97, respectively. Therefore, the multi-time scale MO-BASS model
has a better performance in predicting daily cooling energy. Note that the performance
of MO-BASS and MO-DNN models is similar in the case of individual prediction of daily
cooling energy as described in Section 3.2.1. Second, the analysis of the multi-time scale
model is focused on the monthly cooling energy forecast. The CV(RMSE) and MAPE values
from the MO-BASS models are smaller than those from the MO-DNN models, and the R2

values of MO-BASS are larger than those from the MO-DNN models. Hence, the MO-BASS
model still performs better than the MO-DNN model for the monthly cooling energy. Third,
the model performance of annual cooling energy is analyzed. The CV(RMSE) and MAPE
values from the MO-BASS models are close to 0, and the corresponding R2 is close to 1.
The performance of MO-DNN is worse than that of MO-BASS. It is worth noting that the
prediction accuracy of the multi-time scale model increases with the increase in time scale.
This is because the data complexity decreases with the increase in time scale. In summary,
the MO-BASS model performs better in predicting multiple time scales compared to the
MO-DNN model.

Table 3 lists the computational time for multi-time scale models of BASS and DNN. The
MO-DNN model requires 236.3 s, while the MO-BASS model needs 197.2 s. The computation
time MO-DNN is 20% more than that of the MO-BASS model. As a result, the MO-BASS
offers both high accuracy and low modeling costs in comparison with the MO-DNN model
for the simultaneous prediction of daily, monthly, and annual cooling energy.

3.2.4. Performance Analysis of 10 Models for Monthly and Annual Cooling Energy

This section compares the predictive performance and accumulative characteristics
of monthly and annual cooling energy from 10 models as listed in Table 4. The model
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names in Table 4 include three parts. The first two letters denote the single-output (SO)
or multi-output (MO) model. The third letter denotes the machine learning algorithm, in
which the B is the Bayesian adaptive spline surface (BASS) and the D is the deep neural
network (DNN). The letters after the hyphen denote the time scale of energy models. The
D is the daily model, the M is the monthly model, and the Mu is the multi-time (daily,
monthly, and annual) scale model. For example, the MOB-Mu is to simultaneously predict
the daily, monthly, and annual energy from the multi-time scale multi-output BASS model.
Note that there are two ways to obtain monthly or annual energy: direct and accumulation.
For instance, the MOD-M or SOD-M models can directly predict the monthly energy based
on the deep neural network models. In contrast, the SOB-D model needs to sum the daily
energy from the single-output daily BASS models to obtain the monthly (or annual) energy
since there is unavailable for monthly (or annual) energy use from the daily BASS model.

The predictive performance of 10 models for monthly cooling energy is shown in
Figure 10. The performance of monthly cooling energy from the direct prediction is better
than those from the accumulative models for the BASS approaches in terms of CV(RMSE),
MAPE, and R2. The SOB-M performs better than the SOB-D and the MOB-M has better
predictive capability compared to the MOB-D. The multi-time scale BASS model has very
good performance compared to the monthly and daily BASS models for cooling energy
prediction. As for the DNN models, the best prediction model of cooling energy is the
monthly summation from the daily SOD-D models. The multi-time scale MOD-Mu model
has moderate performance compared to the other four DNN models. The BASS models
have better prediction performance in comparison with the DNN models for monthly
cooling energy. All the R2 values for the BASS models are above 0.99, which indicates that
the BASS has very high predictive capability for monthly cooling energy.

Table 4. Description of 10 models for monthly or annual energy prediction.

Machine Learning Model Description

BASS

SOB-D Sum the daily energy from the single-output daily BASS models to obtain the monthly or
annual energy

MOB-D Sum the daily energy from the multi-output daily BASS models to obtain monthly or
annual energy

SOB-M Monthly predictions or annual prediction (sum of monthly predictions) from the
single-output monthly BASS models

MOB-M Monthly predictions or annual prediction (sum of monthly predictions) from the
multi-output monthly BASS models

MOB-Mu Monthly or annual predictions from the multi-output multi-time scale BASS models

DNN

SOD-D Sum the daily energy from the single-output daily DNN models to obtain the monthly or
annual energy

MOD-D Sum the daily energy from the multi-output daily DNN models to obtain monthly or
annual energy

SOD-M Monthly predictions or annual prediction (sum of monthly predictions) from the
single-output monthly DNN models

MOD-M Monthly predictions or annual prediction (sum of monthly predictions) from the
multi-output monthly DNN models

MOD-Mu Monthly or annual predictions from the multi-output multi-time scale DNN models

It is also interesting to compare the accumulative features for the different time scale
models. As might be expected, the results from the monthly summation of daily cooling
energy models are different from the direct prediction of monthly cooling energy models,
even for the same machine learning algorithm. The computational results from this case
study confirm this statement. For the BASS models, there are five methods to obtain
monthly energy use, which may make it confusing regarding which monthly results should
be selected in the multiple time scale analysis. For instance, if the best daily model is from
the daily BASS single-output models and the best monthly model is from the monthly
BASS single-output model in terms of prediction accuracy, then the monthly energy use
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would not be the same as the summation of daily energy use in a specific month. The
only model that can maintain good accumulative features is the multi-time scale BASS
model (MOB-Mu), due to the processing of the principal component analysis. The monthly
cooling energy in July would equal the summation of the July daily prediction of cooling
energy for the MOB-Mu model.
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Figure 11 demonstrates the predictive performance of 10 models for the annual cooling
energy use. The meaning of these 10 models is described in Table 4. The three best models
are MOB-Mu, MOB-M, and MOB-D, which all belong to the multi-output BASS models.
The next three models are SOB-M, SOB-D, and SOD-D, which all belong to the single-output
models. All these six models have very high R2 values, above 0.997. The worst model is the
single-out monthly DNN models (SOD-M), in which the CV(RMSE), MAPE, and R2 values
are 0.016, 0.013, and 0.970, respectively. The remaining nine models’ CV(RMSE) values are
less than 0.008, MAPE values less than 0.0078, and R2 values greater than 0.995, indicating
that these models have good predictive performance.
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For the sake of accumulative features, the energy use prediction at a larger scale
can be obtained from the summation of small-scale energy use for the single-output or
multi-output models. However, this simple accumulation is not necessarily a good method
in predicting the multi-time scale energy use in buildings. There are at least three reasons
for this. The first reason is that the residual errors from the small scale models may lead to
uncontrolled errors. If all the residual errors from the small scale models are positive or
negative, the final residuals at a large scale can be added to larger residual errors. If there
are negative and positive errors for the small time scale models, the residual errors at a
larger scale may be small due to the offsetting of negative and positive values. However,
the fundamental logic for the small scale energy models may be unreasonable in the first
place, which likely leads to unexpected errors in estimating energy use at a larger scale. The
second reason is that the model accuracy would be easily improved at a larger time scale.
This is because the efforts of creating machine learning models at a larger time scale would



Buildings 2022, 12, 2109 18 of 30

be much less compared to the small time scale models due to the decrease in model number.
The third reason is the computational cost. The increase in computational cost by adding
large time scale models is not significant since there are much fewer models with an increase
in time scale. Moreover, the multi-time scale multi-output machine learning models that
can maintain the correlation structure of energy data show very good performance, as
discussed in this section.

3.3. Results of Multi-Output Heating Energy Models

Section 3.3.1 discusses the results of daily heating energy models. Section 3.3.2 presents
the results of monthly heating energy models. Section 3.3.3 discusses the results of multi-
time scale models to simultaneously predict daily, monthly, and annual heating energy.
Section 3.2.4 presents the results from the models in which monthly and annual energy can
be obtained by using the direct simulation of energy models or the summation of energy
use at a smaller time scale.

3.3.1. Daily Heating Energy Models

The correlation coefficient between the daily heating energy in January is shown in
Figure 12. The daily heating energy is selected in January as a representative cold month
for analysis, which shows the correlation coefficients between the energy use of all working
days in January. The correlation coefficient between 0.8–0.85 is orange and brown, which
only exists between the 15th and 16th of January. The color labels for seven correlation
coefficients are in green, representing the correlation coefficients between 0.85–0.9. The
correlation coefficients between all the remaining days are above 0.9. Therefore, there is a
strong correlation between daily heating energy.
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Figure 12. Correlation coefficient of daily heating energy in January (2, 2 January; . . . ; 30, 30 January).

Figure 13 shows the predictive performance for daily heating energy from the single-
output (SO) and multi-output (MO) models based on the BASS and DNN approaches,
respectively. Figure 13a indicates that the median CV(RMSE) values of the boxplots for the
four models are not significantly different–all below 0.02. Hence, the four models all have
good performance regarding daily heating energy prediction. However, there are outliers
for these models as illustrated in Figure 13a. The three models (SO-BASS, SO-DNN, and
MO-DNN) have the CV(RMSE) values greater than 0.15, and two points are even greater
than 0.2. This shows that the model performs poorly on certain days of heating energy
prediction. In contrast, the CV(RMSE) values of the MO-BASS models are all less than 0.15,
indicating good prediction capability. Moreover, the interquartile range from the MO-BASS
model is the smallest, indicating that the MO-BASS model is the most stable in terms of
model errors. The trends of MAPE values shown in Figure 13b are similar to those shown
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in Figure 13a, which verifies the accuracy results from the CV(RMSE). The R2 values shown
in Figure 13c are above 0.95 for the four models, indicating that the model performance is
high. Among them, the R2 values of the MO-BASS model are greater than 0.985. Therefore,
the MO-BASS model is the most accurate daily heating energy model in this case study.
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The modeling time of the four daily heating energy models is shown in Table 5. The
most time-saving model is the MO-DNN model, which requires only 69.7 s. The most time-
consuming model is the SO-DNN, which spends 3722.6 s (more than 1 h)–around 53 times
that of the SO-DNN model. The MO-BASS model is also significantly more time efficient
compared to the SO-BASS model. Therefore, the multi-output models save computational
time compared to the single-output models.

Table 5. The computational time of different time-scale heating energy models (unit: s).

Model Daily Monthly Multi-Time Scale

SO-BASS 2293.0 128.8 -
MO-BASS 216.6 101.6 150.4
SO-DNN 3722.6 373.6 -
MO-DNN 69.7 65.4 165.9

The dendrograms for daily heating energy from the training set and the four models
are shown in Figure 14. The numbers in Figure 14 represent dates in a specific month,
such as 2 for 2 January. Figure 14a reflects the dendrogram of the correlation between the
outputs from the engineering-based EnergyPlus energy models. It can be seen that 2, 5,
12, 19, and 26 belong to one subgroup, and these days are the first working days after the
holidays or weekends. The reason for the aggregation is that the office building is not
heated during non-working days, resulting in a low temperature inside the office building.
The heating system starts to work on the first working day, which consumes more energy
than the following days. Figure 14d,e have significantly different correlation structures
from Figure 14a since the non-working days do not belong to one subgroup. In contrast,
the correlation structures from Figure 14b,c are similar to that from Figure 14a.
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3.3.2. Monthly Heating Energy Models

The correlation coefficient of monthly heating energy is shown in Figure 15. The
smallest correlation coefficient is 0.969 between November and March, and the largest
correlation coefficient is 0.999 between January and December. As a result, there is a
significant correlation between the five months of heating energy data. Therefore, it is
of great significance to construct heating energy models by considering the correlation
structure of energy use.
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Figure 15. Correlation coefficient of monthly heating energy.

Figure 16 shows the performance indicators for the monthly heating energy models.
The MO-BASS model has the smallest CV(RMSE) and MAPE with the largest R2, indicating
that the MO-BASS outperforms the other three models. The other three models also have
CV(RMSE) less than 0.13, MAPE less than 0.1, and R2 greater than 0.92, indicating that they
also have good predictive performance. Note that the month with the worst prediction
performance for each model is March, followed by November. What these two months
have in common is that they are both transitional months. Climatic conditions such as
temperature can vary considerably during the transition months, which can add to the
complexity of the heating energy and render it more difficult to predict the heating energy.
Prediction accuracy is improved significantly when there are stable changes in climate
conditions such as outdoor temperatures, for example in February and December.
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Figure 16. Prediction performance of four machine learning models for monthly heating energy.

The modeling time of the four monthly heating energy models is listed in Table 5. The
difference between the two BASS models is similar since there are only five months for
heating energy. The computing time of the SO-DNN model is about 5.7 times that of the
MO-DNN model. In general, the modeling of the multi-output models is faster compared
to the single-output models.

The dendrograms of monthly heating energy for the training set and the four machine
learning models are shown in Figure 17. The adjacent months of January and December are
grouped together, as is shown in Figure 17a, due to their similar weather conditions. The
two transition months, November and March, are classified into one category, indicating
that there is a large gap between the weather conditions and the rest of the months. The
single-output and multi-output BASS models can maintain the same correlation with the
EnergyPlus models, while the single-output and multi-output DNN models are different
from the EnergyPlus models. As shown in Figure 16, these correlation structures are helpful
to improve the prediction capability of learning models.

3.3.3. Multi-Time Scale Heating Energy Models

Figure 18 shows the prediction performance of the heating energy model on multiple
time scales. The model accuracy increases as the time scale increases. This is directly related
to the complexity of the energy data in different time scales. Figure 18a demonstrates that
the median CV(RMSE) values of the daily heating energy of the two models are less than
0.05, although there are a few outliers. In all three time scales, the BASS models perform
better than the DNN models in terms of the CV(RMSE). The same conclusions can be
obtained from Figure 18b in terms of the MAPE. Figure 18c shows that there are a few
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points in R2 between 0.875 and 0.95 for the DNN daily models, indicating that the model
performance becomes worse on some days. Note that the interquartile ranges of the BASS
model are smaller than that of the DNN model, indicating that the MO-BASS model is
more stable. Therefore, the multi-time scale BASS model has better predictive capability in
comparison with the DNN model.
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Figure 17. Dendrogram of monthly heating energy for the training set and four machine learning
models.
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Figure 18. Prediction performance of two machine learning models for multi-time scales heating
energy.

Table 5 shows the computation time of multi-time scale heating energy models using the
BASS and DNN approaches. The computational time is quite similar for these two models.
Considering the model accuracy as shown in Figure 18, the multi-time scale BASS models
would be a better candidate for the multi-time scale prediction of building energy use.

3.3.4. Performance Analysis of Ten Models for Monthly and Annual Heating Energy

Figure 19 shows the performance of 10 models that can obtain monthly heating energy.
The meanings of these 10 models are available in Table 4. The first three best models are the
daily multi-output models (MOB-D), monthly multi-output models (MOB-M), and multi-
time scale model (MOB-Mu) based on the BASS algorithm. These three models have very
low CV(RMSE) and MAPE values. The next two models are the single-output daily BASS
models (SOB-D) and the multi-output daily DNN models (MOD-D). These two models still
have very high R2 values–close to 1. The following two models are single-output monthly
BASS models (SOB-M) and single-output daily DNN models (SOD-D). The remaining three
models do not have good predictive performance compared to the other seven models. The
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multi-output models have better performance compared to the single-output models for
monthly heating energy.
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Figure 19. Performance of 10 models for monthly heating energy (refer to Table 4 for model explanation).

Figure 20 shows the performance of 10 models that can obtain annual energy. The
three multi-output BASS models (MOB-D, MOB-M, MOB-Mu) are the first three best
models in which the CV(RMSE) values are about 0.003, the MAPE values are about 0.002,
the R2 values are about 0.999. The performance of the SOB-D and SOB-M single-output
BASS models is slightly worse than that of the above three multi-output BASS models.
Among the five DNN models, the MOD-D models and the MOD-Mu models have similar
performance to the SOB-M models. The SOD-M and MOD-M models do not have good
predictive performance for annual heating energy.
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3.4. Guide and Application of Building Multi-Output Energy Models

This section discusses the implications, guidelines, and applications of the results
presented in Sections 3.1–3.3 from four aspects. The first aspect discusses the choice
of machine learning models between the single-output and multiple-output models in
building energy assessment. The second aspect is the choice of multiple-output models
with or without considering output correlation in the building energy analysis. The third
aspect is related to the choice of multi-output models for various time scales by taking
the additive or accumulative features into account. The fourth aspect is focused on the
application of the multi-output models used in this paper.

The multi-output learning models are preferred in the case of multiple outputs of
building energy analysis. This is because the computational cost can be dramatically
reduced in comparison with the single-output models, as discussed in Sections 3.2 and 3.3.
The benefits of using the multi-output models are more significant when there are a
large number of building energy outputs–for instance, over 10 outputs. Moreover, model
accuracy from the multi-output models is not necessarily less than that of the single-output
models in building energy assessment. Therefore, it would be recommended that the multi-
output learning models should be used when applying the machine learning techniques to
building energy assessment, especially for a larger number of model outputs.
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There are two types of machine learning methods depending on whether to consider
the correlation of building energy performance. One example of learning models is the
Bayesian adaptive spline surface in which the correlation of outputs can be taken into
account, while one example of learning models without considering output correlation
is the deep neural network. If there are almost no or very weak correlations among
building energy use, both two types of learning models can be used to create multi-output
models. If the correlation of outputs is significant, it is necessary to implement the learning
methods by considering the correlation of outputs. The model accuracy can be improved
by maintaining the correlation of building energy use.

It is necessary to consider the additive or accumulative features when constructing the
learning models for predicting building energy use in various time scales. This is because
the building energy use at a larger time scale is the sum of building energy at a smaller
time scale. For instance, the monthly electricity use from a building would be the annual
electricity for this building. For single-output models at a smaller time scale, it is natural
to sum up all the energy use at a smaller time scale to obtain total energy use at a larger
time scale. However, the residuals for this simple summation would be hard to manage. If
there are all positive (or negative) residuals from the smaller time scale models, the total
residuals would be very large compared to the single-output model at a larger time scale.
Another issue is the inconsistency between the summation of smaller time scale models
and the larger time scale model, which confuses the estimation of building energy use at a
larger time scale. By considering the correlation of building energy use, the multi-output
learning models can create fast and consistent models at various time scales for building
energy analysis. Therefore, multi-output learning models that can maintain the correlation
of outputs are recommended in multiple time scale predictions of building energy analysis.

The method proposed in this paper can also be applied to performance indicators of
buildings (such as energy, loads, and carbon emissions) in different scenarios although
this paper is concentrated on building energy consumption. It would be interesting to
explore building load profiles at various time scales (hourly, daily, and monthly), which can
provide useful information on the design of district heating and cooling systems. When
designing net-zero emission buildings, it is necessary to provide the matching of demand
and supply at various time scales to guide for the design of PV systems. The multi-output
models at various time scales would be very useful to provide accurate building demand
data at various time scales to compute solar fraction, self-sufficiency, and other indicators.
These results can be used for optimizing the ratio of PV rated power and battery. Moreover,
the method used here can be used in uncertainty analysis, sensitivity analysis, and model
calibration in building energy assessment. For instance, the multi-output models at daily
periods can be used as mathematical models to calibrate these daily models using the
Bayesian analysis. The computational loads would be reduced significantly since there are
only two multi-output learning models for heating and cooling energy use in buildings.

4. Conclusions

This research investigates the predictive performance of multi-output machine learn-
ing models at three time scales (daily, monthly, and annual) for building energy assessment
using two algorithms (Bayesian adaptive spline surface and deep neural network). The
results indicate that the machine learning models, which could consider the correlation of
energy use, can have high model accuracy with fast computation and accumulative features
at different time scales in building energy analysis. The multi-output learning models for
building energy prediction would significantly reduce the computational time for creating
learning models in comparison to the single-output learning models. The ability to main-
tain the correlation structure of energy data for the multi-output learning models is the key
to providing accurate results and accumulative features. The deep neural network models
can simulate the multiple outputs without taking into account the correlation of energy
use. Hence, the deep neural network cannot have accumulative features. In contrast, the
multi-time scale Bayesian adaptive spline surface models can have the same or similar
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correlation structure of energy data from the engineering-based building energy models.
This means that the predicted energy data at a larger time scale would equal the summation
of energy data at a smaller time scale in building energy computation. Moreover, it is
found that the simple summation of energy results from smaller time scale learning models
do not necessarily have good predictions of energy use at a larger time scale due to the
uncontrolled offset of large and small residuals, or the final accumulative large errors.

Three guidelines can be obtained for creating machine learning models in building
energy assessment based on this research. The multi-output learning models are preferred
compared to the single-output model in dealing with multiple outputs, especially in the
case of the number of outputs over 10. Multi-output learning models that can consider
output correlation are recommended when the multiple outputs are correlated in building
energy analysis. Compared to the direct summation from the single-output models at the
smaller time scale, multi-output models with a consistent accumulative feature that can
simultaneously predict energy use at various time scales are preferred when dealing with
multiple time scale building energy predictions.

The multi-out learning models used in this paper are only applied to an office building.
More research should be implemented on other building types, for example, residential
buildings, schools, and hospitals, to understand the suitability of these multi-output meth-
ods. More studies should also be conducted to explore the predictive performance of
multi-output models for building energy analysis using different learning algorithms, such
as random forest, support vector machine, and Gaussian process.
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Abbreviations

ANN artificial neural network
BASS Bayesian adaptive spline surface
BIPV building integrated photovoltaic
BMARS Bayesian multivariate adaptive regression splines
CSP cooling set-point
CSWD Chinese standard weather data
CV(RMSE) coefficient of variation of the root mean square error
DNN deep neural network
DT decision tree
ENMIM ensemble model named evolutionary neural machine inference model
EPD equipment power density
EWU exterior wall U-value
GA-NMM genetic algorithm-based numerical moment matching
GB gradient boosting
HSP heating set-point
HVAC heating, ventilation, and air conditioning
INF infiltration rate
KNN K-nearest neighbor
lightGBM light gradient boosting machine
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LPD lighting power density
LR linear regression
LSSVR least squares support vector regression
MAPE mean absolute percentage error
MARS multivariate adaptive regression splines
MIMO multi-input multi-output
MO multiple outputs
OPD occupancy density
PCA principal component analysis
PCC Pearson’s correlation coefficient
PV photovoltaic
R2 coefficient of determination
RBFNN radial basis function neural network
RF random forest
RU roof U-value
SARIMA seasonal autoregressive integrated moving average
SHGC solar heat gain coefficient
SO single output
SVM support vector machine
WU window U-value
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