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Abstract: Currently, reinforcement learning (RL) has shown great potential in energy saving in HVAC
systems. However, in most cases, RL takes a relatively long period to explore the environment
before obtaining an excellent control policy, which may lead to an increase in cost. To reduce the
unnecessary waste caused by RL methods in exploration, we extended the deep forest-based deep
Q-network (DF-DQN) from the prediction problem to the control problem, optimizing the running
frequency of the cooling water pump and cooling tower in the cooling water system. In DF-DQN,
it uses the historical data or expert experience as a priori knowledge to train a deep forest (DF)
classifier, and then combines the output of DQN to attain the control frequency, where DF can map
the original action space of DQN to a smaller one, so DF-DQN converges faster and has a better
energy-saving effect than DQN in the early stage. In order to verify the performance of DF-DQN, we
constructed a cooling water system model based on historical data. The experimental results show
that DF-DQN can realize energy savings from the first year, while DQN realized savings from the
third year. DF-DQN’s energy-saving effect is much better than DQN in the early stage, and it also has
a good performance in the latter stage. In 20 years, DF-DQN can improve the energy-saving effect by
11.035% on average every year, DQN can improve by 7.972%, and the model-based control method
can improve by 13.755%. Compared with traditional RL methods, DF-DQN can avoid unnecessary
waste caused by exploration in the early stage and has a good performance in general, which indicates
that DF-DQN is more suitable for engineering practice.

Keywords: HVAC; cooling water system; reinforcement learning; DF-DQN

1. Introduction

In order to achieve the goal of carbon neutrality, countries around the world are com-
mitted to energy saving and emission reduction. Building energy consumption accounts
for a large part of energy consumption around the world [1], and heating, ventilation, and
air-conditioning (HVAC) systems occupy a major part, reaching more than half of energy
consumption. The cooling water system is an essential subsystem of the HVAC system,
which mainly consists of cooling water pumps, cooling towers, and chiller condensers [2].
The operation of the cooling water system has an important influence on the entire HVAC
system, and optimal control of the cooling water system can effectively reduce energy
consumption of the HVAC system. Thus, the optimal control of the cooling water system
is crucial.

In HVAC systems, optimal control policies are often used to reduce operation costs and
to ensure the thermal comfort of occupants [3,4]. Optimal control policies can be classified
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into traditional control policies and advanced control policies in intelligent buildings, where
the former one contains sequencing control (rule-based control) and process control, and
the latter one includes soft-computing control policies, hard-computing control policies,
and hybrid control policies [5]. Many optimal control methods have been tried for cooling
water system control, such as proportional-integral (PI) controllers, proportional integral
derivative (PID) controllers, and model predictive control (MPC) controllers. These meth-
ods heavily rely on the system model, various sensors, and controllers in the system, so the
disadvantages of these methods are also obvious. Model-based methods often require a
perfect model of the system, while system modeling is usually difficult in real applications
even if we can attain enough data from different sensors. According to Zhu et al., the
uncertainties of the model have a serious impact on the control performance [6]. In the
actual system operation, the aging of the equipment or the renewal of some equipment
may lead to inconsistency between the system model and the actual system [7]. Even if the
initially established model is accurate enough, continuous changes in the actual system
over time lead to an unavoidable decrease in the performance of the control method.

To avoid the impact of the imperfect system model on control policies, data-driving
methods in artificial intelligence have received too much attention in HVAC control prob-
lems recently. Reinforcement learning (RL) is a kind of classical data-driven and model-free
method in artificial intelligence. In recent years, RL has attracted increasing attention
for building energy efficiency control problems [8,9], because it can provide a simple
framework by learning from interaction with the environment directly. In these studies,
RL methods can provide a model-free framework for achieving energy saving, but they
often fail to achieve a good control effect in the early stage, or can be even worse than
some baseline control policies, which are mainly caused by the agent’s exploration of the
environment. Moreover, in the exploration process by the trial-and-error mechanism, they
may also cause a certain degree of damage to the equipment, which may directly lead to an
increase in cost. These two problems severely limit the practical use of RL in the field of
HVAC optimization applications. Therefore, in order to maintain RL control effectiveness
and achieve the maximum possible energy savings, it is necessary to reduce the time of
this process in some way so that the RL control policy converges more quickly to reduce
unnecessary costs.

In this paper, we tried to use DF-DQN to tackle this problem. Due to the introduction
of DF, we mapped the original action space to a smaller one, and then combined the label
of DF to attain the final control action, which directly reduced the output action of DQN.
Moreover, the label of DF had the guidance of a priori knowledge, which not only ensured
a good control effect, but also can realize energy saving in the early stage. The main
contributions of this paper are as follows:

• We extended our previously proposed DF-DQN from the prediction problem to the
control problem. The introduction of DF mapped the original DQN output action
space into a new smaller action space, which could accelerate the convergence speed
of DQN;

• We used DF-DQN to control a cooling water system in HVAC and to realize energy
savings from the early stage. A priori knowledge was introduced as a deep forest
classifier, which can not only reduce the action space, but also reduce the exploration
of the agent. The experimental results show that DF-DQN can save energy from the
first year, while DQN can achieve similar energy saving from the third year;

• We verified the performance of DF-DQN in an environment based on the modeling
of a real cooling water system, so as to ensure the credibility of DF-DQN. The data
that DF-DQN and other compared methods used were collected from a real-world
system, and the simulation environment was built based on this system. The code and
the experimental data are available at: https://github.com/H-Phoebe/DF-DQN-for-
energy-saving-control (accessed on 20 August 2022).

https://github.com/H-Phoebe/DF-DQN-for-energy-saving-control
https://github.com/H-Phoebe/DF-DQN-for-energy-saving-control
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2. Related Works

In recent years, more and more researchers have tried to solve practical problems with
RL methods. In the applications of the HVAC system, the complexity and lag of the HVAC
system directly lead to an increase in modeling cost, while RL can provide model-free
control and have good control performance. However, RL generally takes a relatively long
time to learn a better control policy, and this process may lead to some unnecessary energy
wastage and cost increases, so some researchers try to avoid this wastage by speeding up
the convergence of RL algorithms, which can achieve more energy saving at the same time.

Applications of RL in HVAC. Lork et al. [10] used Q-learning to achieve a balance
between comfort and energy savings in rooms. They used a Bayesian convolutional neural
network combined with data from all rooms to construct a temperature and air conditioning
power prediction model to reduce uncertainty. This model was then adapted to individual
rooms and the temperature set point was controlled using Q-learning. Qiu et al. [8] used
Q-learning to obtain optimal control of the cooling water system in HVAC, wherein the RL
controller can save 11% of the system energy, more than the 7% saved by the local feedback
controller. Ahn et al. [11] used DQN to achieve a model-free optimal control policy in
HVAC and the results proved that DQN can reduce energy consumption, and provided
model-free optimal control. Brandi et al. [12] used DQN to control the water supply
temperature set point of the heating system terminal unit, which can achieve a heating
energy saving ranging between 5% and 12%. Yan et al. [13] applied DDPG to generate
an optimal control policy for a multi-zone residential HVAC system, which can greatly
reduce energy consumption while ensuring comfort. In addition, the DDPG-trained agent
can intelligently balance different optimization objectives with generalization ability and
adaptability to unknown environments. Ding et al. [14] used RL algorithms to control the
indoor temperature of a residential HVAC system, which can achieve energy conservation
while maintaining indoor thermal comfort. Qiu et al. [15] used three multi-agent RL
algorithms to control the condenser system in HVAC. The experimental results showed that
the interaction multi-agent RL algorithm can achieve better energy-saving effects compared
to the other two algorithms. Amasyali et al. [16] used the deep RL controller to control
the power cost of electric water heaters in residential buildings. The experimental results
showed that this method does not cause discomfort to users, and can save 19–35% of the
power cost compared with the baseline control.

Improve RL convergence speed. In engineering applications, the convergence time
of RL methods may be several months or even years, which directly leads to an increase
in cost. Therefore, some researchers have tried to shorten this time to reduce the cost of
practical applications. Li et al. [17] controlled the HVAC system in order to control energy
consumption and ensure comfort, and they put forward multi-grid Q-learning to solve the
problem of slow convergence rate in RL. Yu [18] et al. developed an exploration policy for
the RL controller using a priori knowledge, which can guide the RL controller to explore
the action space, thus reducing the training time. Fu et al. [19] used a multi-agent RL to
realize the collaborative control optimization of multiple devices in the HVAC system.
The experimental results showed that the method converges faster than single-agent RL
method. In [20], the authors mention that adding a priori knowledge can help the RL
controller reduce training time.

3. Preliminaries
3.1. MDP

RL, as a class of control techniques in machine learning, has been explored for its
potential in HVAC systems. In RL, the problem can often be considered as a sequential
decision-making case, and the agent can learn by interacting with the environment directly,
as shown in Figure 1.
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Markov’s decision process (MDP), a classical formalization of sequential decision-making,
is often used to model RL problems. An MDP can be defined as a tuple 〈S, A, T, R, γ〉, where
S is the collection of states, A is the collection of actions, T is a transition function, R is an
immediate reward function, and γ is a discount factor. In the interactive process, for some
states, the agent can select an action to act on the environment, and receive a scalar reward
and a next state [21]. The final goal of RL is to maximize a cumulative numerical reward,
Rt, as is shown in Equation (1).

Rt =
∞

∑
k=0

γkrt+k+1 (1)

where γ ∈ [0, 1] is the discount factor, k represents k time steps after time step t, and rt+k+1
represents the immediate reward of the corresponding time step. The agent selects an
action a ε A by policy π, then the agent moves to the next state st+1, then the agent obtains
the immediate reward rt+1 from the environment. In RL, the action value Q is used to
represent the exception of a cumulative discounted reward, which is starting from state s
and taking action a. The action value Q is shown in Equation (2).

Qπ(s, a) = Eπ

[
∞

∑
k=0

γkRt+k+1|st = s, at = a

]
(2)

The optimal policy π∗ can be achieved by evaluating the action value function:

Q∗(s, a) = maxQπ(s, a) = E
[

Rt+1 + γ max
a′

Q∗
(
st+1, a′

)
|st = s, at = a

]
(3)

Finally, the optimal policy π∗ can be obtained.

3.2. Deep Forest

Deep forest (DF) [22] is a decision tree ensemble approach and can be applied to
classification tasks. DF can obtain good performance in most cases, even with different data
in different domains, which mainly benefits from two techniques, namely multi-grained
scanning and the cascade forest structure.

Multi-grained scanning uses sliding windows of various sizes for sampling to obtain
more feature sub-samples, so as to obtain more and richer feature relationships. Then,
a certain amount of the random forest and cascade forest are trained with the obtained
feature sub-samples to obtain the feature vector.

The cascade forest structure is used to enhance the representation learning ability
of DF. In a cascade forest, each level receives the characteristic information processed
by the previous level, then the processing results in inputs, which are then output to
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the next level. The first level’s input of a cascade forest is the feature vector after multi-
granularity scanning transformation. The final prediction result is obtained at the last level
and expressed as an aggregate value.

In addition, the training process of the deep forest is efficient, and it can operate
normally even if the training data scale is small. The structure of DF is shown in Figure 2.
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3.3. DQN

Traditional methods in RL, such as SARSA and Q-learning, can effectively solve
problems with a small state and action space by establishing Q-table. However, when
the state space is large enough or continuous, such as practical problems in HVAC, these
methods may fail to achieve a control policy. DQN, a method proposed by Google’s
DeepMind in 2015 [23], has been applied in HVAC controls in recent years. Different from
SARSA and Q-learning, DQN can solve problems with large or continuous state space [24],
mainly benefiting from its two specific techniques.

Firstly, DQN uses the mechanism of experience replay to eliminate the correlation of
network inputs. This means storing the transfer samples (s, a, r, s′) while the agent interacts
with the environment and samples randomly to train the agent. Secondly, there are two
networks in DQN, where one is the Q-network, and the other is the target network. These
two networks have the same structure, but have different parameters. The Q-network
outputs the current Q value, and the target network outputs the target Q value. After some
iterations, the parameters of the Q-network are copied to the target network. The loss
function is shown in Equation (4).

L(θi) = E

[(
r + γmax

a′
Q
(
s′, a′ |θ−i )−Q(s, a |θi)

)2
]

(4)

where a′ is the action selected in state s′, and θi and θ−i are the parameters of Q-network
and target network, respectively.

4. Environment and Modeling
4.1. Cooling Water System Layout

In this paper, we tried to control the cooling water system to reduce the energy
consumption of the HVAC system. The cooling water system is an important part of
HVAC, including chillers, cooling water pumps, cooling towers, and some other necessary
equipment. To achieve the goal of energy saving, it is important to enable this equipment
to be controlled more efficiently. In another word, we should try to find an optimal policy
to coordinate this equipment. Based on a real application, we constructed a cooling water
system platform, which contained four chillers, three cooling water pumps, and seven
cooling towers (the same type of equipment has the same settings), as shown in Figure 3.
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To measure the effect of the control policy, we adopted the system coefficient of
performance (COP), which is often used to measure the energy-saving performance of
HVAC systems. The system COP is defined in Equation (5).

COP =
CLsystem

∑ Pchillers + ∑ Ptowers + ∑ Ppumps
(5)

where ∑ Pchillers is the total power of all chillers (kW), ∑ Ptowers is the total power of all
cooling towers (kW), and ∑ Ppumps is the total power of all cooling water pumps (kW).
CLsystem is the system cooling load, which is defined in Equation (6).

CLsystem = Cp × ρ× Fchw × (Tchwr − Tchws)÷ 3600 s/h (6)

where Cp is the specific heat capacity of water (4.2 kJ/(kg·K)), ρ is the water density
(1000 kg/m3), Fchw is the chilled water flowrate (m3/h), Tchwr is the inlet chilled water tem-
perature of chillers (◦C), and Tchws is the outlet chilled water temperature of chillers (◦C).

4.2. System Simulation Modeling

For the system simulation, some real data and parameters were collected, but some oth-
ers could not be achieved directly, so we tried to use the regression method to attain them.

We regressed the chiller model with historical data, which could be used to attain the
chiller’s COP, and further, we calculated the chiller’s power, as shown in Equation (7).

Pchiller = CL / COPchiller (7)

where COPchiller is obtained by Equation (8).

COPchiller = chiller model(CL, Tcwr, Tchws, Fchw) (8)

where Tcwr is the inlet cooling water temperature of chillers (◦C). Some other related
parameters are shown in Equations (9)–(11) [8].

Tcws = Tcwr + (Pchiller + CL)÷
Cp × Fcw × ρ

3600 s/h
(9)

Tchws = max
[

Tchwsset, T′chwr − CC÷
Cp × Fchw × ρ

3600 s/h

]
(10)
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Tchwr = Tchws + CL ÷
Cp × Fchw × ρ

3600 s/h
(11)

where Tchwsset is the Tchws set point of a chiller, T′chws is the Tchws of last time step, Fcw is the
cooling water flowrate (m3/h), and CC is the chiller cooling capacity.

The power of the cooling water pump model is calculated by Equations (12) and (13).

K =
fpumpactual

fpumprated

(12)

Ppump = a + b× K + c× K2 + d× K3 (13)

where fpumpactual and fpumprated are the actual running frequency and rated running fre-
quency of the real cooling water pump, and a, b, c, d are determined by the regression of
historical data.

The cooling tower model is defined as Equations (14) and (15).

Ptower = a + b× ftoweractual + c× ftoweractual
2 + d× ftoweractual

3 (14)

Tcwr = tower model
(
Tcws, ftoweractual , Twb, Fcw

)
(15)

In Equation (14), ftoweractual is the actual running frequency of cooling tower, a, b, c, d
are determined by the regression of historical data. In Equation (15), Tcwr is the inlet
cooling water temperature of chillers (◦C), Tcws is the outlet cooling water temperature
of chillers (◦C), Twb is ambient wet-bulb temperature (◦C), and Fcw is the cooling water
flowrate (m3/h).

For each model, we randomly selected 80% of the collected data set for training and
20% of the data for testing, using MAPE (mean absolute percentage error) and CVRMSE
(the coefficient of variation of the root mean square error) as the error metrics to evaluate
the accuracy of the models. All models had a MAPE of less than 5% and CVRMSE of less
than 10%, which indicates that the accuracy of each model was within the acceptable range.

The controller controlled the on and off states of this equipment and the operating
frequency. An iterative process was as follows: Firstly, Tcws was obtained from the CL and
the switching state of the chiller model; then, Fcw was obtained by combining the operating
frequency and Tcws; finally, Tcwr was obtained by combining the cooling tower model with
Fcw and the Twet. All the parameters were iterated until Tcwr converged (i.e., the difference
of Tcwr between two successive iterations was less than 0.1 ◦C). If the Tcwr did not converge
within 50 iterations, the last result of Tcwr was adopted and the iteration was stopped [8].
The specific process is shown in Figure 4.

4.3. Data Collection

We used the data collected from the actual system to verify our proposed method. The
details of this actual system corresponded with our simulation environment.

We collected real data from 1 July 2021 to 10 October 2021, 102 days in total, where
the sample interval was half an hour. The CL is shown in Figure 5, and the wet-bulb
temperature is shown in Figure 6.
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As shown in Figures 5 and 6, the darker the color, the greater the value of CL and the
wet-bulb temperature (Twet). From Figure 5, we can find that the main cooling demand of
the system was concentrated between 6:00 and 23:00 every day.

5. Methodology
5.1. MDP Modeling

Using RL methods for control problem requires MDP modeling of the environment.
The details of the modeling are represented as follows:

(a) State
In this paper, we took the combination of ambient the wet-bulb temperature (Twet)
and system cooling load (CLsystem) as state. There were two reasons for using these
two variables:

(1) The operation of the system has no influence of these variables;
(2) CLsystem is a component factor of COP, which is related to the operation of

cooling water system.

(b) Action
In this paper, operating frequencies of cooling tower fans and cooling water pumps
were taken as the action (e.g., [pump_action : 35 hz, tower_action : 35 hz]). In addi-
tion, the action was discretized and the control accuracy was 1 hz. In order to protect
the equipment, the action needed to be limited within a reasonable range. We limited
the action frequency within [20, 50] for both the cooling tower and cooling water
pump, so there were 31 actions in total for each one.

(c) Reward
COP was taken as the reward in this paper. In the case of the same CLsysytem, the
higher the COP value is, the sum of power is the lowest, which reflects the purpose of
energy saving. The reward is shown in Equation (16).

Reward = COP =
CLsystem

∑ Pchillers + ∑ Ptowers + ∑ Ppumps
(16)

5.2. DF-DQN for Control

Figure 7 depicts the overall framework of DF-DQN for control in cooling water system.
Firstly, we labeled the collected state data, including cooling load and wet-bulb temperature,
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according to the a priori knowledge. The label was the running frequency of the equipment
more or less than the value of the base number under this state. If the operating frequency
of the equipment under this state was less than base number, the label was ‘0’; otherwise,
the label was ‘1’. The labeled state data were used to train the deep forest classification
model, of which 80% was used for training and 20% was used to test the accuracy of the
trained model.
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After training, the DF classification model can output a label for the new state, which
represents the relationship between the actual frequency of equipment operation and the
base number, and this label can be converted into a sign to shrink the action space thereafter.
Figure 8 gives more details.
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Secondly, we obtained the relationship between the actual frequency of the equipment
operation and base number under some states, namely the sign. We also needed the
difference between the operating frequency of the actual equipment and the base number.



Buildings 2022, 12, 1787 11 of 22

In this part, we trained DQN agent, which output an action a′t, the absolute value of the
difference between the true action and base number, namely ∆.

At last, according to the actual data we collected, the DF classifier output a positive
sign or negative sign (‘+’ & ‘−’), and DQN output ∆. Based on sign, ∆, and base number,
we could obtain the actual equipment running frequency, namely action at. The actual
action is calculated according to Equations (17) and (18).

Sign = DFclassi f ier(state) (17)

at = basenumber + Sign
(
a′t
)

(18)

where sign is output by DF, a′t is output by DQN in DF-DQN.

5.3. Theoretical Analysis of Shrink Action

The DF classifier labeled each state. It could replace the original action space with
a smaller action space combined with the label, so as to realize the reduction of the
action space.

Owing to the introduction of DF in DQN, the original action space of each equip-
ment was reduced from 31 to 16, so the original combined action pace was reduced from
31 × 31 to 16 × 16. Therefore, the action space of each equipment was reduced by nearly
half, while the combined action of the two equipment reduced the action space by nearly
3/4 with the increase in equipment types. The introduction of DF could make the combined
action space decrease exponentially. Figure 9 presents more details.

Buildings 2022, 12, x FOR PEER REVIEW 11 of 22 
 

difference between the operating frequency of the actual equipment and the base number. 
In this part, we trained DQN agent, which output an action 𝑎௧ᇱ , the absolute value of the 
difference between the true action and base number, namely ∆. 

At last, according to the actual data we collected, the DF classifier output a positive 
sign or negative sign (‘+’ & ‘−’), and DQN output ∆. Based on sign, ∆, and base number, 
we could obtain the actual equipment running frequency, namely action 𝑎௧. The actual 
action is calculated according to Equations (17) and (18). 𝑆𝑖𝑔𝑛 = 𝐷𝐹௖௟௔௦௦௜௙௜௘௥(𝑠𝑡𝑎𝑡𝑒) (17) 𝑎௧ = 𝑏𝑎𝑠𝑒௡௨௠௕௘௥ + 𝑆𝑖𝑔𝑛(𝑎௧ᇱ ) (18) 

where 𝑠𝑖𝑔𝑛 is output by DF, 𝑎௧ᇱ  is output by DQN in DF-DQN. 

5.3. Theoretical Analysis of Shrink Action 
The DF classifier labeled each state. It could replace the original action space with a 

smaller action space combined with the label, so as to realize the reduction of the action 
space. 

Owing to the introduction of DF in DQN, the original action space of each equipment 
was reduced from 31 to 16, so the original combined action pace was reduced from 31 × 
31 to 16 × 16. Therefore, the action space of each equipment was reduced by nearly half, 
while the combined action of the two equipment reduced the action space by nearly 3/4 
with the increase in equipment types. The introduction of DF could make the combined 
action space decrease exponentially. Figure 9 presents more details. 

 
Figure 9. DF reduce action space. 

Theoretically, if DF can divide each action into M categories with the same number, 
and the final combined actions include N kinds, the reduced action space of DF-DQN can 
follow Equation (19). (𝐴𝑐𝑡𝑖𝑜𝑛 𝑠𝑝𝑎𝑐𝑒)஽ிି஽ொே𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑎𝑐𝑡𝑖𝑜𝑛 𝑠𝑝𝑎𝑐𝑒  ൎ ൬ 1𝑀൰ே

 (19) 

Based on the above analysis, when dealing with the problem with large action space 
or multiple action combinations, DF can significantly shrink the scale of the original action 
space, which can reduce the complexity of the problem to a certain extent finally. 

In this paper, 𝑀 =  2, 𝑁 =  2, so the combined action of the two equipment was 
shrunk into about 1/4 of the original action space. 

Figure 9. DF reduce action space.

Theoretically, if DF can divide each action into M categories with the same number,
and the final combined actions include N kinds, the reduced action space of DF-DQN can
follow Equation (19).

(Action space)DF−DQN

Original action space
≈
(

1
M

)N
(19)

Based on the above analysis, when dealing with the problem with large action space
or multiple action combinations, DF can significantly shrink the scale of the original action
space, which can reduce the complexity of the problem to a certain extent finally.

In this paper, M = 2, N = 2, so the combined action of the two equipment was shrunk
into about 1/4 of the original action space.

5.4. DF-DQN Algorithm

The details of DF-DQN for the cooling water system is shown in Algorithm 1.
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Algorithm 1. DF-DQN for cooling water system

Initialize replay memory D to capacity N
Initialize action value function Q with random weights θ

Detect and replace outliers in training set
Split the training set (80% for training, 20% for testing)
Train the deep forest classifier F
For episode = 1, M do

Attain initial state st of the cooling water system
For t = 1, T do

Select a random action a′t with probability ε, otherwise a′t = maxQ(st, a; θ)
Attain positive or negative sign through F
Combine base number, sign (‘+’ or ‘−’), a′t to derive at (the true running frequency of cooling

water system)
Execute action at in cooling water system
Observe reward rt and state st+1 from the simulation system
Store transition (st, a′t, rt, st+1) in D
Sample random minibatch of transitions (sj, a′j, rj, sj+1) from D

Set yj =

{
rj f or terminal state st+1

rj + γmax
a′

Q
(

sj+1, a′; θ
)

otherwise

Update Q function using
(

yi −Q
(

sj, aj; θ
))2

Copy parameters every J steps
Update state st ← st+1

End for
End for

6. Experiment and Result

To verify the performance of DF-DQN, we compared it with three other benchmark
methods. In addition, we presented some experiments about the effect of DF accuracy on
the performance of DF-DQN.

6.1. Compare Methods

1. DF-DQN: DF-DQN is the method we proposed before [25], which has been used to
solve prediction problem. We extended DF-DQN to control problems in this paper;

2. DQN: In this paper, DQN and DF-DQN share the same parameter settings in the
DQN part. For the cooling water system, the action space was small and discrete, and
its state space was large enough, so usually DQN can provide a good control policy
according to paper [24];

3. Baseline control: The PID control was selected as the baseline method, which is
often used in real HVAC control applications. This method selects the action by
approaching the difference between Tcws and Tcwr. We took the baseline control
method for comparison because it is the original control method in this system;

4. Model-based control: The model-based control is the best method among all methods,
and can select the best action in each situation, but this method is heavily dependent
on the model. In this paper, we traversed the best action in each state as the model-
based control. Actually, it is often impossible to deploy the model-based control
method in real applications, but in this paper, based on our simulation model, the
model-based control method provided the best policy. We used the model-based
control method for comparison because it has the best control performance of all
methods in this system.

6.2. Parameters Setting

We used DF-DQN and three other methods to control this system for comparison,
including DQN, a baseline control, and a model-based control.
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The agent in DF-DQN took the ε− greedy policy to select the action. At the beginning,
we ensured the agent could explore the environment as much as possible, so we set
εinital = 1. We used a liner decay during the process, and set ∆ε = 0.0001, εmin = 0.01.
In order to make the agent take more focus on the current COP, we set γ = 0.01. The
agent’s policy network and target network were both composed of two hidden layers. The
minibatch was set to 32. The capacity of memory pooling (Memorycapacity) was set to 1000,
and we set Cstep (Copy steps) to 100, Cstep = 100. The learning rate was set to 0.01, α = 0.01.
All parameters are shown in Table 1.

Table 1. Parameters of DF-DQN and DQN.

Parameters Value

εinital 1
∆ε 0.0001

εmin 0.01
γ 0.01

Memorycapacity 1000
Cstep 100

α 0.01

In this system, the equipment contained chillers, cooling water pumps, and cooling
towers. We used RL to control the cooling water pumps and cooling towers. As for the
chillers, we used a sequence control [26] to reduce unnecessary refrigerating capacity, which
can protect chillers at the same time. The workflow of this system is shown in Appendix A.

6.3. Experimental Result

In this paper, we used the model-based control to attain the best action in each state,
so that we could attain the label of the cooling water pump and cooling tower’s action
under each state. We used DF for two classifications to judge whether the frequency of
the cooling water pump and cooling tower was more or less than the base number in each
state. If it was more than the base number, we labeled it as 1 (represent ‘+’); otherwise, we
labeled it as 0 (represent ‘−’). The accuracy of DF can reach 97.319% and 99.694%. DF-DQN
combined DF and DQN, where DF output sign ‘+’ or ‘−’, and DQN of DF-DQN output
∆, and then we combined them with base number to attain the final action of the cooling
water pump and cooling tower.

Cumulative reward in an episode was taken to prove the convergence of DF-DQN.
With the increase in episode, when the value of cumulative reward fluctuated less, we
believe that the method converged. One of the comparison methods, DQN, also used the
same method. The reward was defined by Equation (16), namely COP, and the higher
reward not only conveyed that it had better converge, but also represented that the method
had better energy-saving performance.

We explain the experimental results from two aspects: one is the influence of DF’s
accuracy on DF-DQN, and the other is control performance of DF-DQN.

6.3.1. Influence of DF’s Accuracy on DF-DQN

The accuracy of DF affected the performance of DF-DQN. In order to better explain
the influence of DF accuracy on the performance of DF-DQN, we made a test with a low
accuracy case. We used DF-DQN (false label) and DF-DQN to control the system for
20 years in our simulation environment. We randomly generated labels to replace the
original labels that DF generated, so that we could analyze the impact of DF accuracy on
the performance of DF-DQN. The accuracy of the randomly generated labels was 50% of
the original labels. We compared the experimental results of DF-DQN (false label) with the
DF-DQN from three aspects: COP, cumulative power, and energy-saving effect.
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Before comparison, we needed to ensure that both methods could converge. The
convergence of the two methods is shown in Figure 10, where one episode in the training
process is one year.
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DF-DQN (false label) and DF-DQN both converged at last. Although the wrong label
was used, DQN still learned the control policy under the wrong labels and converged.
However, the cumulative reward of DF-DQN was higher than that of DF-DQN (false label)
on the whole, which also reflected the better performance of DF-DQN. In addition, the
performance of DF-DQN (false label) decreased a lot due to the false labels.

As shown in Figure 11, the COP of DF-DQN (false label) was lower than that of
DF-DQN in 20 years, which indicates that the control performance of DF-DQN (false label)
was worse than that of DF-DQN in each year, and the energy-saving effect decreased
accordingly, which also can be found in the cumulative power comparison in Figure 12.
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We compared the energy-saving effect of these two methods, and used the baseline
control method of the system as a benchmark. The partial energy-saving effect comparison
can be found in Table 2.

Table 2. Partial energy-saving effect comparison result.

Energy Saving (Compared to Baseline Control)

Year DF-DQN DF-DQN (False Label)

1st 8.074% −10.022%
2nd 11.337% −8.037%
3rd 10.086% −4.224%
5th 11.157% −5.191%

10th 11.580% −1.934%
15th 12.168% −3.754%
20th 10.177% −4.094%

Average (20 years) 11.035% −4.104%

Regardless of the comparison of COP, the cumulative power, or the energy-saving
effect, DF-DQN (false label) was worse than DF-DQN. The direct reason for this result was
the wrong labels. From the comparison result, we found that the accuracy of DF directly
affected the performance of DF-DQN, and the low accuracy of DF led to a decrease in the
performance of DF-DQN. Therefore, for DF-DQN control in this problem, it was crucial to
improve the accuracy of DF as much as possible.

6.3.2. Performance of DF-DQN Compared with DQN, Baseline Control, and
Model-Based Control

DF-DQN and DQN both converged at last, but in the beginning episodes, DF-DQN
achieved a higher cumulative reward. The difference between DF-DQN and DQN can be
found in Figure 13 more clearly.
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As shown in Figure 13, the cumulative reward of DF-DQN was much greater than that
of DQN before the fifth episode, which reflects that the control performance of DF-DQN
was much better than DQN in the early stage. After the fifth episode, DQN outperformed
DF-DQN, which was due to the accuracy of DF. However, the performance of DF-DQN
was almost approaching DQN.

In order to compare the performance of the baseline control method, DQN, DF-DQN,
and the model-based control method, we used them to control the system for 20 years in
our simulation environment. We compared their performance in three aspects: the COP,
the cumulative power, and the energy-saving effect.

(a) COP

The COP is shown in Figure 14. The model-based control method was the best method
among these methods in theory, and its COP was the highest in practice. The baseline
control method is a relatively poor control method compared with others, and its COP was
the lowest in most of the years.
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From Figure 14, we found that the COP obtained by DQN and DF-DQN was gradually
becoming higher, indicating that their energy-saving effect was gradually becoming better,
which is just as we have mentioned before, and the higher system COP, the better the
energy-saving performance. The distribution of COP in the first year reflects that the
control effect of DQN was much worse than that of DF-DQN, but it gradually became
better in the later years. The COP reflected its better energy-saving performance to a certain
extent, but not absolutely. In addition, the minimum COP obtained by DQN and DF-DQN
was relatively small, which was due to the poorly selected actions in a few states.

As for DQN, its COP was less than the baseline control method in the first year, and
the distribution of COP in the first year was also relatively scattered, but in the second
year, the distribution of COP became concentrated, and its COP was more than the baseline
control method, which meant that DQN’s control performance became better in the second
year. Finally, DQN’s COP became stable, which means that the control policy of DQN was
becoming stable and convergent.

In contrast with DQN, DF-DQN’s COP was between the baseline control method and
model-based control method from the first year and this trend remained in the following 20
years, which reflected that DF-DQN can obtain a better control effect from the beginning,
and the control effect was better than DQN in the early stage. Moreover, the performance
of DF-DQN was more stable than DQN in 20 years.

The performance of DQN was not good in the early stage, and its COP was not
between the baseline control method and model-based control method until the policy
converged. In contrast, DF-DQN met this condition not only after the convergence of the
control policy, but also from the very beginning, which reflected that DF-DQN converged
faster than DQN, and had a better performance than DQN in the early stage.

(b) Cumulative power

In order to intuitively analyze the energy-saving effect of these four methods, we
compared the annual cumulative power under these four methods’ control policies, and
the comparison results are shown in Figure 15.
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In Figure 15, the model-based control method had the lowest cumulative power,
which is consistent with the intuition. The baseline control method had a relatively poor
energy-saving effect, and its cumulative power was relatively more than others.

The magnitude of DQN’s cumulative power was larger than that of the model-based
control method and less than the baseline control method from the third year. In Figure 14,
though DQN’s COP was more than the baseline control method in the second year, its
cumulative power was still more than the baseline control method. In Figure 15, the
cumulative power of DQN in the second year was less than that in the first year, and it
continued to decrease until the fourth year, and then remained stable. As we mentioned in
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the previous part, the lower COP did not absolutely mean a better energy-saving effect, but
from the experimental results, we found that the second year’s policy was better than the
first year’s, which is also be conveyed in Figure 15.

DF-DQN’s cumulative power was much lower than the baseline control method from
the first year, and this trend continued to decrease until the second year and then remained
stable. In addition, DF-DQN’s cumulative power was also much less than DQN’s in the
first three years, and after that, it almost approached DQN. It is obvious that DF-DQN
can not only achieve a good energy-saving effect, but can also save energy from an early
stage. Compared with DQN, the energy-saving effect of DF-DQN in the early stage was
much better.

(c) Energy saving

Taking the baseline control method as the benchmark, we compared the other three
methods’ energy-saving effects in each year. The partial comparison results are represented
in Table 3, and the complete comparison results are shown in Appendix B.

Table 3. Partial comparison effect results.

Energy Saving (Compared to Baseline Control)

Year DQN DF-DQN Model-Based
Control

1st −29.996% 8.074% 13.755%
2nd −9.843% 11.337% 13.755%
3rd 0.798% 10.086% 13.755%
5th 12.195% 11.157% 13.755%

10th 11.908% 11.580% 13.755%
15th 11.461% 12.168% 13.755%
20th 12.094% 10.177% 13.755%

Average (20 years) 7.972% 11.035% 13.755%

There is no doubt that the model-based control method had the best energy-saving
effect, reaching 13.775%. The energy-saving effect of DQN and DF-DQN both had a growth
process before the convergence.

According to the experimental results, DQN could not achieve the goal of energy
saving until the third year. In particular, in the first year, its energy-saving effect was
29.996% worse than the baseline control method. In the second year, DQN’s saving effect
became much better than the first year, but was still 9.843% worse than the baseline control.
Until the third year, DQN’s saving effect was 0.798% better than the baseline control
method, and began to remain stable from the fourth year, and was able to achieve a 10–12%
energy-saving effect each year. DQN’s energy-saving effect was not good in the early
stage, but it became better and better with training. After 20 years control, its average
energy-saving effect reaches 7.972%.

In contrast, DF-DQN could achieve the goal of energy saving from the first year, and
remained with a 10–11% energy-saving effect. In the first year, it could achieve 8.074%
better than the baseline control method, and kept becoming better in the second year,
reaching 11.337%. After 20 years of the control, its average energy-saving effect reached
about 11.035%.

DQN may have a better energy-saving effect in the later years, but it has to explore
the environment before converging, which led to its worse performance in the early stage.
Considering of the service life of the equipment, DF-DQN may have a better energy-saving
effect than DQN in general, and our experimental results also proved this.

7. Conclusions and Future Work

In this paper, we extended DF-DQN from the prediction problem to the control
problem, which was used to achieve the goal of energy saving with respect to the cooling
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water system control in HVAC. We compare its performance with DQN, baseline control
method and the model-based control method. The experimental results show that since
the a priori knowledge was introduced as a deep forest classifier, DF-DQN’s action space
could be mapped to a smaller one. DF-DQN did not need to spend a lot of on exploring the
environment, so it converged much faster than DQN, which is the main reason that DF-
DQN shows a better performance in the early stage compared to DQN. In the latter stage,
the performance of DF-DQN was always slightly worse than DQN, and the reason is that
the DF classifier may have output some wrong labels in a few states, which directly affected
the result and DF-DQN’s performance. Compared with the model-based control method,
DF-DQN performed slightly worse in saving energy, but it did not require any complete
system model, thus avoiding the unnecessary cost of modeling, which was valuable in the
engineering practice.

DF-DQN had obvious energy-saving effects in the early stage and the overall energy-
saving effect was also good, but its performance was directly affected by DF, which relied
on historical data or expert experience. Thus, it is particularly important to train a DF clas-
sifier with excellent performance. DF-DQN has a good energy-saving effect in engineering
applications, and is more practical than traditional RL methods, but it is not suitable for
systems lacking historical data or expert experience. In addition, in this paper, we only
considered two controllable equipment, but if more equipment need to be controlled, for
example, more than 10 equipment, the performance of DF-DQN might decrease, which is
limited by the DQN. Thus, for the future works, we will focus on following two aspects:
(1) improving the accuracy of DF classifier or constructing a new classifier with higher
accuracy, which could improve the final control performance in the current DF-DQN frame-
work. (2) When more equipment of different types is involved, multi-agent reinforcement
learning method can be adopted into the DF-DQN framework.
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Appendix A

The workflow of this system:
The workflow can be described as following steps:

A. In time step t, the agent observes the state st, and decides to turn the system on or
off according to CL. This process is shown in the right-hand part of Figure A1. The
details of this process are shown below:

https://github.com/H-Phoebe/DF-DQN-for-energy-saving-control
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(1) If CL is less than 20% of the chiller cooling capacity (CC) that one chiller can
offer, the system will be turned off;

(2) If CL is more than 20% of the rated refrigerating capacity that one chiller can
offer and less than the refrigerating capacity that all the chillers can offer,
namely 4 × CC, we will turn on the system, and the number of chillers is
decided by the minimum x, which can make x × CC ≥ CL, and x is the
number of chillers we turn on. x can be calculated by Equation (A1).

x = CL // CC + 1 (A1)

where “//” represents exact division. No matter how many chillers we turn
on, the CL assigned to each chiller is the same. As for cooling water pumps
and the cooling towers, we turn on 2 and 4, respectively.

(3) If CL is more than 4 × CC, we turn on all the chillers, cooling water pumps,
and cooling towers, namely 4, 3, 7, respectively.

B. We use the DF-DQN controller to control cooling water pumps and cooling towers, select
the frequency of them, and combine them into an action (pump_action, tower_action).
The system COP, reward in RL, can be observed after executing the action. The action
is selected by ε− greedy policy;

C. Then we train our DF-DQN agent;
D. Transfer to next state st+1;
E. End the current learning and move to step (A).

Appendix B

The energy-saving effects obtained by all methods in this paper are shown in Table A1.

Table A1. Energy-saving effect of each method compared with baseline control.

Energy Saving (Compared to Baseline Control)

Year DQN DF-DQN DF-DQN (False Label) Model-Based Control

1st −29.996% 8.074% −10.022% 13.755%
2nd −9.843% 11.337% −8.037% 13.755%
3rd 0.798% 10.086% −4.224% 13.755%
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Table A1. Cont.

Energy Saving (Compared to Baseline Control)

Year DQN DF-DQN DF-DQN (False Label) Model-Based Control

4th 11.362% 11.273% −5.659% 13.755%
5th 12.195% 11.157% −5.191% 13.755%
6th 11.752% 11.677% −2.374% 13.755%
7th 11.879% 11.480% −3.465% 13.755%
8th 12.503% 11.578% −2.349% 13.755%
9th 8.957% 11.757% −3.350% 13.755%
10th 11.908% 11.580% −1.934% 13.755%
11th 12.440% 11.636% −2.274% 13.755%
12th 11.195% 10.299% −2.866% 13.755%
13th 11.763% 10.879% −2.266% 13.755%
14th 10.893% 10.311% −3.364% 13.755%
15th 11.461% 12.168% −3.754% 13.755%
16th 12.042% 11.855% −2.420% 13.755%
17th 10.967% 11.850% −7.476% 13.755%
18th 12.583% 10.639% −3.268% 13.755%
19th 12.490% 10.893% −3.704% 13.755%
20th 12.094% 10.177% −4.094% 13.755%

Average 7.972% 11.035% −4.104% 13.755%
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