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Abstract: The cold-formed steel (CFS) double-lipped equal-leg angle is widely used in modular
container houses and cold-formed steel buildings. To study the buckling behavior and bearing
capacity design method of the cold-formed steel (CFS) double-lipped equal-leg angle under axial
compression, 24 CFS double-lipped equal-leg angles with different sections and slenderness ratios the
axial compression were conducted. The test results showed that the distortional buckling occurs for
specimens with a small width-to-thickness ratio and small slenderness ratio. The buckling interactive
with distortional and global flexural buckling was observed for the specimens with small width-to-
thickness ratios and large slenderness ratios. The specimens with large width-to-thickness ratios
and small slenderness ratios showed interactive buckling with local and distortion buckling. The
specimens with large width-to-thickness ratios and large slenderness ratio developed interactive
buckling with local, distortional, and global flexural buckling. The finite element model established
by ABAQUS software was used to simulate and analyze the test. The buckling modes and the
load-carrying capacities analyzed by the finite element model agreed with the test results, which
showed that the developed finite element model was feasible to analyze the buckling and bearing
capacity of the CFS double-lipped equal-leg angles. The experimental results were compared with
those calculated by the direct strength method in the North American standard and the effective
width method in the Chinese standard. The comparisons indicated that the calculated results are
very conservative with maximum value 36% and 51% for direct strength method and effective width
method, respectively. The coefficient of variation was 0.276 and 0.397, respectively. Finally, the
modified direct strength method and the modified effective width method were proposed based on
the experimental results. The comparison on the ultimate strength between test results and calculated
results by using the modified method showed a good agreement. The modified method can be as a
proposed desigh method for the ultimate strength of the CFS double-lipped equal-leg angles under
axial compression.

Keywords: double-lipped equal-leg steel angle; axial compression; distortional buckling; global
buckling; effective width method; direct strength method

1. Introduction

Cold-formed thin-walled steel members have been widely used in construction houses
because of their high stiffness and strength, lightweight, and convenient machine and
construction. The buckling behaviors and design methods of cold-formed thin-walled steel
channel sections with or without holes have been studied by many researchers [1–9]. In
recent years, with the cold-formed steel sections becoming common as structural members,
the cold-formed thin-walled steel double-lipped equal-leg angles as a primary structural
member have been widely used in tower structures, truss structures, and cold-formed steel
buildings [10,11]. Although the double-lipped equal-leg angle cross-section is simple, the

Buildings 2022, 12, 1775. https://doi.org/10.3390/buildings12111775 https://www.mdpi.com/journal/buildings

https://doi.org/10.3390/buildings12111775
https://doi.org/10.3390/buildings12111775
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/buildings
https://www.mdpi.com
https://doi.org/10.3390/buildings12111775
https://www.mdpi.com/journal/buildings
https://www.mdpi.com/article/10.3390/buildings12111775?type=check_update&version=1


Buildings 2022, 12, 1775 2 of 17

centroid and shear center is inconsistent, the width-thickness ratio of the plate is large,
and a partially stiffened element is present. The buckling mode and the effect on ultimate
strength are complex. The double-lipped equal-leg angle cross-section is easy to buckle
with local buckling, distortional buckling, and global buckling, which can affect the steel
angle’s ultimate strength.

Al-Sayed et al. [12] performed the buckling tests of the fixed-ended equal leg and
unequal leg angles under axial compression. The test and calculated results showed that
the specimens with flexural–torsional buckling in the inelastic range were conservative.
The experimental results are 10% higher than the theoretical results. Popovic et al. [13] and
Young [14] conducted axial compression tests on cold-formed plain angles. Based on the
test and specification calculations, they suggested ignoring the flexural–torsional buckling
but only considering the flexural buckling. The buckling analysis on the cold-formed angles
under axial compression conducted by Chodraui et al. Based on the finite strip method,
indicated that the local buckling of elements and global torsional buckling of members was
consistent [15]. Landesmann et al. [16], Silvestre et al. [17], and Dinis et al. [18] proposed a
new design method for the short to medium-length equal leg angle under axial compression
based on the direct strength method through the buckling test and finite element analysis.
The flexural–torsional buckling performance and the load-carrying capacities of the S690
high-strength angle steel column were studied by Zhang et al. based on an experiment and
numerical analysis [19]. The predicted results showed that most design codes were too
conservative. The modified design method based on the direct strength method considered
the interaction of flexural–torsional buckling about the strong axis and flexural buckling
about the weak axis. Zhang et al. [20] and Wang et al. [21] conducted experimental and
numerical studies on S690 and S960 high-strength short equal leg angles. The studies
showed that Australian and North American specifications were too conservative. Dinis
et al. [22] presented the design method based on the direct strength method for the bearing
capacity of short-to-medium length pin-ended hot-rolled steel equal-leg angle columns
based on the test results. The experiments about cold-formed lipped angle columns were
conducted by Young [23]. The specimens showed the local, flexural, and flexural–torsional
buckling and the interactive buckling of these buckling modes.

The calculated results indicated that the North American and Australian codes were
conservative. Young and Ellobody [24] conducted finite element analysis on the buckling
performance of lipped angles under axial compression. It indicated that the Australian and
North American codes were conservative in calculating the ultimate strength of members
with a relatively large width-thickness ratio. However, it was not safe to calculate the ulti-
mate strength of members with a small width-thickness ratio. Shifferaw et al. [25] conducted
theoretical and finite element research on the global buckling performance offixed-ended
cold-formed thin-walled lipped angle columns. It was shown that the members exhibited
significant post-buckling strength when they were subjected to global flexural–torsional
buckling. Therefore, a direct strength method was proposed to consider the post-buckling
strength of cold-formed thin-wall-lipped angle columns. An axial compression test was
conducted on 12 cold-formed thin-walled steel columns with unequal leg angle sections by
Zhou et al. [26]. The results showed that the direct strength method in the North Ameri-
can code is not accurate, and the modification for the calculation formula of the ultimate
strength based on the direct strength method was given. Ananthi et al. [27] validated the
FE model against the experimental test results, which showed good agreement regarding
failure loads and deformed shapes at failure.

The studies above-mentioned were focus on the equal-leg angle with or without
lips. The buckling behavior and design method of the cold-formed thin-walled double-
lipped equal-leg angles have not enough investigated. This paper studied the buckling
behavior and ultimate strength of 24 cold-formed double-lipped equal-leg angles under
axial compression. The analysis model of cold-formed thin-walled double-lipped equal-leg
angles under axial compression is developed by using finite element software. Based on
the test results and the predicted results using the direct strength method and the effective
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width method, a modified method for calculating the load-carrying capacities of cold-
formed thin-walled double-lipped equal-leg angles under axial compression was proposed.

2. Experimental Program
2.1. Specimen Design

Axial compression test was carried out on 24 cold-formed thin-walled steel double-
lipped equal-leg angles. The cross-section and the geometric parameters of the double-
lipped equal-leg angle are shown in Figure 1. The nominal section dimensions are shown
in Table 1,where a1 and a2 are the widths of two legs, respectively, b1 and b2 are the widths
of the first lips, respectively, c1 and c2 are the widths of the second lips, respectively, and t
is the thickness of the section.The length of specimens included 400 mm, 900 mm, 1500 mm,
and 2100 mm.The numbering rules of specimens are shown in Figure 2. For example,
DLA6020-400-1 defines the specimen as follows: DLA means double-lipped equal-leg
angle; 60 indicates that the nominal width of the leg is 60 mm; 20 represents that the width
of the first lip is 20 mm; 400 represents the length of the specimen is 400 mm; 1 means the
sequence number of the same specimen. The measured cross-section dimensions and the
lengths of all specimens are given in Table 2.
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Table 1. Nominal section dimensions of the double-lipped equal-leg angle.

Cross-Section a1/mm a2/mm b1/mm b2/mm c1/mm c2/mm t/mm

DLA6020 60 60 20 20 10 10 2
DLA9020 90 60 20 20 10 10 2

DLA12024 120 120 24 24 10 10 2
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Table 2. The measured sectional dimensions of the specimens.

Specimen a1/mm a2/mm b1/mm b2/mm c1mm c2/mm t/mm L/mm

DLA6020-400-1 61.62 61.54 20.95 20.99 11.63 11.48 1.97 400.00
DLA6020-400-2 61.27 61.59 21.46 21.31 11.35 10.47 1.97 400.00
DLA6020-900-1 61.02 60.71 21.33 20.73 10.32 10.84 1.97 900.00
DLA6020-900-2 61.64 61.52 21.36 21.35 10.84 10.99 1.96 900.00
DLA6020-1500-1 62.20 62.08 21.75 21.90 10.70 10.20 1.97 1500.00
DLA6020-1500-2 61.71 62.00 21.35 21.74 11.28 11.43 1.98 1500.00
DLA6020-2100-1 61.74 61.71 22.37 21.88 10.84 11.22 1.97 2100.00
DLA6020-2100-2 61.44 61.33 21.37 22.29 10.52 11.95 1.96 2101.00
DLA9020-400-1 91.56 91.72 21.77 21.79 10.78 10.17 1.96 400.00
DLA9020-400-2 91.57 91.29 21.88 21.50 11.32 10.27 1.97 400.00
DLA9020-900-1 91.65 91.97 21.34 20.88 11.59 10.10 1.98 900.00
DLA9020-900-2 91.70 91.72 22.15 20.85 10.27 10.62 1.97 900.00
DLA9020-1500-1 92.16 91.42 21.18 21.21 10.90 10.43 1.98 1499.50
DLA9020-1500-2 92.86 92.57 21.70 21.02 11.12 11.09 1.99 1499.50
DLA9020-2100-1 91.77 91.72 21.29 21.97 10.49 10.70 1.96 2101.10
DLA9020-2100-2 92.58 91.84 20.79 21.03 10.82 10.88 2.00 2101.50
DLA12024-400-1 120.15 121.40 25.60 25.72 12.85 13.06 1.98 400.00
DLA12024-400-2 120.61 122.35 25.86 25.29 12.95 13.04 1.98 400.67
DLA12024-900-1 122.29 121.34 24.89 25.08 13.02 12.23 1.98 900.00
DLA12024-900-2 120.64 121.85 25.80 25.40 12.11 13.31 1.98 900.00

DLA12024-1500-1 121.55 121.29 25.16 25.72 12.42 12.46 1.97 1499.90
DLA12024-1500-2 121.44 121.68 25.37 25.69 12.54 12.73 1.97 1499.10
DLA12024-2100-1 122.31 121.93 25.65 25.14 13.92 12.11 1.98 2101.10
DLA12024-2100-2 122.32 120.99 25.47 24.98 12.62 13.40 1.98 2101.10

2.2. Material Properties

The zinc-coated steel plate with grade Q550 was used to manufacture the cold-formed
steel double-lipped equal-leg angles. Three standard coupon specimens cut at the legs of
the specimen were tested to obtain the material properties of the specimens in a 30 kN
MTS testing machine based on the Chinese code “Tensile tests of metallic materials Part 1:
test methods at room temperature” (GB/T228.1-2010) [28]. The material properties were
determined from the stress–strain curves of the coupon specimens. The stress–strain curves
of three standard coupon specimens are shown in Figure 3. The average results of the
material properties, including the yield strength, the tensile strength, the elastic modulus,
and the elongation of the steel obtained from the coupon tests are 403 MPa, 523 MPa,
2.11 × 105 MPa, and 0.27.
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2.3. Initial Imperfection

The initial imperfection is produced in the manufacturing, transportation, and fabrica-
tion of cold-formed steel double-lipped equal-leg angles. The initial imperfections greatly
influencethe buckling mode and ultimate capacities of double-lipped equal-leg angles.
Therefore, all the specimens’ initial geometric imperfections were measured, including
the local, distortion, and global imperfections. The measuring positions are shown in
Figures 4 and 5. In Figure 4, the initial global buckling imperfection about the weak axis
and the initial distortional buckling imperfection of the specimensare measured at positions
1, 2, 3, 4, and 5, respectively. Positions 6, 7, and 8 in Figure 5 measure the initial local
buckling imperfection.The measurements of the initial imperfectionsare shown in Figure 6.
The numbers of measurements are 11, 10, 11, and 15 along the longitudinal direction for
the specimens with lengths of 400 mm, 900 mm, 1500 mm, and 2100 mm, respectively.
Three sections at 1/2 span and 1/4 span of the specimens are selected to measure the local
initialimperfections along the longitudinal direction, and the distance of the measured
positions at each cross-section is 10 mm.
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The measurement values of initial imperfections for some specimens are shown in
Figure 7. It can be seen from Figure 7 that the maximum value of initial distortionalbuckling
imperfection is greater than the maximum values of initial local buckling imperfection and
initial global buckling imperfection. The distributions of initial geometric imperfections
of other specimens are similar, and all maximum values of the initial imperfectionsof the
specimens are less than L/1000.
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2.4. Test Setup and Procedure

All the double-lipped equal-leg angles were axially compressed using a steel frame
system and a 500 kN servo-controlled hydraulic testing machine, as shown in Figure 8. The
specimens were placed directly in the groove of the top bearing plate connected with the
actuator and the bottom bearing plate. The geometric center of the specimen coincided
with the geometric center of the upper loading plate and lower plate. The LVDTs (linear
variable displacement transducers) were set up at the mid-section of specimens, as shown
in Figure 9 D1, D2, D3, and D4. The distances of all LVDTs to the edge of the plate of
double-lipped equal-leg angle were 10 mm. A displacement transducer was arranged at
the top bearing plate to obtain the vertical displacement of the specimen. The YG16 static
strain displacement acquisition system automatically collected the load and displacements
of the specimen.
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3. Test Results
3.1. Failure Modes

The buckling modes of all double-lipped equal-leg angles are shown in Table 3, where
L, D, and F represent local buckling, distorted buckling, and global flexural buckling.It
can be seen from Table 3 that the distortional buckling occurred for specimens with a
small width-thickness ratio and small slenderness ratio. In contrast, the distortional and
global flexural buckling occurred for specimens with a small width-to-thickness ratio and
large slenderness ratio. For the specimens with a large width-to-thickness ratio and small
slenderness ratio, the interactive buckling of local and distortional buckling was discovered.
In contrast, the interactive buckling of local, distortional, and global flexural buckling was
found for the specimens with a large width ratio and large slenderness ratio.

Table 3. Comparison of buckling modes and ultimate strengths between test and finite element analysis.

Specimens

Experiment Finite Element Analysis

Pm/PtPt/kN Buckling
Mode Pm/kN Buckling

Mode

DLA6020-400-1 106.00 D 107.62 D 1.02
DLA6020-400-2 113.00 D 110.69 D 0.98
DLA6020-900-1 100.10 D + F 99.74 D + F 1.00
DLA6020-900-2 92.50 D + F 95.36 D + F 1.03

DLA6020-1500-1 73.60 D + F 72.11 D + F 0.98
DLA6020-1500-2 69.10 D + F 70.49 D + F 1.02
DLA6020-2100-1 46.90 D + F 46.56 D + F 0.99
DLA6020-2100-2 44.30 D + F 45.71 D + F 1.03
DLA9020-400-1 139.90 L + D 140.02 L + D 1.00
DLA9020-400-2 139.50 L + D 138.84 L + D 1.00
DLA9020-900-1 119.90 D + F + L 120.49 D + F + L 1.00
DLA9020-900-2 127.60 D + F + L 129.24 D + F + L 1.01

DLA9020-1500-1 62.00 D + F + L 65.50 D + F + L 1.06
DLA9020-1500-2 76.10 D + F + L 75.96 D + F + L 1.00
DLA9020-2100-1 56.20 D + F + L 57.00 D + F + L 1.01
DLA9020-2100-2 48.70 D + F + L 47.96 D + F + L 0.98
DLA 12024-400-1 165.89 D + F + L 164.70 D + F + L 1.01
DLA 12024-400-2 164.69 D + F + L 165.10 D + F + L 1.00
DLA 12024-900-1 143.14 D + F + L 148.10 D + F + L 0.97
DLA 12024-900-2 145.24 D + F + L 147.90 D + F + L 0.98

DLA 12024-1500-1 127.76 D + F + L 130.20 D + F + L 0.98
DLA 12024-1500-2 120.44 D + F + L 124.70 D + F + L 0.97
DLA 12024-2100-1 95.75 D + F + L 101.00 D + F + L 0.95
DLA 12024-2100-2 96.64 D + F + L 99.10 D + F + L 0.98
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3.1.1. The Short Angle Columns

The buckling processes of the short double-lipped equal-leg angles with a length of
400 mm are shown in Figure 10. The deformation was not evident at the initial loading
stage. With the load increase, the specimens DLA9020 series with a large width-to-thickness
ratio appeared the local buckling (Figure 10a). When the load was continued, distortional
buckling was observed. The angle deformation between the two legs became larger
(Figure 10b). When the ultimate bearing capacity is reached, the specimen fails.
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Distortional buckling. Figure 10. Buckling mode of short angle column with a length of 400 mm. (a) Local buckling.
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3.1.2. The Medium-to-Long Angle Columns

The buckling process of medium-to-long double-lipped equal-leg angles is shown in
Figures 11–13. At the initial loading stage, the deformation was not apparent. With the
load increase, the legs of specimen DLA9020 series with a large width-to-thickness ratio
appeared the local buckling (Figures 11a, 12a and 13a). When the loading was continued,
the specimens appeared distortional buckling (Figures 11b, 12b and 13b) for the specimen
DLA9020 series and specimen DLA6020 series. When the load reached the ultimate bearing
capacity, the specimen DLA9020 series and specimen DLA6020 series failed with global
flexural buckling. Thus, the interaction of distortional buckling and global flexural buckling
occurred for specimen DLA6020 series, while the specimen DLA9020 series showed the
interaction of local, distortional, and global flexural buckling.
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3.2. Test Strengths and Curves

The ultimate capacities of all double-lip equal-leg angles under axial compression are
shown in Table 3, where Pt is the test load-carrying capacity. It can be seen from Table 3
that the axial load-carrying capabilities of the double-lip equal-leg angles decrease with the
increase in length.

The load-displacement curves of the specimens DLA6020 series are shown in
Figure 14a–d. It can be seen from Figure 14 that for specimens DLA6020-400 (Figure 14a)
and DLA6020-900 (Figure 14b), the stiffnesses were unchanged at the initial loading stage,
and the curves showed linear growth. A nonlinear segment appeared with the increase
in load, and the load decreased slowly after reaching the maximum load. For specimens
DLA6020-1500 (Figure 14c) and DLA6020-2100 (Figure 14d), the curves increased linearly
before the maximum load. The curves entered the nonlinear stage with the occurrence of
flexural buckling approaching the maximum load. Then, the load dropped sharply after
reaching the ultimate load, and the specimen failed.

The comparison on the average load displacement curves for the same sections with
different length are depicted in Figure 14e–g for section DLA6020, DLA9020, and DLA12024.
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It can found that the stiffness and ultimate strength of cold-formed double-lips equal-leg
angles decrease with the increasing of length of the axial members.
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displacement curve. (g) DLA12024 average load displacement curve.
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4. Finite Element Analysis
4.1. Development of the Finite Element Model

The finite element analysis model of the cold-formed thin-walled steel double-lipped
equal-leg angle was established using the finite element software ABAQUS6.14 [29]. In
FEA, the measured specimens’ dimensions and the maximum geometric imperfections
of the specimens were all included in the model, but the residual stress of the whole
section and the increase of yield strength (at the corner regions only) by the cold-forming
process were not considered [30]. The length and cross-section size of specimens were the
measured size. The S4R shell element and the ideal elastoplastic model were adopted, and
the average value of the material property test was adopted. Through a certain number
of trials, it was found that the error of ultimate strength was less than 2% when the mesh
was 5 mm × 5 mm or 10 mm × 10 mm. So, 10 mm × 10 mm was selected as the mesh
size. The specimens were fixed at both ends, 5 degrees of freedom (two translational and
three rotational) were constrained at the loading end, and the UZ longitudinal degree of
freedom was released. It was utterly fixed at the other end. The vertical displacement
was applied at the coupling point RP-2 of the centroid of the double-lipped equal-leg
angle section at the loading end. In order to simulate the specimens more precisely, the
measured initial geometric imperfections were introduced. The maximum value of global,
distortional, and local initial geometric imperfections was taken as the imperfect value.
The finite element model is shown in Figure 15. The finite element analysis included two
steps: the first step was the eigenvalue buckling analysis, and the first buckling mode was
used as the initial imperfection shape of the specimens.The second step was nonlinear
analysis.The Von-Misses stress–strain criterion and arc length method were adopted to
obtain the buckling modes and ultimate strengths of all specimens.

Buildings 2022, 12, x FOR PEER REVIEW 12 of 18 
 

geometric imperfections of the specimens were all included in the model, but the residual 
stress of the whole section and the increase of yield strength (at the corner regions only) 
by the cold-forming process were not considered [30]. The length and cross-section size 
of specimens were the measured size. The S4R shell element and the ideal elastoplastic 
model were adopted, and the average value of the material property test was adopted. 
Through a certain number of trials, it was found that the error of ultimate strength was 
less than 2% when the mesh was 5 mm × 5 mm or 10 mm × 10 mm. So, 10 mm × 10 mm 
was selected as the mesh size. The specimens were fixed at both ends, 5 degrees of free-
dom (two translational and three rotational) were constrained at the loading end, and the 
UZ longitudinal degree of freedom was released. It was utterly fixed at the other end. 
The vertical displacement was applied at the coupling point RP-2 of the centroid of the 
double-lipped equal-leg angle section at the loading end. In order to simulate the speci-
mens more precisely, the measured initial geometric imperfections were introduced. The 
maximum value of global, distortional, and local initial geometric imperfections was 
taken as the imperfect value. The finite element model is shown in Figure 15. The finite 
element analysis included two steps: the first step was the eigenvalue buckling analysis, 
and the first buckling mode was used as the initial imperfection shape of the speci-
mens.The second step was nonlinear analysis.The Von-Misses stress–strain criterion and 
arc length method were adopted to obtain the buckling modes and ultimate strengths of 
all specimens. 

 
Figure 15. Finite element model. 

4.2. Validation of Finite Element Model 
The finite element analysis results for all specimens are shown in Table 3, where Pm 

is the finite element analysis result. As shown in Table 3, the average value of the ratios 
between the test results and the finite element analysis results is 1.01, and the coefficient 
of variation is 0.08. The comparison buckling modes between the finite element analysis 
and the test are shown in Figure 16. The buckling modes of the finite element analysis are 
consistent with the test, as shown in Figure 16. The comparisons of load-displacement 
curves between tests and finite element analysis are shown in Figure 17, which shows 
that the test and finite element analysis curves are in good agreement. These comparison 
results show that this paper’s finite element analysis model can reasonably simulate the 
buckling mode, ultimate strength, and load-displacement curve of the cold-formed 
thin-walled steel double-lipped equal-leg angle under axial compression. 

Figure 15. Finite element model.

4.2. Validation of Finite Element Model

The finite element analysis results for all specimens are shown in Table 3, where Pm
is the finite element analysis result. As shown in Table 3, the average value of the ratios
between the test results and the finite element analysis results is 1.01, and the coefficient
of variation is 0.08. The comparison buckling modes between the finite element analysis
and the test are shown in Figure 16. The buckling modes of the finite element analysis
are consistent with the test, as shown in Figure 16. The comparisons of load-displacement
curves between tests and finite element analysis are shown in Figure 17, which shows that
the test and finite element analysis curves are in good agreement. These comparison results
show that this paper’s finite element analysis model can reasonably simulate the buckling
mode, ultimate strength, and load-displacement curve of the cold-formed thin-walled steel
double-lipped equal-leg angle under axial compression.
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5. Assessment and Suggested of the Design Method
5.1. Direct Strength Method

The direct strength method in North American specification [31] was used to calculate
the ultimate strength of cold-formed steel members. The nominal axial strength of cold-
formed steel double-lipped equal-leg angle section is the minimum value of the axial
strength of local buckling interacting with global buckling Pnl and the axial strength of
distortional buckling Pnd.

The axial strength of local buckling interacting with global buckling Pnl is calculated
according to Equation (1):

Pnl =

 Pne λl ≤ 0.776(
1− 0.15

(
Pcrl
Pne

)0.4
)(

Pcrl
Pne

)0.4
Pne λl > 0.776

(1)

where λ` =
√

Pne/Pcrl . Pne is the axial strength of global buckling. Pcrl is the critical elastic
local buckling strength. The elastic local buckling stress can be calculated through finite
strip software CUFSM [32].

The axial strength of global buckling Pne can be calculated by Equation (2):

Pne = AgFn (2)

where Ag is the gross area of cross-section and Fn is the global buckling stress, which can
be calculated according to Equation (3):

Fn =


(

0.658λ2
c

)
Fy λc ≤ 1.5(

0.877
λ2

c

)
Fy λc > 1.5

(3)

where λc =
√

Fy
Fcre

is the smallest value of flexural, torsional, and flexural–torsional buckling
stresses. Fcre can be determined by Equation (4).

(Fcre − σex)
(

Fcre − σey
)
(Fcre − σt)− F2

cre
(

Fcre − σey
)( x0

r0

)2
− F2

cre(Fcre − σex)

(
y0

r0

)2
= 0 (4)

In which

σex =
π2E

(KxLx/rx)
2 (4a)

σey =
π2E(

KyLy/ry
)2 (4b)

σt =
1

Ar2
0

[
GJ +

π2ECw

(KtLt)
2

]
(4c)

where σex, σey, σt are the elastic buckling stresses for flexural buckling about the principal
x-axis, y-axis, and torsional buckling, respectively. x0, y0 are the distances from the shear
centre to the centroid along the x-axis and y-axis. r0 is the polar radius of gyration. Kx, Ky,
Kt are the effective length factor for bending about x-axis in accordance, bending about
y-axis in accordance, and twisting determined in accordance. Lx, Ly, Lt are unbraced
lengths of members for bending about x-axis, y-axis, and torsion, respectively. rx, ry are the
radius of gyration of full unreduced cross-section about the x-axis and y-axis. J, G, E, Cw are
St. Venant torsion constant of cross-section, shear modulus of steel, modulus of elasticity of
steel, and torsional warping constant of cross-section, respectively.
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The axial distorted buckling strength can be determined according to Equation (5).

Pnd =

 Py λd ≤ 0.561(
1− 0.25

(
Pcrd
Py

)0.6
)(

Pcrd
Py

)0.6
Py λd > 0.561

(5)

where λd =
√

Py/Pcrd, Py = AgFy, Fy is the yield stress and Pcrd is the critical elastic
distortional buckling strength. The elastic distortional buckling stress can be calculated
through finite strip software CUFSM.

5.2. Effect Width Method

The effective width method in Technical Code for Cold-Formed Thin-walled Steel
Structures [33] predicts the ultimate strength of cold-formed steel members.The axial
strength of cold-formed steel double-lipped equal-leg angle section can be determined
according to Equation (6):

N = ϕAe fy (6)

where ϕ is the global stability coefficient of axial double-lipped equal-leg angle, which
can be determined according to the minimum value of the slenderness ratio λy of flexural
bucking and the slenderness ratio λω of flexural–torsional buckling. Ae is the effective
cross-sectional area, Ae = bet, be is the effective width of the elements of double-lipped
equal-leg angle and can be calculated using the Formula (7).
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For axial compression double-lipped equal-leg angle, bc = b, α = 1, ρ =
√

235k
ϕ fy

, k is the
buckling coefficient of the element of angle.

5.3. Recommendations for the Design of Double-Lipped Equal-Leg Angle

The ultimate strength predicted using the direct strength method and effective width
method for double-lipped equal-leg angle are shown in Table 4, where Pz and Py are the
calculated strength using the direct strength method and effective method, respectively. As
shown in Table 4, the average ratios of the calculated capacities to test results Pz/Pt and
Py/Pt are 0.641 and 0.494, with a coefficient of variation of 0.276 and 0.397. The comparison
of ultimate strength between tests and the predicted results shows that the results calculated
by the direct strength and effective width methods are conservative. The main reason is
that the torsion of the leg with the lip is considered torsional buckling of the angle and
distortional buckling of the leg. The torsion is considered repeatedly.

Therefore, it is suggested to ignore the effect of torsion and only calculate the flexural
buckling when calculating the global buckling of the double-lipped equal-leg angle. For
Formula (1) in the direct strength method, Fcre is obtained as the minimum value of the
flexural buckling of the double-lipped equal-leg angle about the x-axis and y-axis. For
Formula (6) in the effective width method, the slenderness ratio of the global buckling is
the minimum value of the slenderness ratio of the flexural buckling for the double-lipped
equal-leg angle about the x-axis and y-axis.

The predicted ultimate strength using the proposed direct strength method and effec-
tive width method are shown in Table 4. Pza and Pya are calculated using the suggested
direct strength and effective width methods. As shown in Table 4, the average ratios
of the calculated capacities to test results Pza/Pt and Pya/Pt is 1.075 and 0.953, with the
coefficient of variation of 0.052 and 0.124. The ultimate strength calculated by the modified
direct strength and effective width method agrees with the test results. Therefore, the
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modified direct strength method and effective width method are accurate and feasible for
calculating the ultimate strength of cold-formed steel double-lipped equal-leg angle under
axial compression.

Table 4. Comparison of ultimate strength between tests and the predicted results by using DSM,
EWM, modified DSM, and modified EWM.

Specimens
Test DSM MDSM EWM MEWM

Pz/Pt Pza/Pt Py/Pt Pya/Pt
Pt/kN Pz/kN Pza/kN Py/kN Pya/kN

DLA6020-400-1 106 110.24 108.24 83.87 99.42 1.04 1.02 0.79 0.94
DLA6020-400-2 113 113.45 112.4 83.55 105.06 1 0.99 0.74 0.93
DLA6020-900-1 100.1 73.07 105.43 42.35 88.51 0.73 1.05 0.42 0.88
DLA6020-900-2 92.5 75.2 101.33 44.03 83.21 0.81 1.1 0.48 0.9

DLA6020-1500-1 73.6 35.41 80.36 19.87 63.73 0.48 1.09 0.27 0.87
DLA6020-1500-2 69.1 35.75 75.39 20.35 63.87 0.52 1.09 0.29 0.92
DLA6020-2100-1 46.9 22.49 51.36 12.51 35.31 0.48 1.1 0.27 0.75
DLA6020-2100-2 44.3 22.25 50.56 12.31 37.73 0.5 1.14 0.28 0.85
DLA9020-400-1 139.9 100.25 140.99 91.57 127.97 0.72 1.01 0.65 0.91
DLA9020-400-2 139.5 100.83 141.44 91.19 122.94 0.72 1.01 0.65 0.88
DLA9020-900-1 119.9 68.76 123.5 50.97 113.45 0.57 1.03 0.43 0.95
DLA9020-900-2 127.6 68.68 130.99 52.03 120.07 0.54 1.03 0.41 0.94

DLA9020-1500-1 62 40.14 74.66 23.71 76.89 0.65 1.2 0.38 1.24
DLA9020-1500-2 76.1 38.23 82.05 22.09 77.08 0.5 1.08 0.29 1.01
DLA9020-2100-1 48.7 24.08 54.47 37.13 55.44 0.49 1.12 0.76 1.14
DLA9020-2100-2 49.3 24.69 56.06 38.61 55.46 0.5 1.14 0.78 1.12
DLA12024-400-1 165.89 176.27 185.32 176.27 162.59 1.06 1.12 1.06 0.98
DLA12024-400-2 164.69 175.97 185.09 184.56 162.81 1.07 1.12 1.12 0.99
DLA12024-900-1 143.14 114.77 153.67 151.27 146.35 0.80 1.07 1.06 1.02
DLA12024-900-2 145.24 119.15 156.07 153.67 148.54 0.82 1.07 1.06 1.02

DLA12024-1500-1 127.76 47.59 129.36 100.76 119.81 0.37 1.01 0.79 0.94
DLA12024-1500-2 120.44 47.78 129.85 101.36 120.60 0.40 1.08 0.84 1.00
DLA12024-2100-1 95.75 26.99 98.17 57.24 101.33 0.28 1.02 0.60 1.06
DLA12024-2100-2 96.64 26.66 98.34 56.48 100.69 0.28 1.03 0.58 1.04

Mean value 0.639 1.075 0.625 0.904
Variance 0.234 0.193 0.272 0.160

Coefficient of variation 0.366 0.179 0.435 0.177

6. Conclusions

(1) The axial compression test of 24 cold-formed thin-walled double-lipped equal-leg
angles showed that the distortional buckling occurred for specimens with a small
width-to-thickness ratio and small slenderness ratio. The buckling interactive with
distortional and global flexural buckling was observed for the specimens with small
width-to-thickness ratios and large slenderness ratios. The specimens with large
width-to-thickness ratios and small slenderness ratios showed interactive buckling
with local and distortion buckling, while the specimens with large width-to-thickness
ratios and large slenderness ratios developed interactive buckling with local, distor-
tional, and global flexural buckling. The ultimate strengths of specimens decreased
with the increase of the length of the double-lipped equal-leg angle.

(2) The ultimate strengths, buckling modes, and axial compression displacement curves
of the specimens analyzed by the finite element method were in good agreement
with the test results. The results showed that the developed finite element model
was feasible for the buckling analysis of cold-formed thin-walled steel double-lipped
equal-leg angle.

(3) The distortional buckling of the leg with lip and the global torsional buckling angle
for cold-formed thin-walled steel double-lipped equal-leg angle is consistent. The
axial strength of the double-lipped equal-leg angle calculated by the direct strength
and effective width methods indicated that the design methods were too conservative.
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Therefore, the suggested approaches were proposed by ignoring the global torsional
buckling. The results obtained by the proposed direct strength method and effective
width method were accurate, indicating that the proposed method can be used to
determine the ultimate strength of the cold-formed thin-walled steel double-lipped
equal-leg angle.

(4) Further numerical and experimental studies are needed before the modified design
method can be used in the codes. Meanwhile, the cold-formed thin-walled steel lipped
equal-leg angle, unequal-leg angle, and lipped unequal-leg angle should be studied
by experiment and numerical analysis.
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