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Abstract: Buildings consume about 40% of the global energy. Building energy consumption is affected
by multiple factors, including building physical properties, performance of the mechanical system,
and occupants’ activities. The prediction of building energy consumption is very complicated in
actual practice. Accurate and fast prediction of the building energy consumption is very impor-
tant in building design optimization and sustainable energy development. This paper evaluates
24 energy consumption models for 83 houses in Oshawa, Canada. The energy consumption, social
and demographic information of the occupants, and the physical properties of the houses were
collected through smart metering, a phone survey, and an energy audit. A total of 63 variables were
determined, and based on the variable importance, three groups with different numbers of variables
were selected, i.e., 26, 12, and 6 for electricity consumption; and 26, 13, and 6 for gas consumption. A
total of eight data-driven algorithms, namely Multiple Linear Regression (MLR), Stepwise Regres-
sion (SR), Support Vector Machine (SVM), Backpropagation Neural Network (BPNN), Radial Basis
Function Neural Network (RBFN), Classification and Regression Tree (CART), Chi-Square Automatic
Interaction Detector (CHAID), and Exhaustive CHAID (ECHAID), were used to develop energy
prediction models. The results show that the BPNN model has the best accuracies in predicting
both the annual electricity consumption and gas consumption, with mean absolute percentage errors
(MAPEs) of 0.94% and 0.94% for training and validation data for electricity consumption, and 2.63%
and 0.16% for gas consumption, respectively.

Keywords: data-driven; electricity consumption; prediction model; gas consumption

1. Introduction

Globally, buildings consume about 30% of end energy usage and over 55% of electric-
ity [1]. Building energy consumption is increasing with the growth of the global population.
It is affected by a large number of physical and sociological factors. Accurate energy predic-
tion can help quantify and compare the energy-saving potentials of different conservation
measures, as well as assist design optimization [2,3].

There are two approaches to predict building energy consumption. One is based
on a physical model, and the other is data driven. The physical modeling approach is
also called the forward modeling approach. The forward modeling approach is usually
conducted with commercial software, e.g., DOE-2, DesignBuilder, etc., with given inputs
to estimate the building energy consumption through simulation. The differences of the
outcomes among different software are typically small with the same/identical input values
of the variables [4]. Fumo et al. [5] used EnergyPlus Benchmark Models to generate the
determining factors based on the monthly electrical and fuel utility bills to estimate the
hourly electricity consumption and fuel energy consumption for a hypothetical building
in Atlanta, GA, and in Meridian, MS, with estimated errors within 10%. Amiri et al. [6]
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developed a Stepwise Regression (SR) model, based on the simulation results from DOE-
2, to predict the building energy consumption at the early design phase. The physical
modeling approach requires detailed information about the building, mechanical systems,
and occupants’ activities to develop a mathematical model to estimate the building energy
consumption, which might not be readily available. Meanwhile, the physical model
could not take into account the sociological factors that potentially affect the energy-usage
patterns of the occupants.

The data-driven approach uses data analysis through known data sets to overcome
the limitations of physical models to predict the energy consumption. Typically, an energy-
usage database is created through the simulation of building samples or data collection.
Examples of data-driven approaches include Multiple Linear Regression (MLR), Classifica-
tion and Regression Tree (CART), artificial neural network (ANN), etc.

MLR models have been developed to replace the outcomes from building simulation
software. Chen et al. [7] developed a physical-based MLR model to predict the building
cooling load based on the data set created through building energy simulation using
EnergyPlus. It was demonstrated to have a stronger generalization ability than the BP-
ANN and MLR models. By using this method, the space cooling load can be predicted
based on the total cooling load. Ciulla et al. [8] used TRNSYS to run 1560 simulations of
a non-residential building with different configurations across Italy to create an energy
database and developed MLR models to estimate the building energy consumption with
determination coefficients (R2) higher than 0.9 and mean absolute error (MAE) lower than
10 kWh/m2 year.

Stepwise Regression (SR) can help overcome the multicollinearity problem that could
exist in the multiple regression problem and reduce the number of input variables. Tso
and Yau [9] developed the SR analysis of the household electricity consumption in winter
and summer in Hongkong. Zhao and Lin [10] proposed SR models to predict the energy
consumption and visual discomfort of a passive house, compared with the simulated
outcomes from DesignBuilder. R-squares of 0.9808 and 0.8487 were found, respectively,
which demonstrate the potential of SR in predicting the building energy consumption.

The Support Vector Machine (SVM) helps to solve high-dimensional difficulty and
local minima problems. Ma et al. [11] applied support vector regression (SVR) models
to estimate the provincial building energy consumption in four provinces in Southern
China. Seven parameters, including yearly mean outdoor dry-bulb air temperature, relative
humidity, total solar radiation, urbanization ratio, gross domestic product, household
consumption level, and total construction area of were used as inputs. Good agreements
were found between the predicted and actual energy consumptions, with the mean square
errors (MSEs) and correlation coefficients found to be less than 0.001 and greater than 0.99,
respectively. Li et al. [12] developed a SVM model to estimate the office hourly cooling load
with outdoor air temperature, relative humidity, and solar radiation intensity as the input
variables. The SVM model outperforms the Backpropagation Neural Network (BPNN)
model in terms of accuracy and generalization. Paudel et al. [13] developed a SVM model
for a low-energy residential building in France, using a small representative day data set.
The outdoor air temperature, horizontal solar radiation, solar gain transmitted through
windows, solar energy absorbed by walls, occupancy profile, and time moving average of
outdoor air temperature were used as input variables for the model. It was found that the
model achieves higher prediction accuracy (R2 = 0.98; RMSE = 3.4), compared to the one
developed with all the data sets (R2 = 0.93; RMSE = 7.1).

BPNN is the most widely used neural network. Ahmad et al. [14] developed feed-
forward BPNN and random forest (RF) models to estimate the energy demand of the HVAC
system in a commercial building in Madrid, Spain. The input variables include outdoor air
temperature, dew point temperature, relative humidity, wind speed, duration time, number
of guests on the day, and number of rooms booked. The results show that the RMSEs of the
prediction results of the BPNN and RF models were 4.97 and 6.10, respectively. The BPNN
model achieves a slightly better performance than the RF model in terms of accuracy.
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Radial Basis Function Neural Networks (RBFNs) have been used to predict the energy
consumption of university buildings. Han et al. [15] proposed an RBFN model to evaluate
the energy performance of the buildings, using the University of California Irvine data sets.
The predicted values agree well with the simulation outcome from Ecotech. Zhao et al. [16]
developed an RBFN model to predict the energy consumption of colleague buildings in
Fujian Province in China, with a maximum error of 13.3%.

Classification and Regression Tree (CART) is also one of the machine learning ap-
proaches favored by the researchers. Zekić-Sušac et al. [17] developed a CART model to
predict the energy cost of public buildings in the Republic of Croatia. Capozzoli et al. [18]
developed a CART model to predict the heating energy consumption in schools with an
R-square of 0.86.

The Chi-Square Automatic Interaction Detector (CHAID) can be used to generate a
multi-branched decision tree and determine the branch variables’ values based on statistical
significance. Yang and Wu [19] applied CHAID to find the energy-saving strategies for
central air-conditioning system operation in Shenzhen, China. Kusiak et al. [20] developed
a CHAID model to predict the building steam load with a mean absolute error (MAE) of
405 for training and 578 for testing.

Exhaustive CHAID (ECHAID) is another decision tree algorithm that ensures the
same degree of freedom for all the inputs. Kusiak et al. [20] compared the outcomes
from ECHAID model with the CHAID model in predicting the building steam load. The
ECHAID achieved a mean absolute error (MAE) of 398 for training and 570 for testing.
Yan et al. [21] developed an ECHAID model to predict the system coefficient of performance
(COP) of a ground-source heat pump with an MAE of 0.098 for training and 0.105 for testing.

Researchers have also investigated other data-driven approaches; for example,
Li et al. [22] developed a hybrid teaching–learning artificial neural network model (TL-
ANN) to predict the hourly electrical energy consumption for two educational buildings
located in USA and China, using weather conditions, calendar date, occupancy pattern,
and historical energy usage data. Moayedi [23] compared the performances of three
cooling load prediction models for a residential building. The elephant herding opti-
mization (EHO), ant colony optimization (ACO), and Harris Hawks optimization (HHO),
were combined with a multilayer perceptron neural network (MLP) model. The relative
compactness of the building, surface area, wall area, roof area, overall height, orientation,
glazing area, and glazing area distribution are used as inputs for the model. The results
show that the EHO–MLP has the highest prediction accuracy, followed by HHO–MLP
and ACO–MLP. Aruta et al. [24] developed an artificial neural networks (ANNs) model,
using NARX (nonlinear autoregressive model with exogenous inputs) networks for
training based on simulated heating load of a building in Rome from EnergyPlus. The
outdoor air temperature and solar radiation were used as inputs and demonstrated
satisfactory prediction performance. Ndiaye and Gabriel [25] used the latent root regres-
sion technique to reduce the number of input variables from 59 to 9, while achieving an
R-square of 0.79 in predicting the housing unit electricity consumption in Oshawa. Still,
they performed studies only on a few data-driven algorithms.

From the literature survey, it can be found that very few studies were conducted to
predict the yearly residential building energy consumption based on actual energy con-
sumption data. Many studies focus on monthly [26], daily [27–29], or hourly [13,27–30] en-
ergy consumption, based on the simulation outcomes from commercial software [26,31–35].
Short-term energy predictions are easily affected by seasonal variation and the outcomes
from the simulation often deviate from actual energy consumption. In addition, the ef-
fects of occupants’ behaviors on the energy usage are often neglected in the prediction
model, and most of the parameters focus on weather data [26–29,31] or design parameters
of the building envelope [26,31,33–35], thus causing deviations in energy consumption
predictions for different households; social and demographic information are often ne-
glected, as well. Moreover, many of the studies used fixed number of input variables
and training/validation ratio, without seeking for the least number of inputs needed and
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the models with the best performance. Therefore, it is important to develop a residential
building energy prediction model based on the collected data from actual annual energy
consumption, taking into account the social and demographic information and evaluate
the impact of the number of input variables, as well as the training/validation ratio for the
performance of the prediction model.

This paper attempts to develop yearly energy consumption prediction models for
residential buildings in Oshawa. Data related to electricity consumption, gas consumption,
physical information of the buildings, and social and demographic information of the resi-
dents were collected through smart metering, a phone survey, and energy auditing of a total
of 83 households. A total of eight data-driven algorithms, namely Multiple Linear Regres-
sion (MLR), Stepwise Regression (SR), Support Vector Machine (SVM), Backpropagation
Neural Network (BPNN), Radial Basis Function Neural Network (RBFN), Classification
and Regression Tree (CART), Chi-Square Automatic Interaction Detector (CHAID), and
Exhaustive CHAID (ECHAID), were used to develop energy prediction models to select
the most suitable models for electricity consumption and gas consumption predictions.
Different numbers of input variables and training/validation ratios were employed to find
the models with the best prediction performance with the least number of inputs. The
outcomes from this paper can provide references for residential-building energy prediction.

2. Method

The actual electricity and gas consumption data, physical properties, mechanical
system information, and consumer information of 227 houses in Oshawa—which has a
humid continental climate with large seasonal temperature variations, with warm summers
and cold winters—were collected and analyzed. The energy consumption is for a full
year. Firstly, smart meters were installed on 227 houses in Oshawa to obtain the electricity
readings, and a phone survey on the social and demographic information of the occupants,
as well as information on the electrical appliances, was conducted on the houses with
installed smart meters. Energy audits were conducted according to the willingness of the
house owner/renter. A total of 65 input and output parameters were identified after an
analysis of the gathered information. During the data preprocessing, it was found that,
due to the reluctance of some house owners/renters to disclose certain information, or that
they were unclear about certain information, there were 144 samples with missing data for
annual electricity consumption and 154 samples with missing data for gas consumption.
Therefore, the predictions of electricity consumption and gas consumption are based on
83 and 73 residential buildings, respectively. Then three groups of input parameters are
selected based on variable importance (VI) through statistical analysis. Finally, eight
data-driven modeling approaches were used to develop electricity and gas consumption
prediction models based on different groups of input parameters. The performances of
different models were evaluated, and the best prediction models for electricity and gas
consumption were identified. The IBM SPSS Statistics 26.0 and Clementine 12.0 were used
to apply the algorithm [36]. A flowchart of the research strategy is presented in Figure 1.
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2.1. Independent and Dependent Variables

Table 1 lists the variable names and their value ranges, where the independent vari-
ables 1–29 and 30–63 and dependent variables 64–65 were collected through a phone survey,
energy audit, and smart metering. The range of values is formed based on the outcomes
from the collected data.



Buildings 2022, 12, 2039 6 of 25

Table 1. Variable names and value ranges.

No. Information of the Variable Variable Name Collecting
Method Value Range

1 Number of halogen bulbs used outdoors Halogen Phone survey 0–5

2 Number of compact fluorescent lamp
(CFL) bulbs used outdoors CFL Phone survey 0–4

3 Number of fluorescent bulbs used
outdoors Fluor Phone survey 0–4

4 Number of incandescent lamps used
outdoors Incand Phone survey 0–5

5 Awareness of the importance of
reducing energy consumption RedEnerg Phone survey 1–5

6 Awareness of the importance of
spending less on energy bill SpenLess Phone survey 1–5

7 Perceptions of government involvement
in energy conservation GvInvolv Phone survey 1–5

8 Interested in learning more about ways
to save energy indoors LearnMor Phone survey 1–5

9 Interest in using computer software to
control indoor energy consumption CompSoft Phone survey 1–5

10 Number of occupants NbOccup Phone survey 1–6
11 Number of residents working full-time FullTime Phone survey 0–5
12 Number of residents working part-time ParTime Phone survey 0–1
13 Number of residents working in shifts SiftWork Phone survey 0–1

14 Number of people working or staying at
home FromHome Phone survey 0–3

15 Housing situation HomState Phone survey Owned (1), Rent (2)

16 Lights turned on when empty for a
short period of time LOnEmpty Phone survey 1–3 Occurs more and more

frequently

17 The moment when the outdoor lights in
front of the house are turned on TOnOutLt Phone survey 1–3 Occurs more and more

frequently

18 Feeling safe between neighbors Safety Phone survey 1–5 Increased sense of
security

19 Worry about crime Crime Phone survey 1–5 Increased sense of
security

20 Age of the homeowner AgeRange Phone survey
18–24 (1), 25–35 (2), 36–45 (3),
46–55 (4), 56–65 (5), over 65

(6)

21 Number of energy-saving electrical
appliances purchased in the past 5 years NbNewApp Phone survey 0–7

22 Fuel type of the oven OvenFuel Phone survey Natural gas (1), electricity (2)
23 Fuel type of the dryer DryerFl Phone survey Natural gas (1), electricity (2)

24 Fuel type of the pool heaters PHeatrFl Phone survey Unused (0), Solar (1), Natural
Gas (2), Electricity (3)

25 Upgrade or renovation of the house in
the past five to ten years RecUpgd Phone survey Renovated (1), Not

renovated (2)

26 Amount willing to spend on
energy-efficient equipment (CAD) WlgSpend Phone survey <$100 (1), $100–250 (2),

$250–500 (3), >$1000 (4)

27 Highest level of education LevelEdu Phone survey High School (1), College (2),
University (3)

28 Gross household income before taxes
(CAD/year) HsIncome Phone survey

<$20,000 (1), $20,000–$39,999
(2), $40,000–$59,999 (3),

$60,000–$79,999 (4),
$80,000–$99,999 (5),

>$100,000 (6)
29 Born in Canada BornCan Phone survey Yes (1), No (2)

30 Fuel type for heating system HeatType Energy audit Electricity (1), Natural gas
(2), Oil (3)
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Table 1. Cont.

No. Information of the Variable Variable Name Collecting
Method Value Range

31 House type HsType Energy audit Single detached (1), Row end
(2)

32 Number of floors NbStoris Energy audit 1–2

33 Heating system type HSysType Energy audit

Baseboard (1),
medium-efficiency furnace

(2), heat pump (3),
high-efficiency boiler (4)

34 Fuel type for domestic water heaters DHWFuel Energy audit Natural gas (1), Electricity (2)

35 Types of domestic hot water heater DHWType Energy audit
Condensing unit (1), Induced

draft fan boiler (2),
conventional tank heater (3)

36 Existing air-conditioning system ACSyst Energy audit No (0), Yes (1)

37 Air-conditioning system type ACType Energy audit central system (1), heat
pump (2), Not applicable (3)

38 Year built ConstYr Energy audit Pre 76 (1),1976–1987 (2),
1988–2002 (3)

39 Heating system efficiency HSysEffi Energy audit 76–100%

40 Service length of the heating system
(years) HSysAge Energy audit 0–35

41 Service length of the air-conditioning
system (years) ACAge Energy audit 0–33

42 thermal resistance of the window
(m2·K/W) TherReWind Energy audit 0.99–2.64

43 thermal resistance of the external wall
(m2·K/W) TherReWal Energy audit 0.64–3.12

44 thermal resistance of the ceiling
(m2·K/W) TherReCei Energy audit 0.53–7.05

45 Area of the ceiling (m2) CeilArea Energy audit 45.2–227.4
46 Area of the external wall (m2) TWlArea Energy audit 52.8–317.6
47 Area of the window (m2) TWdArea Energy audit 6.7–49.2
48 U-value of foundation wall (W/(m2·K)) FwUvalue Energy audit 0.23–3.17

49 U-value of the basement ceiling
(W/(m2·K)) BhUvalue Energy audit 0.48–3.87

50 Air change rate per hour at 50 Pa NbACH Energy audit 1.49–14.88
51 Residential floor area (m2) ReFlArea Energy audit 49–166

52 Building orientation OriBuild Energy audit
1 East 2 West 3 South 4 North

5 Northeast 6 Southeast 7
Northwest 8 Southwest

53 Building width (m) WidBuild Energy audit 5.18–16.46
54 Building depth (m) DepBuild Energy audit 7.01–16.46
55 Building perimeter (m) PerBuild Energy audit 28.65–52.43

56 Window type TypWind Energy audit Single-layer (1), Double-layer
(2), Double-layer Low-E (3)

57 Window frame type TypWindFra Energy audit Wood (1), Vinyl (2), Metal (3)
58 Door type TypDoor Energy audit Wood (1), Steel (2)
59 Door area (m2) AreDoor Energy audit 0.94–6.8
60 Cooling system COP COPRefSys Energy audit 2–10

61 Ventilation system exhaust volume
(m3/h) ExVolVenti Energy audit 1–15

62 Floor area (m2) AreFloor Energy audit 97.8–374.6
63 Total basement wall area (m2) AreBaseWal Energy audit 43.4–117.5

64 Annual electricity consumption (kWh) AnnPowConsu
Energy

audit+smart
metering

8944–50,415

65 Annual natural gas consumption (m3) AnnNaGEnConsu Energy audit 0–5937



Buildings 2022, 12, 2039 8 of 25

2.2. Prediction Model Development

The MLR, SR, SVM, BPNN, RBFN, CART, CHAID, and ECHAID were employed to
develop electricity consumption and gas consumption prediction models.

2.2.1. Multiple Linear Regression

MLR has been widely used in building energy consumption prediction and can be
used in the early design stage to improve the building performance [37] and hourly cooling
load prediction [7]. In this paper, MLR is used to develop the relationship between the
independent variables (variables 1–63), and dependent variables (variables 64 and 65). The
MLR model can be presented as follows:

y = β0 + β1x1 + β2x2 + · · ·+ βnxp + ε (1)

where β0 denotes the regression constant; β1, β2, and βp denote the regression coefficients;
xi refers to the input variables; ε is the random error; and p denotes the number of indepen-
dent variables involved in the regression.

The regression coefficients are determined based on the least square method, which min-
imizes the residual sum of squares (RSS). The RSS is calculated by the following equation:

RSS =
n

∑
i=1

(
yi − β0 − β1x1 − β2x2 − · · · − βpxp

)2 (2)

where n is the number of samples.

2.2.2. Stepwise Regression

The SR uses a step-by-step iterative approach to develop a regression model by
selecting only the important independent variables. It is also widely used in building
simulation [38]. In this paper, 63 independent variables were introduced into the regression
model one-by-one and sorted according to their importance. Each dependent variable goes
through an F-test and T-test and remains in the model if it is statistically significant.

2.2.3. Support Vector Machine

The SVM introduces the principle of structural risk minimization, which effectively
solves the high-dimensional difficulty and local minima problem. Gao [39] developed
an SVM model to predict building energy consumption based on historical data with
good prediction performance. By studying the output/input variables relationship, the
SWM predicts the output variable values of new samples with the same distribution as the
training sample set. A loss function is introduced to correct the distance to the decision
boundary, so as to determine the regression function. Thus, a prediction model is developed
to predict the outputs for new samples with the same distribution [40].

2.2.4. Backpropagation Neural Network

The BPNN is the most widely used neural network. As a multilayer feed-forward
neural network, it is trained according to an error backpropagation algorithm [41]. BPNN
features arbitrarily complex pattern classification ability and demonstrates excellent multi-
dimensional function mapping ability. It includes an input, a hidden, and an output layer.
The least square error of the network is obtained by using the gradient descent method to
for minimization.

2.2.5. Radial Basis Function Neural Network

RBFN utilizes radial basis functions (RBFs) as activation functions. The RBF network
consists only of a single hidden layer that has its own way of computing the output. The
input layer receives the input data and feeds them into the special hidden layer. The
computations in the hidden layers are based on comparisons with prototype vectors from
the training set. Each neuron computes the similarity between the input vector and its
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prototype vector. RBFN has been proven to have a good prediction performance for the
building cooling load [13].

2.2.6. CART

The CART is a classification algorithm that builds a decision tree based on Gini’s
impurity index [42]. It applies the binary segmentation method to recursively construct the
binary decision tree process and uses the square error minimization criterion for feature
selection for the regression tree. CART has been proven to achieve good performance in
heating energy prediction [18].

2.2.7. CHAID

CHAID is based on adjusted significance testing, which was proposed by Kass et al. [43].
In this method, multi-branch decision trees can be generated. First, the F-test is carried out,
and variables statistically similar to the target variable are combined; then p-values for the
remaining variables are calculated, and the variable with the best predictor (lowest p-value)
is selected as the first variable in the decision tree branches. The process repeats until the
tree is fully grown. It has been successfully used to predict the steam load [20].

2.2.8. Exhaustive CHAID

As an improved algorithm based on CHAID, ECHAID is different from CHAID on
the merging step [44]. The latter stops when all remaining categories are found to be
statistically different. The former continues grouping, leaving only two super categories.
In this way, all input variables are ensured to have the same degree of freedom. It has been
successfully employed to predict the performance of heat pumps [21].

2.3. Choice of Input Variables

In order to eliminate the variables that are unimportant to the prediction of building
energy consumption, the variable importance (VI) is employed to assist in the selection of
the input variables to develop prediction models; detailed information in the calculation
can be found in Ref. [45]. At the same time, the ratios of samples for training and validation
are set as 7:3, 8:2, and 9:1, respectively. The data are split randomly.

2.4. Prediction Model Evaluation

The prediction model performance is evaluated through maximum errors (MAXEs),
mean absolute error (MAE), standard deviation (SD), correlation coefficient (R), and MAPE.
The MAE, SD, and R can be calculated as shown below:

MAE =
1
n

n
Σ

i=1
(|ŷi − yi|) (3)

SD =

√
Σn

i=1(|ŷi − yi| −MAE)2

n
(4)

R =

√√√√1−
Σn

i=1(ŷi − yi)
2

Σn
i=1(ŷi − y)2 (5)

MAPE =
1
n

n
Σ

i=1
(|ŷi − yi|)× 100% (6)

where ŷi denotes the prediction value, yi denotes the targeted value, y denotes the average
value of the targeted values, and n is the number of samples.

Evaluation on the validation of the performance of the prediction model based on
MAXE, MAE, SD, R, and MAPE under different training-to-validation ratios (7:3, 8:2, and
9:1) to ensure the best performance and the least amount of data for training.
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3. Results and Discussion
3.1. Results of Variable Selection

Depending on the variable importance (VI) of each variable, totals of 26, 12, and
6 variables were selected to develop the prediction models for electricity consumption
(Table 2), and totals of 26, 13, and 6 variables were selected to develop the prediction models
for natural gas consumption (Table 3).

Table 2. Variable selected for predicting electricity consumption.

Number of Variables Variable Set

26 (importance of variable (IV) ≥ 0.01)

HeatType, DHWFuel, AreFloor, HSysEffi, HSysAge, HSysType, Halogen, NbOccup,
TherReCei, FromHome, ACSyst, OriBuild, LOnEmpty, TherReWal, SpenLess, Incand,
NbACH, PHeatrFl, AgeRange, LearnMor, ExVolVenti, FullTime, TWdArea, ConstYr,

COPRefSys, CFL

12 (IV ≥ 0.016) HeatType, DHWFuel, AreFloor, HSysEffi, HSysAge, HSysType, Halogen, NbOccup,
TherReCei, FromHome, ACSyst, OriBuild

6 (IV ≥ 0.05) HeatType, DHWFuel, AreFloor, HSysEffi, HSysAge, HSysType

Table 3. Variable selected for predicting natural gas consumption.

Number of Variables Variable Set

26 (IV ≥ 0.015)

HeatType, NbACH, HSysEffi, TWlArea, Fluor, DHWFuel, Halogen, TherReWind,
TherReWal, PerBuild, RedEnerg, NbOccup, PHeatrFl, SpenLess, TypWindFra,
CeilArea, OvenFuel, BhUvalue, DHWType, ReFlArea, TherReCei, WidBuild,

HomState, FwUvalue, AreBaseWal, AreFloor

13 (IV ≥ 0.022) HeatType, NbACH, HSysEffi, TWlArea, Fluor, DHWFuel, Halogen, TherReWind,
TherReWal, PerBuild, RedEnerg, NbOccup, PHeatrFl

6 (IV ≥ 0.032) HeatType, NbACH, HSysEffi, TWlArea, Fluor, DHWFuel

3.2. Performance of Electricity Consumption Prediction Model

Analyses of the results of the prediction models for electricity consumption are pre-
sented in Tables A1–A8 in Appendix A. The regressions between predicted and simulated
electricity consumption for the best models of each data-driven approach are presented in
Figure 2a–h.

The outcomes of the MLR models on the prediction of electricity consumption are listed
in Appendix A Table A1. It can be found that when the number of variables is 6 and the ratio
of training sample vs. validation samples is 9:1, the MLR model has the best performance,
with MAPEs of 15.05% for training and 11.71% for validation, respectively. Figure 2a
presents the regression between predicted and simulated electricity consumption for the
best MLR model. The model predicts pretty well when the electricity consumption is less
than 35,000 kWh (93% of all the samples), and it underpredicts the electricity consumption
when it exceeds 35,000 kWh.

The outcomes of the SR models on the prediction of electricity consumption are listed
in Appendix A Table A2; they are similar to those of the MLR models. When the number of
variables is 6 and the ratio of training sample vs. validation samples is 9:1, the SR model
has the best performance with MAPEs of 14.79% for training and 14.18% for validation,
respectively. Figure 2b presents the regression between predicted and simulated electricity
consumption for the best SR model. The model also predicts pretty well when the electricity
consumption is less than 35,000 kWh, and it underpredicts the electricity consumption
when it exceeds 35,000 kWh.
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The outcomes of the SVM models on the prediction of electricity consumption are
listed in Appendix A Table A3. It can be found that when the number of variables is 6
and ratio of training sample vs. validation samples is 7:3, the SVM model has the best
performance, with MAPEs of 21.89% for training and 11.50% for validation, respectively.
Figure 2c presents the regression between predicted and simulated electricity consumption
for the best SVM model. The model predicts pretty well when the electricity consumption
is around 10,000 kWh, and it underpredicts the electricity consumption when it exceeds
15,000 kWh.

The outcomes of the BPNN models on the prediction of electricity consumption are
listed in Appendix A Table A4. It can be found that when the number of variables is 26
and the ratio of training sample vs. validation samples is 9:1, the BPNN model has the
best performance, with MAPEs of 0.94% for training and 0.94% for validation, respectively.
The number of inputs can be reduced to 12, with a correlation coefficient almost equal to
1.0 and MAPE less than 1.18%. Figure 2d presents the regression between predicted and
simulated electricity consumption for the best BPNN model. Compared with the results
from Ndiaye and Gabriel (2011), the R-square value is significantly improved from 0.79 to
0.9997. The model predicts pretty well for all the samples.

The outcomes of the RBFN models on the prediction of electricity consumption are
listed in Appendix A Table A5. It can be found that when the number of variables is 6
and the ratio of training sample vs. validation samples is 8:2, the RBFN model has the
best performance, with MAPEs of 8.82% for training and 5.62% for validation, respectively.
Figure 2e presents the regression between predicted and simulated electricity consumption
for the best RBFN model. The model predicts pretty well when the electricity consumption
is less than 35,000 kWh, and it tends to underpredict the electricity consumption when it is
in the range of 35,000–40,000 kWh.

The outcomes of the CART models on the prediction of electricity consumption are
listed in Appendix A Table A6. It can be found that when the number of variables is 6
and the ratio of training sample vs. validation samples is 7:3, the CART model has the
best performance, with MAPEs of 1.41% for training and 5.50% for validation, respectively.
Figure 2f presents the regression between predicted and simulated electricity consumption
for the best CART model. The model predicts pretty well for almost all the samples, with the
exception that it underpredicts one sample with actual consumption at around 50,000 kWh.

The outcomes of the CHAID models on the prediction of electricity consumption are
listed in Appendix A Table A7. It can be found that when the number of variables is 26
and the ratio of training sample vs. validation samples is 7:3, the CHAID model has the
best performance, with MAPEs of 0.87% for training and 5.03% for validation, respectively.
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Figure 2g presents the regression between predicted and simulated electricity consumption
for the best CHAID model. Similar to the CART model, it predicts pretty well for almost all
the samples, with the exception that it underpredicts one sample with actual consumption
at around 50,000 kWh.

The outcomes of the ECHAID models on the prediction of electricity consumption
are listed in Appendix A Table A8. It can be found that when the number of variables
is 26 and the ratio of training sample vs. validation samples is 7:3, the CHAID model
has the best performance, with MAPEs of 0.92% for training and 9.89% for validation,
respectively. Figure 2h presents the regression between predicted and simulated electricity
consumption for the best ECHAID model. It predicts pretty well for almost all the samples,
except that it overpredicts two samples with actual consumption at around 26,000 kWh
and underpredicts one sample with actual consumption at around 50,000 kWh.

Table 4 presents the range of relative errors for the eight best prediction models for
each data-driven approach. It can be found that the BPNN model has the best predic-
tion performance, followed by the CHAID model, ECHAID model, CART model, and
RBFN model. The performances of the SVM, SR, and MRL models are not as good as the
other ones.

Table 4. Range of relative errors for the eight electricity consumption prediction models.

Method ≤5% ≤15% ≤25% ≤50%

MLR 38% 64% 79% 98%
SR 43% 68% 81% 94%

SVM 73% 73% 73% 75%
BPNN 99% 100% 100% 100%
RBFN 57% 85% 92% 100%
CART 89% 97% 98% 99%

CHAID 93% 98% 98% 99%
ECHAID 93% 97% 97% 97%

3.3. Performance of Natural Gas Consumption Prediction Model

The outcomes of the natural gas consumption prediction models are listed in
Tables A9–A16 in Appendix A. The regressions between predicted and simulated nat-
ural gas consumption for the best models of each data-driven approach are presented in
Figure 3a–h.

The outcomes of the MLR models on the prediction of natural gas consumption are
listed in Appendix A Table A9. It can be found that when the number of variables is 13
and the ratio of training sample vs. validation samples is 7:3, the MLR model has the best
performance, with MAPEs of 13.98% for training and 24.67% for validation, respectively.
Figure 3a presents the regression between predicted and simulated natural gas consumption
for the best MLR model. Good agreements are found between the predicted and actual
energy consumption.

The outcomes of the SR models on the prediction of natural gas consumption are listed
in Appendix A Table A10. Similar to the MLR model, when the number of variables is 13
and the ratio of training sample vs. validation samples is 7:3, the SR model has the best
performance, with MAPEs of 14.03% for training and 24.89% for validation, respectively.
Figure 3b presents the regression between predicted and simulated natural gas consumption
for the best SR model. Good agreements are found between the predicted and actual
energy consumption.

The outcomes of the SVM models on the prediction of natural gas consumption are
listed in Appendix A Table A11. It can be found that when the number of variables is 26
and the ratio of training sample vs. validation samples is 7:3, the SVM model has the best
performance, with MAPEs of 59.47% for training and 53.23% for validation, respectively.
Figure 3c presents the regression between predicted and simulated natural gas consumption
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for the best SVM model. Large deviations between the predicted value and actual energy
consumption are found.
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The outcomes of the BPNN models on the prediction of natural gas consumption are
listed in Appendix A Table A12. It can be found that when the number of variables is 26
and the ratio of training sample vs. validation samples is 9:1, the BPNN model has the
best performance, with MAPEs of 2.63% for training and 0.16% for validation, respectively.
The number of inputs can be reduced to 13, with a correlation coefficient higher than 0.979
and MAPEs less than 7.03%. When the number of inputs is reduced to 6, the correlation
coefficient is still higher than 0.927, with MAPEs less than 11.63%. Figure 3d presents the
regression between predicted and simulated natural gas consumption for the best BPNN
model. The model predicts pretty well for almost all the samples.

The outcomes of the RBFN models on the prediction of natural gas consumption are
listed in Appendix A Table A13. It can be found that when the number of variables is 6
and ratio of training sample vs. validation samples is 8:2, the RBFN model has the best
performance, with MAPEs of 12.85% for training and 7.57% for validation, respectively.
Figure 3e presents the regression between predicted and simulated natural gas consumption
for the best RNFN model. The model predicts pretty well for all the samples, except under
predicting one sample with natural gas consumption of 5049 m3.

The outcomes of the CART models on the prediction of natural consumption are listed
in Appendix A Table A14. It can be found that when the number of variables is 13 and
the ratio of training sample vs. validation samples is 7:3, the CART model has the best
performance with MAPEs of 5.08% for training and 31.56% for validation, respectively.
Figure 3f presents the regression between predicted and simulated natural gas consumption
for the best CART model. The model predicts generally well for most of the samples, with
big deviations for only a few samples.

The outcomes of the CHAID models on the prediction of natural consumption are
listed in Appendix A Table A15. It can be found that when the number of variables
is 6 and the ratio of training sample vs. validation samples is 7:3, the CHAID model
has the best performance, with MAPEs of 18.74% for training and 24.72% for validation,
respectively. Figure 3g presents the regression between predicted and simulated natural
gas consumption for the best CHAID model. It can be observed that the model predicts
generally well for some of the samples; however, for some of the samples, the natural gas
consumption is predicted to be about 3600 m3 regardless of their actual consumption.

The outcomes of the ECHAID models on the prediction of natural consumption are
listed in Appendix A Table A16. Similar to the CHAID model, when the number of variables
is 6 and the ratio of training sample vs. validation samples is 7:3, the ECHAID model
has the best performance, with MAPEs of 18.74% for training and 24.72% for validation,
respectively. Figure 3h presents the regression between predicted and simulated natural
gas consumption for the best ECHAID model, which is similar to the CHAID model.
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Table 5 presents the ranges of relative errors for the eight best prediction models. It
can be found that the BPNN model has the best prediction performance, followed by the
CART model and RBFN model. The performance of other models is much poorer, with the
SVM model being the worst case.

Table 5. Range of relative errors for the eight natural gas consumption prediction models.

Method ≤5% ≤15% ≤25% ≤50%

MLR 22% 62% 83% 98%
SR 25% 60% 82% 98%

SVM 6% 32% 48% 78%
BPNN 93% 96% 99% 99%
RBFN 30% 75% 93% 99%
CART 49% 83% 93% 99%

CHAID 38% 60% 76% 87%
ECHAID 38% 60% 76% 87%

4. Conclusions and Limitations

In this paper, eight data-driven methods were employed to develop energy prediction
models for residential buildings in Oshawa with different numbers of input variables and
training to validation ratios. The following conclusions can be made:

(1) The performance of the prediction model can be improved through careful selections
of variables based on VI and training to validation ratios. As only a small number of
input variables are used, it can also help reduce the efforts of data collection.

(2) With 26 input variables, the BPNN models have the best performance in predicting
both the electricity consumption and gas consumption because their maximum error,
mean absolute error, standard deviation, and MAPE are smaller than those of other
models, and their correlation coefficient is larger than that of other models.

(3) The MLR model has the worst performance in predicting the electricity consumption,
and the SVM model has the worst performance in natural gas consumption prediction.

(4) The number of inputs can be reduced to 12 in the BPNN model to predict the electricity
consumption, with a correlation coefficient almost equal to 1.0 and MAPE ≤ 1.18%.
By using the CART model, the number of inputs can be further reduced to 6, with a
correlation coefficient ≥0.95 and MAPE ≤ 5.50%.

(5) The number of inputs can be reduced to 13 in the BPNN model for natural gas
consumption prediction with a correlation coefficient ≥0.979 and MAPE ≤ 7.03%.
When it is further reduced to 6, the correlation coefficient of the BPNN model is still
≥0.927, with the MAPE ≤ 11.63%.

(6) Based on the performance of the prediction models, when the human factor, e.g.,
SpenLess (awareness of the importance of spending less on energy bills), FromHome
(number of people working or staying at home), and HomState (housing situation),
are introduced, the performance of the prediction model can be improved. Those
variables are often very difficult to introduce to develop physical models in traditional
methods.

The limitations of the prediction models are as follows:

(1) They can only be applied to residential buildings (houses) in Oshawa and cannot be
applied to commercial buildings.

(2) More data collection is needed, including weather data, to develop prediction models
that are applicable throughout Canada.
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Appendix A

Table A1. Analysis of the results of the MLR model for electricity consumption.

Number of
Variables

Training:
Validation Data Set MAX Error MAE SD R MAPE

26

7:3
Training 9217 2759 3657 0.94 20.8%

Validation 18,347 4300 5789 0.79 36.8%

8:2
Training 10,174 2751 3691 0.93 20.5%

Validation 17,416 3841 5310 0.85 32.1%

9:1
Training 10,686 2568 3597 0.93 19.1%

Validation 15,901 3571 5221 0.91 26.8%

12

7:3
Training 13,489 3040 4542 0.90 20.0%

Validation 13,655 2242 3501 0.95 18.5%

8:2
Training 13,496 2905 4428 0.90 19.2%

Validation 13,830 2444 3733 0.95 19.8%

9:1
Training 14,043 2712 4205 0.90 18.4%

Validation 13,415 2748 4244 0.96 20.5%

6

7:3
Training 14,332 2864 4892 0.88 16.1%

Validation 18,652 2207 4268 0.92 16.6%

8:2
Training 14,339 2780 4795 0.88 15.8%

Validation 19,260 2215 4560 0.93 15.5%

9:1
Training 14,231 2584 4563 0.89 15.0%

Validation 18,420 2179 4971 0.95 11.7%

Table A2. Analysis of the results of the SR model for electricity consumption.

Number of
Variables

Training:
Validation Data Set MAX Error MAE SD R MAPE

26

7:3
Training 12,178 3189 4520 0.90 21.9%

Validation 17,646 2683 4364 0.91 21.9%

8:2
Training 12,116 3080 4428 0.90 21.3%

Validation 17,879 2728 4593 0.91 21.4%

9:1
Training 12,450 2840 4209 0.90 19.8%

Validation 17,765 3196 5387 0.92 22.9%

12

7:3
Training 13,208 3228 4722 0.89 21.2%

Validation 17,633 2751 4371 0.91 22.5%

8:2
Training 13,126 3109 4621 0.89 20.6%

Validation 17,894 2811 4616 0.91 22.1%

9:1
Training 13,636 2880 4402 0.89 19.2%

Validation 17,612 3151 5314 0.94 22.3%

6

7:3
Training 15,664 2898 5033 0.87 16.4%

Validation 21,563 2565 4918 0.90 18.2%

8:2
Training 15,638 2814 4916 0.88 16.2%

Validation 21,503 2681 5174 0.91 18.2%

9:1
Training 15,443 2583 4694 0.88 14.8%

Validation 21,016 2688 5740 0.95 14.2%
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Table A3. Analysis of the results of the SVM model for electricity consumption.

Number of
Variables

Training:
Validation Data Set MAX Error MAE SD R MAPE

26

7:3
Training 37,611 6290 10,341 0.81 21.9%

Validation 41,168 3595 9408 0.85 11.5%

8:2
Training 37,611 5980 10,166 0.81 20.9%

Validation 41,171 4051 9934 0.83 12.9%

9:1
Training 37,612 5521 9791 0.82 19.5%

Validation 41,171 5096 11,658 0.86 15.0%

12

7:3
Training 37,567 6278 10,325 0.84 21.9%

Validation 41,129 3588 9396 0.86 11.5%

8:2
Training 37,564 5969 10,150 0.84 20.9%

Validation 41,127 4043 9920 0.86 12.9%

9:1
Training 37,567 5511 9775 0.85 19.4%

Validation 41,130 5086 11,643 0.89 14.9%

6

7:3
Training 37,514 6268 10,311 0.86 21.9%

Validation 41,063 3582 9380 0.92 11.5%

8:2
Training 37,519 5960 10,137 0.86 20.8%

Validation 41,068 4036 9904 0.92 12.8%

9:1
Training 37,515 5502 9761 0.87 19.4%

Validation 41,064 5078 11,624 0.93 14.9%

Table A4. Analysis of the results of the BPNN model for electricity consumption.

Number of
Variables

Training:
Validation Data Set MAX Error MAE SD R MAPE

26

7:3
Training 16,131 2806 4381 0.91 16.5%

Validation 13,618 2024 3386 0.95 14.4%

8:2
Training 2554 422 833 1.00 1.9%

Validation 156 237 411 1.00 1.5%

9:1
Training 345 87 171 1.00 0.9%

Validation 435 110 155 1.00 0.9%

12

7:3
Training 7112 376 1002 1.00 1.8%

Validation 2735 300 549 1.00 1.9%

8:2
Training 4586 743 1329 0.99 3.5%

Validation 1803 427 566 1.00 2.7%

9:1
Training 564 81 133 1.00 0.8%

Validation 236 136 188 1.00 1.1%

6

7:3
Training 11,857 872 2110 0.98 3.9%

Validation 2443 364 800 1.00 2.3%

8:2
Training 13,089 1697 3586 0.94 7.7%

Validation 3652 345 865 1.00 1.7%

9:1
Training 17,032 2187 4537 0.89 10.3%

Validation 20,134 1723 5297 0.94 6.5%

Table A5. Analysis of the results of the RBFN model for electricity consumption.

Number of
Variables

Training:
Validation Data Set MAX Error MAE SD R MAPE

26

7:3
Training 19,346 4214 5336 0.86 28.2%

Validation 6519 2216 2641 0.96 20.1%

8:2
Training 14,505 2846 4444 0.90 16.8%

Validation 15,093 2274 4082 0.91 13.7%

9:1
Training 13,076 2774 4252 0.90 19.1%

Validation 8920 1942 2715 0.99 12.9%
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Table A5. Cont.

Number of
Variables

Training:
Validation Data Set MAX Error MAE SD R MAPE

12

7:3
Training 15,797 2482 4227 0.91 14.3%

Validation 3274 1135 1440 0.99 9.5%

8:2
Training 17,058 3167 4966 0.87 19.5%

Validation 7338 1788 2498 0.98 15.1%

9:1
Training 15,795 2094 3855 0.92 12.2%

Validation 2710 1154 1459 0.99 8.8%

6

7:3
Training 15,105 2100 3925 0.93 10.5%

Validation 2989 902 1268 0.99 7.8%

8:2
Training 14,315 1878 3708 0.93 8.8%

Validation 3392 764 1095 1.00 5.6%

9:1
Training 13,931 1428 2855 0.96 8.6%

Validation 895 628 1142 1.00 6.0%

Table A6. Analysis of the results of the CART model for electricity consumption.

Number of
Variables

Training:
Validation Data Set MAX Error MAE SD R MAPE

26

7:3
Training 5224 460 1207 0.99 2.2%

Validation 10,680 1420 3846 0.92 5.5%

8:2
Training 5224 444 1176 0.99 2.1%

Validation 10,680 1586 4097 0.92 5.9%

9:1
Training 5224 618 2086 0.98 2.9%

Validation 10,680 1408 3319 0.97 4.8%

12

7:3
Training 3850 275 717 1.00 1.2%

Validation 18,575 1965 5466 0.83 7.0%

8:2
Training 3850 268 700 1.00 1.2%

Validation 18,575 2203 5825 0.83 7.7%

9:1
Training 3850 462 1888 0.98 2.1%

Validation 18,575 2354 6174 0.85 7.4%

6

7:3
Training 3745 338 881 1.00 1.4%

Validation 29,551 1790 5937 0.87 5.5%

8:2
Training 3745 327 859 1.00 1.4%

Validation 29,551 2006 6298 0.87 6.1%

9:1
Training 5915 387 1079 0.99 1.7%

Validation 29,551 2629 7685 0.85 7.1%

Table A7. Analysis of the results of the CHAID model for electricity consumption.

Number of
Variables

Training:
Validation Data Set MAX Error MAE SD R MAPE

26

7:3
Training 3175 167 547 1.00 0.9%

Validation 29,983 1684 6132 0.76 5.0%

8:2
Training 3175 169 534 1.00 0.9%

Validation 29,346 1846 6396 0.77 5.3%

9:1
Training 10,496 833 2403 0.97 0.9%

Validation 29,346 2831 8204 0.71 5.3%

12

7:3
Training 18,988 2538 5279 0.86 10.2%

Validation 22,535 1191 4515 0.89 3.7%

8:2
Training 18,988 2415 5143 0.86 9.8%

Validation 22,535 1329 4807 0.89 3.9%

9:1
Training 19,124 2166 4837 0.87 8.7%

Validation 22,671 1798 5932 0.89 4.7%



Buildings 2022, 12, 2039 20 of 25

Table A7. Cont.

Number of
Variables

Training:
Validation Data Set MAX Error MAE SD R MAPE

6

7:3
Training 18,988 2547 5279 0.86 10.3%

Validation 22,535 1193 4515 0.89 3.7%

8:2
Training 18,988 2420 5143 0.86 9.8%

Validation 22,535 1332 4808 0.89 4.0%

9:1
Training 19,124 2168 4837 0.87 8.8%

Validation 22,671 1801 5932 0.89 4.76%

Table A8. Analysis of the results of the ECHAID model for electricity consumption.

Number of
Variables

Training:
Validation Data Set MAX Error MAE SD R MAPE

26

7:3
Training 3175 171 547 1.00 0.9%

Validation 29,983 2928 8492 0.65 9.9%

8:2
Training 3175 144 530 1.00 0.7%

Validation 29,346 3272 8953 0.65 11.0%

9:1
Training 18,441 1987 4555 0.89 7.5%

Validation 21,988 1858 5803 0.89 5.2%

12

7:3
Training 18,259 2338 4962 0.88 9.0%

Validation 21,806 1246 4432 0.89 3.9%

8:2
Training 18,259 2216 4834 0.88 8.5%

Validation 21,806 1382 4720 0.89 4.1%

9:1
Training 18,441 2006 4555 0.89 7.7%

Validation 21,988 1841 5808 0.89 5.0%

6

7:3
Training 18,259 2343 4962 0.88 9.1%

Validation 21,806 1249 4432 0.89 3.9%

8:2
Training 18,259 2221 4834 0.88 8.6%

Validation 21,806 1377 4721 0.89 4.1%

9:1
Training 18,441 2010 4555 0.89 7.8%

Validation 21,988 1846 5808 0.89 5.0%

Table A9. Analysis of the results of the MLR model for natural gas consumption.

Number of
Variables

Training:
Validation Data Set MAX Error MAE SD R MAPE

26

7:3
Training 768 271 340 0.96 11.9%

Validation 1452 603 835 0.77 32.6%

8:2
Training 771 261 334 0.96 11.4%

Validation 1460 662 876 0.76 35.8%

9:1
Training 763 277 343 0.96 12.0%

Validation 2172 734 1052 0.69 43.0%

13

7:3
Training 964 326 409 0.94 14.0%

Validation 1381 526 649 0.86 24.7%

8:2
Training 969 316 402 0.94 13.5%

Validation 1394 577 684 0.86 27.1%

9:1
Training 902 315 402 0.94 13.2%

Validation 1831 666 855 0.82 33.5%

6

7:3
Training 2892 512 729 0.79 22.3%

Validation 2494 469 757 0.81 21.0%

8:2
Training 2882 506 720 0.78 21.9%

Validation 2515 480 785 0.82 21.5%

9:1
Training 2878 472 686 0.81 20.1%

Validation 1523 458 714 0.88 26.2%
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Table A10. Analysis of the results of the SR model for natural gas consumption.

Number of
Variables

Training:
Validation Data Set MAX Error MAE SD R MAPE

26

7:3
Training 1152 317 403 0.94 13.2%

Validation 1723 625 806 0.78 30.7%

8:2
Training 1153 305 395 0.94 12.7%

Validation 1723 693 850 0.78 34.1%

9:1
Training 989 327 415 0.93 13.5%

Validation 1850 700 870 0.81 33.6%

13

7:3
Training 1091 331 426 0.93 14.0%

Validation 1790 554 696 0.84 24.9%

8:2
Training 1085 321 417 0.93 13.6%

Validation 1797 608 733 0.83 27.4%

9:1
Training 989 327 415 0.93 13.5%

Validation 1850 700 870 0.81 33.6%

6

7:3
Training 2568 564 755 0.77 28.4%

Validation 2482 585 866 0.73 28.0%

8:2
Training 2559 559 744 0.77 27.9%

Validation 2503 612 893 0.74 29.4%

9:1
Training 2982 485 694 0.80 19.5%

Validation 2493 533 908 0.79 27.2%

Table A11. Analysis of the results of the SVM model for natural gas consumption.

Number of
Variables

Training:
Validation Data Set MAX Error MAE SD R MAPE

26

7:3
Training 2313 940 1164 0.75 59.5%

Validation 2991 958 1262 0.74 53.2%

8:2
Training 2312 928 1148 0.75 58.3%

Validation 2990 993 1311 0.78 56.0%

9:1
Training 2192 926 1142 0.77 57.1%

Validation 2872 1019 1427 0.74 73.4%

13

7:3
Training 2319 945 1168 0.80 59.9%

Validation 2989 958 1265 0.78 53.4%

8:2
Training 2317 933 1152 0.78 58.6%

Validation 2986 993 1313 0.78 56.2%

9:1
Training 2206 930 1146 0.77 57.3%

Validation 2875 1019 1428 0.81 73.5%

6

7:3
Training 2325 947 1170 0.69 59.8%

Validation 3000 959 1266 0.71 53.3%

8:2
Training 2325 935 1154 0.69 58.6%

Validation 3000 994 1314 0.74 56.1%

9:1
Training 2215 933 1148 0.70 57.3%

Validation 2887 1017 1430 0.83 73.3%

Table A12. Analysis of the results of the BPNN model for natural gas consumption.

Number of
Variables

Training:
Validation Data Set MAX Error MAE SD R MAPE

26

7:3
Training 1334 263 309 0.97 11.0%

Validation 551 272 322 0.97 13.2%

8:2
Training 1467 145 276 0.97 6.3%

Validation 272 102 125 1.00 5.2%

9:1
Training 663 55 226 0.98 2.6%

Validation 13 2 5 1.00 0.2%
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Table A12. Cont.

Number of
Variables

Training:
Validation Data Set MAX Error MAE SD R MAPE

13

7:3
Training 262 118 148 0.99 5.1%

Validation 487 173 233 0.98 6.0%

8:2
Training 809 191 259 0.98 8.2%

Validation 186 138 168 0.99 6.3%

9:1
Training 848 192 243 0.98 7.0%

Validation 533 239 286 0.98 9.2%

6

7:3
Training 1463 374 460 0.92 11.9%

Validation 1033 373 545 0.91 11.3%

8:2
Training 2650 427 617 0.85 14.3%

Validation 975 342 435 0.96 14.2%

9:1
Training 913 338 435 0.93 11.6%

Validation 512 282 376 0.97 10.3%

Table A13. Analysis of the results of RBFN model for natural gas consumption.

Number of
Variables

Training:
Validation Data Set MAX Error MAE SD R MAPE

26

7:3
Training 1320 470 607 0.86 18.7%

Validation 973 458 587 0.89 23.2%

8:2
Training 2848 525 717 0.79 21.2%

Validation 1031 470 596 0.89 20.0%

9:1
Training 2896 476 691 0.80 16.6%

Validation 804 477 618 0.90 21.4%

13

7:3
Training 1171 381 469 0.92 16.5%

Validation 789 319 407 0.95 15.6%

8:2
Training 1424 441 539 0.89 18.2%

Validation 706 346 420 0.95 17.0%

9:1
Training 1816 447 562 0.87 17.4%

Validation 666 419 496 0.94 20.4%

6

7:3
Training 2928 633 740 0.81 26.3%

Validation 1008 500 712 0.84 27.7%

8:2
Training 4432 394 744 0.79 12.9%

Validation 695 230 324 0.97 7.6%

9:1
Training 4555 395 731 0.79 13.2%

Validation 461 222 246 0.99 9.3%

Table A14. Analysis of the results of the CART model for natural gas consumption.

Number of
Variables

Training:
Validation Data Set MAX Error MAE SD R MAPE

26

7:3
Training 634 133 209 0.98 5.0%

Validation 1840 689 994 0.64 34.3%

8:2
Training 660 164 247 0.98 5.7%

Validation 2569 817 1155 0.55 39.2%

9:1
Training 834 154 252 0.98 5.4%

Validation 2440 723 1135 0.61 43.5%

13

7:3
Training 634 139 212 0.98 5.1%

Validation 1840 605 924 0.69 31.6%

8:2
Training 660 173 261 0.97 5.9%

Validation 2569 705 1076 0.60 35.2%

9:1
Training 834 162 264 0.97 5.6%

Validation 2440 680 1124 0.63 41.5%
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Table A14. Cont.

Number of
Variables

Training:
Validation Data Set MAX Error MAE SD R MAPE

6

7:3
Training 494 117 210 0.98 3.8%

Validation 2569 806 1335 0.40 47.6%

8:2
Training 660 143 222 0.98 4.5%

Validation 2569 891 1406 0.34 51.9%

9:1
Training 979 172 299 0.97 5.5%

Validation 2569 998 1681 0.28 68.5%

Table A15. Analysis of the results of the CHAID model for natural gas consumption.

Number of
Variables

Training:
Validation Data Set MAX Error MAE SD R MAPE

26

7:3
Training 1366 271 438 0.93 7.7%

Validation 2038 665 1012 0.64 37.4%

8:2
Training 1411 280 442 0.93 8.1%

Validation 2083 638 1015 0.65 37.0%

9:1
Training 1589 242 441 0.92 6.6%

Validation 2261 1007 1386 0.43 60.5%

13

7:3
Training 1246 254 421 0.93 7.9%

Validation 672 708 988 0.66 41.4%

8:2
Training 1915 430 647 0.83 14.5%

Validation 2587 794 1184 0.46 43.5%

9:1
Training 1390 230 407 0.94 6.1%

Validation 2062 994 1392 0.40 57.4%

6

7:3
Training 3714 385 722 0.79 18.7%

Validation 2339 612 799 0.78 24.7%

8:2
Training 3714 377 709 0.79 18.2%

Validation 2351 656 843 0.78 26.6%

9:1
Training 1640 305 478 0.91 9.7%

Validation 2312 861 1515 0.34 64.0%

Table A16. Analysis of the results of the ECHAID model for natural gas consumption.

Number of
Variables

Training:
Validation Data Set MAX Error MAE SD R MAPE

26

7:3
Training 1246 288 482 0.91 8.1%

Validation 4164 920 1439 0.28 45.9%

8:2
Training 1246 168 366 0.95 4.4%

Validation 4164 1065 1551 0.19 51.4%

9:1
Training 1589 242 441 0.92 6.6%

Validation 2261 1007 1386 0.43 60.5%

13

7:3
Training 1913 397 643 0.84 13.1%

Validation 2585 754 1136 0.47 40.6%

8:2
Training 1915 382 631 0.84 12.6%

Validation 2587 830 1201 0.45 44.8%

9:1
Training 1150 243 427 0.93 6.9%

Validation 1692 873 1294 0.52 58.2%

6

7:3
Training 3714 385 722 0.79 18.7%

Validation 2339 612 799 0.78 24.7%

8:2
Training 3714 377 709 0.79 18.2%

Validation 2351 656 843 0.78 26.6%

9:1
Training 1640 306 478 0.91 9.7%

Validation 2312 861 1515 0.34 64.0%
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