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Abstract: Special T-shaped composite columns with concrete-filled square steel tubulars have good
restraint on internal concrete, are convenient to process, have a high bearing capacity and good me-
chanical properties, and can increase the aesthetics of the building and the utilization rate of indoor
space. Theoretical analysis, experimental study, and numerical simulation of the eccentric compres-
sion performance of the special-shaped column are carried out. Taking the specimen length, eccentric
distance, and eccentric direction as test parameters, nine specimens with different slenderness ratios
were designed to carry out eccentric compression tests. The eccentric compression performance was
numerically simulated and analyzed by the general finite element software ABAQUS. The results
show that the short column mainly suffers section strength failure, while the middle and long columns
mainly suffer bending instability failure without torsional deformation. The degree of influence of
the test parameters decreases in turn according to the eccentric distance, eccentric direction, and
length of the specimen; there is no weld cracking phenomenon, and the square steel pipes can work
together. The finite element calculation results are in good agreement with the experimental and
theoretical values.

Keywords: concrete-filled square steel tube; special T-shaped composite column; eccentric
compression; mechanical properties; finite element calculation; experimental study

1. Introduction

There are many forms of special-shaped sections of CFSTs, mainly including ordi-
nary special-shaped sections (Figure 1), special-shaped sections with restrained tie rods
(Figure 2), special-shaped sections with built-in stiffeners (Figure 3), multi-chamber special-
shaped sections (Figure 4), combined special-shaped sections (Figure 5), and lattice special-
shaped sections (Figure 6). At present, the research on CFST special-shaped columns mainly
focuses on their mechanical properties.

For ordinary special-shaped concrete-filled steel tubular columns, Shen et al. [1]
and Lei et al. [2] studied the eccentric compression performance, hysteretic performance,
and joint seismic performance of L-shaped and T-shaped CFST columns. The plastic
deformation and energy dissipation capacity of the nodes are better, and a simplified
formula for the bearing capacity of L-shaped and T-shaped CFST columns is proposed.
Li et al. [3] and Zuo et al. [4] designed special-shaped columns with restrained bars, and
studied the axial and bias performance of the components through axial compression and
bias tests. The restrained bar changes the buckling mode of the steel tube, which can
increase the bearing capacity of the CFST column and improve the ductility. Additionally,
the calculation formula of the axial bearing capacity is established. Wang et al. [5] studied
the hysteretic performance of T-shaped CFST columns with built-in stiffeners. Research
shows that the width-to-thickness ratio mainly affects the sequence of peak loads and the
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decreasing trend of bearing capacity. Stiffeners can limit the deformation of weak parts,
delay local buckling, and make the steel pipe and concrete work together. Tu et al. [6]
conducted experimental research on the axial compression performance of multi-chamber
CFST T-shaped CFST columns and found that the failure of medium and long columns is
due to overall bending failure, and multi-chamber CFST columns can enhance the restraint
of the section on the concrete. Du et al. [7], Cao et al. [8] and WANG et al. [9] conducted an
experimental study on the axial compression and eccentric compression of T-shaped and
L-shaped CFSTs. Research shows that the flexural performance and plastic deformation
ability of the T-column with CFSTs are better, and the specimens mainly show three types
of failure modes: shear failure, local bulging (or cracking), and bending instability. The
axial compressive bearing capacity of the specimen has an obvious influence. The strength
damage is mainly hoop specimens and welded short columns. The main damage mode of
the welded slender column is bending instability damage. Rong et al. [10] and Zhou Ting
et al. [11] designed lattice-type T-shaped, cross-shaped, L-shaped CFST composites with
special-shaped columns to study their mechanical properties. The results show that the final
failure form of the compression-bending specimen is the overall bending instability failure,
the steel strength has an obvious effect on the compression-bending bearing capacity of the
special-shaped column, and the affixed plate has a better restraint effect on the single-limb
column.
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Figure 1. Ordinary special-shaped section: (a) L-shaped; (b) T-shaped; (c) cross. 
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Figure 1. Ordinary special-shaped section: (a) L-shaped; (b) T-shaped; (c) cross.
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Figure 2. Profiled sections with restrained bars: (a) L-shaped; (b) T-shaped; (c) cross.
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Figure 3. Profiled section with built-in stiffeners: (a) L-shaped; (b) T-shaped; (c) cross.
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Figure 4. Multi-chamber profiled section: (a) L-shaped; (b) T-shaped; (c) cross.
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Figure 5. Combined special-shaped section: (a) L-shaped; (b) T-shaped; (c) cross.
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Figure 6. Lattice-shaped section: (a) L-shaped; (b) T-shaped; (c) cross.

Zeghiche, J. et al. [12], Ghannam S. [13], Ahiwale D. et al. [14], Achuthan, P. et al. [15],
Umamaheswari, N. et al. [16] and Gupta, P. K. et al. [17] conducted axial and eccentric
compression tests on CFST columns. It was found that the CFST columns were all damaged
due to global buckling. The axial bearing capacity of CFST specimens with artificial sand
is significantly improved. The axial and biased column bearing capacity test results of
unidirectional bending are in good agreement with the calculation results of Eurocode 4.
Phan h D. [18], Saleh, S. M. et al. [19], Jayalekshmi, S. et al. [20], Heman, A. M. et al. [21]
and Bhartiya, R. [22] et al. conducted a finite element analysis on the axial compression
performance of CFST columns. Studies have shown that increasing the concrete grade
leads to a decrease in the ductility of the composite column. Steel yield strength and tube
wall thickness contribute to ultimate strength. Restrained tie rods significantly increase the
strength and ductility of the CFST column. Boukhalkhal S H et al. [23] found that CFST
columns performed better in terms of ductility, plastic hinge distribution, and appearance
order. Lazkani, A. [24], Tam, V. W. et al. [25], Ahmad, S. et al. [26], Mujdeci, A. et al. [27],
Esmaeili Niari, S. et al. [28], De Azevedo et al. [29], Malathy, R. et al. [30] and Portolés, J. M.
et al. [31] replaced the concrete filled in the steel tube with a different material. Studies have
shown that expansion agents can improve the strength, ultimate strain, and ductility of
recycled aggregate CFST columns. The bearing capacity of the concrete-filled rubber-filled
steel tubular column section decreases with the increase in rubber content, but its ductility
increases significantly. Adding 20% iron filings via sand weight increases the initial stiffness.
The bearing capacity of recycled aggregate concrete-filled steel tubular columns is higher
than that of ordinary columns. The impact of high-strength or ultra-high-strength concrete
on axial compressive bearing capacity is more significant than that of eccentric compressive
bearing capacity.
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The inner corners of ordinary CFST columns with special-shaped sections are weak and
cannot effectively constrain the corner concrete. There are many openings in the restraint tie
rod which weaken the section of the steel pipe, cause a lot of stress concentration, and make
the surface uneven. The built-in stiffening rib plate is inconvenient to process, the welding
area is large, and the welding residual stress is large. Multi-chamber special-shaped steel
pipes have different cross-sectional dimensions which are difficult to standardize and
inflexible in layout. The long side of the combined special-shaped rectangular steel pipe is
weak against the concrete. The special-shaped section of the lattice type is cumbersome
in form, and the stress situation is complex, which is not convenient for analysis and
calculation.

However, there is still a lack of relevant research on the mechanical properties of
special-shaped CFST composite columns. After improving and optimizing the special-
shaped section of CFSTs, a new type of special-shaped square CFST composite column is
proposed. Figure 7 shows special-shaped columns with three cross-sections: L-shaped, T-
shaped, and cross-shaped. The square steel tube concrete composite special-shaped column
is directly processed and manufactured by the finished square steel tube. The welding
forming is simple and convenient, the processing speed is fast, and it is easy to be produced
in a factory. It can reduce the difficulty of on-site construction and ensure the quality of the
welding seam, avoid the appearance of column edges and corners in the room, standardize
the cross-section form, and make the layout flexible. The problem of deformation of the
inner corner of the section has been improved. The surface is flat without protrusions and
holes, reducing the weakening of the section by the opening. By reducing the aspect ratio
of the section, the local stability of the steel tube and the restraining effect of the internal
concrete are enhanced.
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Figure 7. Cross-section of CFST composite special-shaped column: (a) L-shaped; (b) T-shaped;
(c) cross.

2. Experimental Program
2.1. Specimen Design and Material Properties

In the T-shaped square steel tube concrete composite special-shaped column, the
section size of the hollow square steel tube is 100 mm × 100 mm × 4 mm, as shown in
Figure 8. The specimen is composed of CFST special-shaped column members and steel
cover plates, and the T-shaped section is formed by four square steel pipes through four
fillet welds, as shown in Figure 9. The design parameters of the nine specimens are shown
in Table 1.

Table 2 shows the parameters of the steel samples, and the test results of the mechanical
properties of the steel are shown in Table 3. The method of converting elastic modulus
Ec and concrete axial compressive strength f c adopts the calculation formula given in the
modified stress–strain relationship of the concrete-filled steel tubular with different strength
grades under uniaxial compression proposed by Ding et al. [32], where f c = 0.4f cu

7/6, and
Ec = 9500f cu

1/3. The test results of the mechanical properties of the concrete are shown in
Table 4.
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Figure 9. Design drawing of the test piece.

Table 1. Parameters of the test specimens.

Specimen t/mm L/mm e/mm Eccentric
Direction λ

T-1 4 600 20 x+ 7
T-2 4 600 40 y+ 10
T-3 4 600 60 y− 10
T-4 4 1500 20 y+ 25
T-5 4 1500 40 y− 25
T-6 4 1500 60 x+ 17
T-7 4 1800 20 y− 29
T-8 4 1800 40 x+ 20
T-9 4 1800 60 y+ 29

Notes: t denotes wall thickness of steel tube; L denotes the length of test piece; e denotes eccentricity; λ denotes
slenderness ratio. x+ means that the eccentric load action point is in the positive direction of the x-axis; y+ means
that the eccentric load action point is in the positive direction of the y-axis; y− means that the eccentric load
application point is in the negative direction of the y-axis. λx and λy are the slenderness ratios of the components
around the x-axis and y-axis, respectively, l = L/i, where i is the radius of gyration of the section and L is the
length of the test piece, i = (Is + IcEc/Es)1/2/(As + Acf c/f s)1/2. The steel design strength grade of the test piece is
Q235B, and the concrete design strength grade is C30. f s is the measured value of the yield strength of the steel; f c
is the measured value of the axial compressive strength of the concrete; Is and Ic are the section moment of inertia
of steel and concrete, respectively; As and Ac are the cross-sectional areas of steel and concrete, respectively; Es
and Ec are the elastic moduli of steel and concrete, respectively.
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Table 2. Parameters of material test specimens.

Specimen Number a0/mm b0/mm L0/mm Lc/mm r/mm Collet Width Lt/mm

1–3 3 4 20 90 115 20 30 350

Notes: a0 denotes thickness; b0 denotes width; L0 denotes original gauge length; Lc denotes parallel length; r
denotes transition radius; Lt denotes total length.

Table 3. Results of steel material properties test.

Specimen Thickness/mm Width/mm Yield
Strength/MPa

Ultimate
Strength/MPa Elongation/% Yield Strength

Ratio

S1 4 20 335.38 423.77 18.26 0.791
S2 4 20 349.63 421.13 20.87 0.830
S3 4 20 348.00 427.75 19.13 0.814

Table 4. Results of concrete material properties test.

Group Number of
Test Blocks

Size of Test
Blocks/mm f cd/MPa f cu/MPa f c/MPa Ec/MPa

1 6 150 × 150 × 150 30 44.23 33.27 33,596.65
2 6 150 × 150 × 150 30 45.33 34.24 33,872.88

Notes: f cd denotes design value of concrete compressive strength; f cu denotes measured compressive strength of
concrete cubes; f c denotes conversion value of concrete axial compressive strength; Ec denotes conversion value
of the elastic modulus of concrete.

2.2. Test Loading and Measurement

The column hinge is fixed on the end plate, and the boundary conditions at both ends
of the specimen simulate the hinge. Figure 10 shows a schematic diagram of loading, and a
500 t pressure testing machine was used for bias testing.
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Figure 10. Test loading schematic.

The loading regime is shown in Figure 11. In a monotonic static load test, the loading
is controlled by displacement. Take 1/10 of the calculated limit displacement as the loading
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displacement of each stage. When the load drops to 75% of the ultimate load, stop loading.
Unloading adopts force control, and the unloading value of each stage is 1/5~1/20 of the
ultimate load. Before the formal test, the specimen shall be preloaded according to 10% of
the calculated ultimate load, and the formal loading shall be carried out after checking the
state of the specimen and each measuring instrument.
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Figure 11. Test loading schematic.

Measure the vertical displacement value, the horizontal deflection value of the test
piece, and the transverse and longitudinal strain of the steel pipe. Two displacement gauges
are set at the lower and upper parts of the specimen to measure the axial displacement of
the specimen. Along the height direction of the column, three displacement gauges are set
at the quarter points on one side of the test piece to measure the horizontal deflection value
of the test piece. Two displacement gauges were installed at the corners of the steel pipe
along half of the height direction of the specimen to measure the torsional displacement of
the specimen. At 1/2 of the height of the column, a strain (45◦ in three axes) is arranged on
the exposed surface of each steel pipe to measure the longitudinal and transverse strain of
the steel pipe. The location of the measuring points is shown in Figure 12.
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3. Test Results and Discussion
3.1. General Observations and Failure Mode

The failure process of the three short-column specimens is roughly similar; the short-
column specimen showed the failure mode of first bulging and then bending, showing the
characteristics of strength failure. The short-column specimen did not undergo torsional
deformation during the whole loading process. The weld in the short-column specimen did
not show visible damage. The welds between the four square steel pipes did not crack, nor
did the welds between the square steel pipes and the end plates, and all the welds showed
no visible damage. This shows that the four square steel pipes can work together well and
bear the force together. The failure process of some short column specimens is shown in
Figures 13–15. The failure process of the six long-column specimens is generally similar; the
long-column specimen presents a failure mode of bending first and then bulging, showing
the characteristics of bending instability failure. There is no torsion phenomenon in the
long column specimen during the whole loading process. The welds in the long column
specimen also did not show visible damage, the welds between the four square steel pipes
did not crack, the welds between the square steel pipe and the end plate did not crack, and
all welds did not show visible damage. This shows that the four square steel pipes have
good cooperative working performance. Figures 16–21 show the failure process of some
long column specimens. The failure results of test pieces 1 to 9 are shown in Figure 22.

Buildings 2022, 12, x FOR PEER REVIEW 10 of 30 
 

 

(a) (b) (c) (d) 

Figure 13. Failure process of specimen T-1: (a) Initial state; (b) Load status 1; (c) Load status 2; (d) 

Damage State. 

 

(a) (b) (c) (d) 

Figure 14. Failure process of specimen T-2: (a) Initial state; (b) Load status 1; (c) Load status 2; (d) 

Damage State. 

 
(a) (b) (c) (d) 

Figure 15. Failure process of specimen T-3: (a) Initial state; (b) Load status 1; (c) Load status 2; (d) 

Damage State. 

Bulging 

Buckling 

 

 

 

B
e

n
d

in
g

 

Buckling 

 

B
en

d
in

g
 

Buckling 

 

B
en

d
in

g
 

Figure 13. Failure process of specimen T-1: (a) Initial state; (b) Load status 1; (c) Load status 2;
(d) Damage State.
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Figure 14. Failure process of specimen T-2: (a) Initial state; (b) Load status 1; (c) Load status 2;
(d) Damage State.
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Figure 15. Failure process of specimen T-3: (a) Initial state; (b) Load status 1; (c) Load status 2;
(d) Damage State.
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Figure 16. Failure process of specimen T-4: (a) Initial state; (b) Load status 1; (c) Load status 2;
(d) Damage State.
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Figure 17. Failure process of specimen T-5: (a) Initial state; (b) Load status 1; (c) Load status 2;
(d) Damage State.
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Figure 18. Failure process of specimen T-6: (a) Initial state; (b) Load status 1; (c) Load status 2;
(d) Damage State.
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Figure 19. Failure process of specimen T-7: (a) Initial state; (b) Load status 1; (c) Load status 2;
(d) Damage State.
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Figure 20. Failure process of specimen T-8: (a) Initial state; (b) Load status 1; (c) Load status 2;
(d) Damage State.
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Figure 21. Failure process of specimen T-9: (a) Initial state; (b) Load status 1; (c) Load status 2;
(d) Damage State.
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Figure 22. Failure results of test pieces 1 to 9.

3.2. The Ultimate Bearing Capacity of the Specimens

In Table 5, the eccentric compression test parameter levels of nine specimens and the
test value Nue of ultimate bearing capacity are given. It can be seen from the table that
when the slenderness ratio of the specimen is the same, the ultimate bearing capacity shows
a decreasing trend with the increase in eccentricity. When the eccentric distance of the
specimen is the same, and when the eccentric direction is on the asymmetric axis (x-axis) of
the section, the ultimate bearing capacity of the specimen is relatively high.

Table 5. Results of concrete material properties test.

Specimen t/mm L/mm e/mm Eccentric Direction λ Nue/kN

T-1 4 600 20 x+ 7 3058.00
T-2 4 600 40 y+ 10 2290.90
T-3 4 600 60 Y− 10 1898.70
T-4 4 1500 20 y+ 25 2409.70
T-5 4 1500 40 y− 25 1859.50
T-6 4 1500 60 x+ 17 2036.30
T-7 4 1800 20 y− 29 2459.50
T-8 4 1800 40 x+ 20 2340.00
T-9 4 1800 60 y+ 29 1534.30

Notes: t denotes wall thickness of steel tube; L denotes the length of test piece; e denotes eccentricity; λ denotes
slenderness ratio; Nue denotes test value of the ultimate load.
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3.3. Load–Strain Curve

Figure 23 shows the correlation curve between the steel strain and the load N at the
edge of the compression zone and the tension zone for 1/2 of the column height. It can
be seen from the curve that: (1) In the early stage of loading, the longitudinal direction of
the edge fibers during the compression and tension process of the strain increase linearly
with increasing load. (2) From the beginning of loading to before the limit load, the entire
section of the specimen is compressed. When the steel in the compression zone reaches
the yield strain, the surface of the steel pipe wall appears with bulging deformation. After
that, tensile strain occurs in the tension zone, and the specimen gradually reaches the limit.
(3) When the specimen reaches the ultimate bearing capacity, the stress of the steel pipe
in the tensile and compressive zone of the specimen reaches its peak at the same time,
which proves that the cooperative working performance of the specimen is good. With
the increase in strain, the bearing capacity of the specimen shows a gentle decline, and the
specimen shows good ductility. (4) During the loading process of the test, the strain in the
compression position is larger than that in the tensile position, and the specimen shows a
relatively good ductility. Destruction begins when the pressurized area begins to drop out
of work.
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Figure 23. Load–strain curves of specimens 1 to 9: (a) load–strain curves of specimens 1 to 3;
(b) load–strain curves of specimens 4 to 6; (c) load–strain curves of specimens 7 to 9.

3.4. Load–Deflection Curve

Figure 24 shows the N–w relationship curve of specimens No. 1 to No. 9. It can be seen
from Figure 24 that at the initial stage of loading of the specimen, the deflection and load
show a linear correlation. As the load continues to increase, the horizontal deflection of the
column mid-section increases linearly. When approaching the ultimate load, the deflection
increases rapidly, and the specimen exhibits obvious bending deformation. When the
specimen reaches the ultimate load, the horizontal deflection of the middle of the short
column is smaller than that of the middle of the long column.

3.5. Strain Distribution of Section in the Column

Figure 25 shows the distribution curve of the section strain along the height of the
T-2, T-5, and T-7 columns at different loading stages. It can be seen from the relationship
diagram that: (1) Before the specimen reaches the ultimate load, when the specimen is bent
and deformed, the distribution of the strain along the height of the middle section of the
column basically conforms to the assumption of the plane section, and it can be considered
that the deformation of the plane section is maintained. (2) After the specimen reaches
the ultimate bearing capacity, the tension area of the middle section of the column still
maintains the plane section deformation, but the section deformation of the compression
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area is no longer consistent with the assumption of the plane section. (3) With the increase
in eccentricity, the neutral axis begins to gradually shift to the direction of the centroid
due to the influence of the second-order effect. (4) After the specimen reaches the ultimate
bearing capacity, due to the damage of the compression area, the compression position
begins to withdraw from work, and the position of the neutralization axis gradually moves
towards the centroid of the section.
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Figure 24. Load–deflection curves of specimens 1 to 9.
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Figure 25. Strain distribution of the middle section of the pieces: (a) strain distribution in the column
section of No. 2 specimen (e = 40 mm); (b) strain distribution in the column section of No. 5 specimen
(e = 40 mm); (c) strain distribution in the column section of No. 7 specimen (e = 40 mm).

3.6. Analysis of Test Parameters

Tables 6–8 are the results of the orthogonal analysis of the test parameters. Through
the orthogonal analysis, we can see that: (1) The intuitive analysis of the test results shows
the influence of the three test parameters on the eccentric compressive bearing capacity of
the T-shaped square concrete-filled steel tube special-shaped column: B (eccentric distance)
> C (eccentric direction) > A (length). (2) The range analysis results show that the eccentric
distance is the most influential factor on the pressure performance of the eccentricity,
followed by the eccentric direction and the length of the specimen The degree is relatively
small. (3) The results of variance analysis can show that the fitting results of the general
linear models are good, and the results of the variance analysis are also reliable. Among
the three test parameters, B (eccentric distance) and C (eccentric direction) have a greater
influence on the test value.
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Table 6. Analysis of test results.

Specimen L/mm e/mm Eccentric Direction Nue/kN

T-1 600 20 x+ 3058.00
T-2 600 40 y+ 2290.90
T-3 600 60 y− 1898.70
T-4 1500 20 y+ 2409.70
T-5 1500 40 y− 1859.50
T-6 1500 60 x+ 2036.30
T-7 1800 20 Y− 2459.50
T-8 1800 40 x+ 2340.00
T-9 1800 60 y+ 1534.30
K1 2415.867 2642.4 2478.1 —
K2 2101.833 2163.467 2078.3 —
K3 2111.267 1823.1 2072.567 —

Range 314.0333 819.3 405.5333 —
Rank 3 1 2 4

Notes: L denotes the length of the test piece; e denotes eccentricity; Nue denotes the test value of ultimate load; K1,
K2, and K3 are the average values of the test results of each parameter at the three-parameter levels.

Table 7. Mean response analysis of test results.

Parameter Level L/mm e/mm Eccentric Direction Empty Column

1 2416 2642 2478 2151
2 2102 2163 2078 2262
3 2111 1823 2073 2216

Delta 314 819 406 112
Rank 3 1 2 4

Notes: L denotes the length of the test piece; e denotes eccentricity; Nue denotes the test value of ultimate load; 1,
2, and 3 represent different parameter values of each factor at three parameter levels, respectively.

Table 8. Analysis of variance of test results.

Parameter Degrees of Freedom Adj SS Adj MS Value of F Value of P

Length 2 191,487 95,744 10.14 0.090
Eccentricity 2 101,6479 508,240 53.83 0.018

Eccentric direction 2 324,330 162,165 17.18 0.055
Error 2 18,882 9441 — —
Total 8 1,551,178 — — —

S = 97.1644 R-sq = 98.78% R-sq(adjusted) = 95.13% 406 112 —

Notes: Adj SS denotes corrected sum of squares; Adj MS denotes corrected mean square; F denotes the ratio of
the between-level variance to the within-level variance of the parameter; S denotes the difference between data
value and fitting value; R-sq denotes goodness of fit, which is the ratio of the regression sum of squares to the total
deviation sum of squares; R-sq(adjusted) denotes modified goodness of fit.

Figure 26 shows the changing trend of the influence of various factors on the eccentric
compressive bearing capacity of the T-shaped CFST composite special-shaped column.
With the increase in the eccentric distance, the bearing capacity of the eccentric compression
specimen decreases significantly, and with the increase in the length of the specimen and the
change in the eccentric direction, the change degree of the eccentric compression specimen
is similar. The influence is the largest, followed by the eccentric direction, and finally the
length of the specimen.
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3.7. Calculation of Bearing Capacity

At present, there is no unified design and calculation method for CFST special-shaped
columns in the domestic and foreign codes and regulations about CFST. This paper refers
to the AISC-LRFD (1999) [33] code of the United States, BS 5400 (1979) [34], the code formu-
lated by the British Standards Association, Eurocode 4 (1994) [35], the code formulated by
the European Standards Association, AIJ (1997) [36], the code of the Architectural Society
of Japan, the specification for the design and construction of concrete-filled steel tubular
structures (CECS 28:90) [37] of China, and the technical specification for concrete-filled steel
tube structures (DBJ/t13-51-2010) [38] of Fujian Province of China. Using the calculation
formula on the bearing capacity of concrete-filled steel tubular composite columns, the
ratio of the calculated value Nu to the test value Nue is shown in Table 9. Through the
comparison of the calculation results of various codes and regulations, it can be found
that the calculated values of DBJ/t13-51-2010 and AIJ are the most consistent with the test
values, but the dispersion of AIJ is higher than that of DBJ/t13-51-2010; the calculated
value of Eurocode 4 is in good agreement with the test value, but slightly worse than
DBJ/t13-51-2010 and AIJ, and also BS 5400. The calculated value of CECS is generally
consistent with the test value, and the calculated result is unsafe; the calculated value of the
AISC specification is in the lowest agreement with the test value, and the calculated result
is too safe. It can be seen that using the DBJ/T13-51-2010 specification of the unified theory
proposed by Zhong [39], the calculation of the eccentric compressive bearing capacity of
the T-shaped square concrete-filled steel tubular composite special-shaped column is in the
best agreement with the test results.

Table 9. The comparison between the calculated value and the test value of the test piece’s eccentric
bearing capacity.

Specimen t/mm L/mm e/mm λ
AISC

η
DBJ

η
BS5400

η
EC4

η
AIJ

η
CECS

η

T-1 4 600 20 7 0.718 1.018 0.821 0.904 0.948 1.149
T-2 4 600 40 10 0.764 1.043 0.916 1.050 1.006 1.208
T-3 4 600 60 10 0.760 1.035 0.956 0.844 1.011 1.202
T-4 4 1500 20 25 0.922 1.033 0.976 1.096 1.059 1.190
T-5 4 1500 40 25 0.941 0.974 1.042 1.165 1.109 1.270
T-6 4 1500 60 17 0.693 0.994 0.838 0.786 0.861 1.014
T-7 4 1800 20 29 0.903 0.999 0.935 1.057 0.985 1.105
T-8 4 1800 40 20 0.734 1.035 0.846 1.040 0.880 0.957
T-9 4 1800 60 29 0.941 0.921 1.043 0.946 1.084 1.269
µ — — — — 0.820 1.006 0.930 0.987 0.994 1.151
σ — — — — 0.098 0.037 0.079 0.118 0.081 0.102

Notes: t denotes wall thickness of the steel tube; L denotes the length of test piece; e denotes eccentricity; λ denotes
slenderness ratio; µ denotes mean; σ denotes standard deviation; Nu denotes calculated value of ultimate bearing
capacity; Nue denotes test value of ultimate bearing capacity; η denotes Nu/Nue.
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4. Finite Element Modeling and Validation
4.1. Finite Element Modeling

According to the Mises yield criterion, obey the isotropic strengthening criterion,
follow the corresponding flow law, and select the plastic model provided by ABAQUS for
modeling and calculation. The square steel tube adopts the shell element (S4R), and the
core concrete part adopts the non-coordinated eight-node linear hexahedron solid element
(C3D8I). The contact friction coefficient of the steel is 0.3, and the friction coefficient between
the steel and concrete is 0.6. Welds are simulated using binding constraints. Figure 27
shows each component unit and grid division.
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Using the steel constitutive model proposed by Ding et al. [40], the simplified model
of the constitutive relation is shown in Figure 28. Mathematical expressions such as
Formula (1) are used.

σi =


Esεi (εi ≤ εy)

fs (εy < εi ≤ εst)
fs + ζEs(εi − εst) (εst < εi ≤ εu)

fu (εu < εi)

(1)

where ζ = 1/216; i = the equivalent stress of the steel; Es = the elastic modulus of the steel,
taking Es = 2.06 × 105 MPa; εi = the equivalent strain of the steel; εy = the strain of the steel
when it yields; f s = the yield strength of steel; εst = the strain when the steel is strengthened;
εst = 12 εy; εu = the strain when the steel reaches the ultimate strength; εu = 120 εy; and
f u = the ultimate strength of the steel, taking f u = 1.5 f s.
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Figure 28. Constitutive relation model for steel.

The plastic damage model is used for concrete. The constitutive relation of constrained
concrete under compression adopts the modified stress–strain relation of CFST with dif-
ferent strength grades proposed in the literature [40] under uniaxial compression, and the
mathematical expression is shown in Formula (2).

y =


A1x+(B1−1)x2

1+(A1−2)x+B1x2 (x ≤ 1)
x

α1(x−1)2+x
(x > 1)

(2)

where x = ε/εc; y = σ/f c; εc = the peak compressive strain of concrete; εc =383 f cu
7/18 × 10−6;

A1 = the ratio of concrete elastic modulus to peak secant modulus; A1 = 9.1f cu
−4/9; and

B1 = a physical quantity related to the attenuation of the elastic modulus of the ascending
curve. Before the ascending segment σ = 0.4f c, the curve approximates a straight line.
At this time, B1 = 1.6(A1 − 1)2; α1 is a parameter related to the descending section of the
stress–strain curve of concrete under uniaxial compression. For the core concrete under
the constraint of steel pipe, α1 = f c

0.1/(1.2
√

1 + ξ), ξ = Asf y/(Acf c). In the nonlinear finite
element analysis of CFST using ABAQUS, good calculation results can be obtained by
taking α1 = 0.15; f cu = the compressive strength of the concrete cube; As and f y are the
cross-sectional area of the steel pipe and the yield strength of the steel; and Ac and f c are
the cross-sectional area of the concrete and the compressive strength of the concrete axis,
where f c = 0.4f cu

7/6.
Constrained concrete plastic damage coefficient D is calculated according to Formula (3),

D0 is the damage value of concrete at peak stress; D0 = 2.1 − 0.4ln(f cu + 41); for uniaxial
compression, the strain εp is the peak compression value strain εc; εc = 383f cu

7/18 × 10−6;
c1, c2 and c3 are calculation parameters; c1 = 0.56 − 0.004 f cu; c2 = 1.17 + 4.34 × 10−5 f cu

2.8;
and c3 = 0.32 + 0.3ln(f cu − 10). Figure 29 shows the constitutive relation curve of concrete.

D =

{ [
1− (1− ε/εp)

c1
]
D0 (ε ≤ εp)

1− 1−D0
c2(1−D0)(ε/εp−1)c3+1 (ε > εp)

(3)
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Figure 29. Stress–strain curve of concrete: (a) uniaxial compressive stress–strain curves for confined
concrete; (b) uniaxial tensile and compressive stress–strain curves of unconstrained concrete.

The stress–strain relationship of tensile concrete adopts the constitutive curve provided
in appendix C of the code for design of concrete structures (GB 50010-2010) [41]. The
mathematical expression is as shown in Formula (4); dt is the uniaxial tensile damage
evolution parameter of concrete; Ec is the elastic modulus of concrete, calculated according
to Ec = 9500 f cu

1/3; αt is the falling section parameter of the concrete uniaxial tensile stress–
strain curve, which is taken according to C.2.3 in GB 50010-2010; εt,r is the peak tensile strain
of concrete corresponding to the representative value of uniaxial tensile strength, which
is taken according to C.2.3 in GB 50010-2010; f t,r is the representative value of concrete
uniaxial tensile strength, which is taken according to the test results.

σ = (1− dt)Ecε (4)

dt =

{
1− ρt

[
1.2− 0.2x5] (x ≤ 1)

1− ρt

αt(x−1)1.7+x
(x > 1) (5)

x =
ε

εt,r
(6)

ρt =
ft,r

Ecεt,r
(7)

4.2. Reliability Verification of FEM

Figures 30–38 show the overall stress distribution of No. 1 to No. 9 specimens and
the comparison between the failure phenomenon of the finite element model and the
experimental phenomenon. From left to right are the failure phenomenon of the test, the
failure phenomenon of the finite element model, the failure phenomenon of the steel pipe
in the finite element model, and the failure phenomenon of the core concrete in the finite
element model.

The failure process and overall stress distribution of the T-1 to T-3 specimen models are
shown in Figures 30–32. During the whole loading process, the compression zone begins to
yield first. As the load increases, the yield surface gradually expands, and the plastic zone
expands. Finally, the surface of the steel tube on the compression side is severely deformed
by bulging, followed by bending. The finite element analysis results are in good agreement
with the test results.
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Figure 30. Stress distribution and failure phenomenon of finite element model of T-1 specimen:
(a) Test failure mode; (b) Numerical calculation of failure mode; (c) Failure modes of steel tube;
(d) Failure modes of concrete.
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Figure 31. Stress distribution and failure phenomenon of finite element model of T-2 specimen:
(a) Test failure mode; (b) Numerical calculation of failure mode; (c) Failure modes of steel tube;
(d) Failure modes of concrete.
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Figure 32. Stress distribution and failure phenomenon of finite element model of T-3 specimen:
(a) Test failure mode; (b) Numerical calculation of failure mode; (c) Failure modes of steel tube;
(d) Failure modes of concrete.
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The failure process and overall stress distribution of the specimens T-4 to T-9 are
shown in Figures 33–38. During the whole loading process, the stress in the compression
zone increases the fastest; it first enters the plastic development stage, and the surface
of the compression side has bulging deformation. Finally, it was damaged due to bend-
ing instability, and the finite element analysis results were in good agreement with the
experimental results.
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Figure 33. Stress distribution and failure phenomenon of finite element model of T-4 specimen:
(a) Test failure mode; (b) Numerical calculation of failure mode; (c) Failure modes of steel tube;
(d) Failure modes of concrete.
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Figure 34. Stress distribution and failure phenomenon of finite element model of T-5 specimen:
(a) Test failure mode; (b) Numerical calculation of failure mode; (c) Failure modes of steel tube;
(d) Failure modes of concrete.
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Figure 35. Stress distribution and failure phenomenon of finite element model of T-6 specimen:
(a) Test failure mode; (b) Numerical calculation of failure mode; (c) Failure modes of steel tube;
(d) Failure modes of concrete.
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Figure 36. Stress distribution and failure phenomenon of finite element model of T-7 specimen:
(a) Test failure mode; (b) Numerical calculation of failure mode; (c) Failure modes of steel tube;
(d) Failure modes of concrete.
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Figure 37. Stress distribution and failure phenomenon of finite element model of T-8 specimen:
(a) Test failure mode; (b) Numerical calculation of failure mode; (c) Failure modes of steel tube;
(d) Failure modes of concrete.
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Figure 38. Stress distribution and failure phenomenon of finite element model of T-9 specimen:
(a) Test failure mode; (b) Numerical calculation of failure mode; (c) Failure modes of steel tube;
(d) Failure modes of concrete.

The ultimate bearing capacity values and corresponding parameters of specimens
1–9 obtained through finite element analysis calculations are listed in Table 10. The ratio
between the calculated value of finite element simulation and the test value is calculated in
the table.

Table 10. Ultimate bearing capacity of T-shaped concrete-filled square steel tubular composite
special-shaped column under eccentric compression.

Specimen L/mm e/mm Eccentric Direction λ Nuf/kN Nue/kN Nuf/Nue

T-1 600 20 x+ 7 3042.57 3058.00 0.99
T-2 600 40 y+ 10 2348.86 2290.90 1.03
T-3 600 60 y− 10 1818.53 1898.70 0.96
T-4 1500 20 y+ 25 2583.20 2409.70 1.07
T-5 1500 40 y− 25 1943.16 1859.50 1.04
T-6 1500 60 x+ 17 1925.75 2036.30 0.95
T-7 1800 20 y− 29 2358.61 2459.50 0.96
T-8 1800 40 x+ 20 2205.27 2340.00 0.94
T-9 1800 60 y+ 29 1574.10 1534.30 1.03

Notes: L denotes the length of the test piece; e denotes eccentricity; λ denotes slenderness ratio; Nuf denotes the
simulated value of bearing capacity; Nue denotes the test value of the ultimate load. The steel strength grade of
the test piece is Q235B, the concrete strength grade is C30, and the wall thickness of the steel pipe is 4 mm.

4.3. Load–Strain Curve of FEM

Figure 39 shows the comparison between the load–strain of the nine specimen models
and the test results, Ei represents the test result of the i-th specimen, and FEi represents
the finite element calculation result of the i-th specimen. Through the test and the finite
element load–strain curve, it can be found that in the elastic stage, the longitudinal strain
of the steel pipe increases gradually with the increase in load. After entering the plastic
stage, the strain growth accelerates, the steel deforms greatly, and the bearing capacity of
the component decreases slowly. The experimental results are in good agreement with the
finite element calculation results.
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Figure 39. Load–strain curve of FEM: (a) load–strain curve of T-1; (b) load–strain curve of T-2;
(c) load–strain curve of T-3; (d) load–strain curve of T-4; (e) load–strain curve of T-5; (f) load–strain
curve of T-6; (g) load–strain curve of T-7; (h) load–strain curve of T-8; (i) load–strain curve of T-9.

4.4. Load–Deflection Curve of FEM

Figure 40 shows the finite element calculation results and test results of the load N
and the horizontal deflection w of the T-1 to T-9 specimens. Ei represents the experimental
value of the i-th specimen, and FEi represents the finite element calculation value of the
i-th specimen. Before the specimen reaches the ultimate load, the horizontal deflection
of the specimen is small. After reaching the ultimate load, the horizontal deflection of
the specimen gradually increased with the decrease in load; after reaching the ultimate
load, the specimen showed good ductility; the finite element calculation curve was in good
agreement with the experimental curve.
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Figure 40. Load–deflection curve of FEM: (a) load–deflection curve of T-1; (b) load–deflection curve
of T-2; (c) load–deflection curve of T-3; (d) load–deflection curve of T-4; (e) load–deflection curve of
T-5; (f) load–deflection curve of T-6; (g) load–deflection curve of T-7; (h) load–deflection curve of T-8;
(i) load–deflection curve of T-9.

5. Conclusions

The effects of specimen length, eccentric distance, and eccentric direction on the eccen-
tric compression performance of T-shaped concrete-filled square steel tubular composite
special-shaped columns are studied through an eccentric compression test, and the calcu-
lated values in the code are compared with the experimental values. The numerical analysis
model of a T-shaped concrete-filled square steel tubular composite special-shaped column
is established by using the general finite element numerical analysis program, ABAQUS.
The modeling calculation of nine specimens in the test is carried out to verify the test results
and theoretical analysis results.

1. The failure mode of the T-shaped short column specimen is mainly strength failure,
and the long column specimen is mainly bending instability failure. The ultimate
bearing capacity of the short column under eccentric compression is higher than
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that of the long column. The bending deformation of the specimen is similar to the
sinusoidal half wave curve, and there is no torsional deformation. In the process of
the eccentric compression failure of the T-shaped concrete-filled square steel tubular
composite special-shaped column, the strain in the compression area is large, and
the steel pipe wall in the compression area first begins to yield and enters the plastic
stage, resulting in large bulging deformation and bending deformation.

2. During the stress process of the specimen, the strain distribution on the section in the
middle of the column is consistent with the plane section assumption. The compres-
sion area yields before the tension area. The deformation of tensile and compressive
stress areas is relatively coordinated, the cooperative working performance of all parts
of the specimen is good, and the specimen has good ductility.

3. The eccentricity has the greatest influence on the mechanical properties of the spec-
imen under bias pressure, followed by the eccentricity direction, and finally the
specimen length. The influence of eccentricity and eccentricity direction on the me-
chanical properties of the specimen under bias pressure is more significant than the
specimen length.

4. The finite element calculation results are in good agreement with the experimental
results. The simulated value of ultimate bearing capacity is basically consistent with
the test value, and the failure mode of the finite element specimen model is also
consistent with the test. The finite element calculation model of the T-shaped concrete-
filled square steel tubular composite special-shaped column has good reliability and
can be used as the basis of theoretical calculation and analysis.

5. Comparing the calculation results and test results of six codes at home and abroad, it
is found that the calculated values of the concrete-filled steel tubular bearing capacity
formula recommended by DBJ / T13-51-2010 and AIJ are in good agreement with the
test values, but the calculation results of DBJ / T13-51-2010 are less discrete.
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