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Abstract: An important aspect in improving the energy efficiency of buildings is the effective use
of building heating and cooling load prediction models. A lot of studies have been undertaken in
recent years to anticipate cooling and heating loads. Choosing the most effective input parameters as
well as developing a high-accuracy forecasting model are the most difficult and important aspects of
prediction. The goal of this research is to create an intelligent data-driven load forecast model for
residential construction heating and cooling load intensities. In this paper, the shuffled shepherd
red deer optimization linked self-systematized intelligent fuzzy reasoning-based neural network
(SSRD-SsIF-NN) is introduced as a novel intelligent data-driven load prediction method. To test the
suggested approaches, a simulated dataset based on the climate of Dhahran, Saudi Arabia will be
employed, with building system parameters as input factors and heating and cooling loads as output
results for each system. The simulation of this research is executed using MATLAB software. Finally,
the theoretical and experimental results demonstrate the efficacy of the presented techniques. In terms
of Mean Square Error (MSE), Root Mean Square Error (RMSE), Regression (R) values, Mean Absolute
Error (MAE), coefficient of determination (R2), and other metrics, their prediction performance is
compared to that of other conventional methods. It shows that the proposed method has achieved
the finest performance of load prediction compared with the conventional methods.

Keywords: energy consumption; data-driven; prediction; building; heating load; cooling load; optimization

1. Introduction

The proportion of residence structures has grown during the last ten years of global
concern about climate change, worldwide carbon emissions, global warming, urbanization,
and rapid construction development [1]. Many procedures and technologies in residential
and commercial buildings serve to keep the environment at a pleasant and favorable level,
but they cost energy, which adds to the heating and cooling burden [2]. A lot of studies have
been conducted on the energy profile of buildings, as well as many elements of efficient
building development [3,4]. In Saudi Arabia, numerous residential buildings are attached
or semidetached, which require more cooling and heating than ordinary flat residences [5].
Temperature, humidity, the operations of sunlight devices, and the construction and design
elements of buildings all have a role in the heating and cooling of structures [6].

The material used in wall surfaces, the relative compactness of building structures,
the glazed windows region, the ceiling dimensions, the outer layer and density of the
building, the outer layer and density of the wall, the roof height, the number of wall
surfaces and their region, the orientation of the halls and the building, and the stand
over height are all involved in construction and relate to the environment. However,
several aspects of the building design and layout have a significant effect with regard to
the building’s warming and chilling load, which has a direct impact on the building’s
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overall performance [7]. Thus, by alleviating the computational load for optimum design,
which includes multiple building feature subsets, an accurate and rapid forecast of space
heating as well as cooling loads improves energy saving and carbon emission mitigation [8].
Developing machine learning techniques for predicting heating and cooling needs can
assist in improving the effectiveness and precision in real time [9]. Conventional heating
and cooling predictive modeling algorithms include the minimax probability machine
regression (MPMR) [10], deep neural network (DNN) [11], Gaussian process regression
(GPR) [12], and gradient boosted machine (GBM) [13]. Moreover, artificial neural networks
(ANN) [14], categorization and regression trees (CART) [15], general linear regressions
(GLR) [16], and chi-squared automated interaction detectors (CHAID) [17] were used to
forecast the cooling and heating requirements of the building.

As a result, various hybrid methodologies based on ANN and meta-heuristic schemes
have been developed for forecasting a building’s heating and cooling demand efficiency,
including the imperialist competitive algorithm (ICA) [18], artificial bee colony (ABC) [19],
genetic algorithm (GA) [20], whale optimization [21], bat optimization [22], and particle
swarm optimization (PSO) [23]. However, such factors have been utilized in certain
studies with little benefit. Meteorological parameters were employed as an indication and
input for estimating apartment building cooling/heating demands in the majority of the
preceding academic studies [24]. Environmental and climatic conditions do not affect the
cooling/heating loads of residential construction; this is indisputable. However, sudden
weather changes might cause sustainable models to be disrupted, lowering the reliability
factor and enhancing the error in the process [25].

This research focuses on the construction and design characteristics of the building,
as well as their effects on heating/cooling loads. Besides constructing supervised classifi-
cation forecasting models, the research applied in-depth testing on structural features for
building energy. The quantity of the cooling/heating load was regarded as an outcome
parameter, although a collection of information on the structural attributes of the structure
was regarded as an input parameter. The following are the main research contributions:

• A dataset was produced in the Dhahran area of Saudi Arabia for estimating power
requirements based on building attributes in a dry climate.

• After collecting the data, the preprocessing and feature extraction function is applied
for improving the prediction model using a knowledge-based approach.

• Then, to predict building heating/cooling demands, the SSRD-SsIF-NN technique is
presented with various parameter tunings.

• Building energy demand simulations are conducted to anticipate heating and cooling
demands in dry climates. In contrast to various studies, the prediction methods depend
on the characteristics of the study instead of on previous results on energy usage.

• A simulation analysis is conducted by varying the input parameters.
• The actual performance and the theoretical load prediction of the existing structure

are compared.

The rest of the essay is organized as follows. The definition of investigation gaps is
given in Section 2, along with a short assessment of the relevant publications. Section 3
describes how the issue is stated. Section 4 includes detailed explanations of the sug-
gested technique. Section 5 discusses the experimental outcomes as well as the efficiency
comparison with state-of-the-art frameworks. Section 6 is the paper’s conclusion.

2. Related Work

The heating/cooling loads in buildings are closely connected to energy performance,
and various studies have been undertaken in this area. Because cooling/heating loads are
considered key factors for examining building energy efficiency, the necessity to anticipate
and assess them for residential structures appears to be unavoidable. As a result, Xu,
Yuanjin, Fei Li, and Armin Asgari [26] sought to optimize the multi-layer perceptron-based
neural network utilizing a variety of optimization techniques in order to anticipate the
heating/cooling of energy-efficient architecture. The database used for this investigation
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is made up of eight different variables, such as total area, space limitations, wall region,
and so on. Optimizing has the highest accuracy in both the learning and test data for
cooling/heating loads. The normed RMSD, RMSD, and MAE have the lowest values, as
well as adjusted R2, as per the study findings.

The multi-target forecasting of heating/cooling loads through HVAC systems uses
hybrid intelligent methodologies: the wind-driven-based optimization (WDO), grasshop-
per optimization algorithm (GOA), and biogeography-based optimization (BBO) were
employed by [27]. Some swarm-based rounds are carried out to optimize the applicable
methods, and the optimum design for each simulation is provided. In regard to the heating
load, the suggested WDO-ANN offered an accurate forecast, while in terms of cooling
capacity, it provided the finest forecast.

While earlier research has focused on point forecasts, Rana and Mashud [28] focused
on predicting prediction pauses for the building cooling/heating load in this work. A data-
driven technique for predicting prediction periods for building cooling demand is provided
here, which initially employs a machine learning subset of feature techniques to find a
limited but useful collection of factors. The findings demonstrate that the suggested method
may yield a narrow and trustworthy forecasting period while fulfilling the penetration
probabilities that have been defined.

To determine the energy requirement of the structures for heating and cooling, Li,
Xinyi, and Runming Yao [29] combined the physical analytical model with the data-driven
technique. The severity of heating/cooling energy consumption was then predicted using
a variety of machine learning algorithms (EUI). The findings reveal that machine learning
methods can accurately estimate building heating and cooling EUI. At the single-cell
level, the most accurate method is quadratic kernel-based supported vectors extraction,
while the Gaussian perceptron support-vector training has the highest accuracy at the
inventory levels. Kim, Daeung Danny, and Hye Soo Suh [30] used the statistical technique
to design a forecast model for energy usage in residential structures. The links between the
design elements and heating/cooling load of energy usage in residential structures were
detailed utilizing the response surface approach. To establish a prediction model for the
heating/cooling load of energy usage, the connection has validated the dependencies of the
energy consumption on key design factors of exterior technologies in residential structures.
With only a few design factors, the created model can provide a quick energy estimate for
apartment structures. Additionally, it may quickly determine the most significant design
component for creating a more efficient energy residential building layout.

Tran et al. [31] developed an evolutionary Neural Machine Inference Model (ENMIM)
for predicting energy usage using actual data from residential structures. Their novel
ensembles model combines the Radial Basis Function Neural Network and the Least
Squares Support Vector Regression (LSSVR), two separate supervised learning devices
(RBFNN). For forecasting resource usage, the created model is more accurate than previous
comparable artificial intelligence systems.

In the study that was conducted by Zhou et al. [32], the artificial bee colony (ABC)
and particle swarm optimization (PSO) metaheuristic algorithms were used to optimize
the MLP neural network. This was done in order to make accurate predictions regarding
the heating and cooling loads of energy-efficient buildings that are used for residential
purposes. In order to do this, they made use of a dataset that had eight independent
variables. According to the findings of their study, making use of the ABC and PSO
algorithms makes the MLP perform better. In addition to this, they came to the conclusion
that, in terms of MLP performance improvement, PSO was superior to ABC.

In order to study how well machine learning can estimate the heating and cooling
loads of buildings, Seyedzadeh et al. [33] created two datasets using two distinct kinds
of modelling software. In order to investigate the different permutations of the model
parameters, a gridsearch and a cross-validation approach were used. The findings revealed
that, among the five models that were investigated, the Gradient Boosted Regression Trees
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(GBRT) deliver the most accurate forecast predictions depending on the RMSE. On the
other hand, NNs were shown to be the most effective at dealing with complicated datasets.

Sharif and Hammad [34] centered on the creation of an ANN model with the goal of
predicting energy consumption using a big and difficult dataset supplied by the SBMO
model. According to the results of this research, the ANN models that were recommended
were able to yield accurate predictions. These scenarios included the building envelope,
HVAC, and lighting systems.

In a work by Singaravel et al. [35], 201 design scenarios were used to evaluate the
deep learning model against a simulation of a building’s functionality. With an R2 of
0.983, the deep learning model demonstrated remarkable accuracy for cooling predictions.
With additional heating data from a more accurate sample model, the model’s R2 of
0.848 inaccuracy for heating predictions may be eliminated. According to the research,
deep learning simulation results may be obtained in 0.9 s, which is regarded as a high
calculation speed for simulating structure efficiency.

The cooling demand of big industrial structures was predicted by Gao et al. [36]
using a hybrid forecasting model based on the random forest-improvement parallel whale
optimizing-extreme learning machine neural network (RF-IPWOA-ELM). The experimental
findings demonstrate that the RMSE and MAPE of the RF-IPWOA-ELM model accurately
estimate the cooling demand for these two structures. The suggested hybrid model may
be used as a trustworthy tool for cooling load prediction in the administration and energy
saving of air conditioning systems.

Wei et al. [37] used seven common machine learning techniques to determine the
best prediction method in a local heating load sample from Shanghai, China. To evaluate
the model’s effectiveness, data from a power transmission sensor, a heat sensor, and the
current weather are merged into several input options. The findings demonstrate that
SVR outperforms all others in MAPE. Further analysis reveals that the continual length-
ening of previous datasets does not affect performance. The preceding literature analysis
demonstrates the successful application of data-driven algorithms to handle building
heating/cooling load forecast issues. Nevertheless, subsequent research deficiencies have
been identified:

• The majority of the research is being undertaken in non-arid regions such as Canada,
Greece, the United States, and China.

• The benchmark dataset of the conventional technique is used in many studies that
employ building attributes as inputs to the forecasting model. Some self-generated
statistics are kept secret and cannot be replicated experimentally.

• There is some advice on how to utilize deep learning techniques and how to modify
them for the highest predicted accuracy and completeness for the assigned task.
While most research includes machine learning techniques, deep learning, as well as
optimization, are infrequently employed.

• As a result, utilizing a bigger, accessible self-generated database in Dhahran, a typical
desert climatic zone, this research sets out an applicable strategy for adapting smart
data-driven frameworks to building energy performance data.

3. Problem Statement

Predictive cooling/heating load is an effective method for ensuring future energy
use. A significant number of academics are investigating the strategies and models for
predicting cooling/heating demand in green buildings using machine learning and artificial
intelligence techniques. Due to numerous issues that the researchers encountered, linked
to building features, weather conditions, and data produced by the process control itself,
the proposed methodologies differ in their ability to produce precise and reliable outcomes.
Because linear regression is often utilized, it is more difficult to describe the function that
connects to the aforementioned issue than the cooling/heating load. Furthermore, the
non-linear structure of building systems complicates the connection.
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The forecasting models require a lot of specific details from the building features, which
might be difficult to assess and calculate. The operations and conduct of the residents within
the building are predictable, since their behavior does not follow a specific order and varies
irregularly. Thus, this research proposed an intelligent data-driven approach to anticipate
the cooling and heating load in Dhahran buildings in response to the aforementioned issues.

4. Proposed Framework

This research is focused on thermal load characteristics for residential structures, as
their real-world activities are heavily influenced by building design requirements. Building
design rules attempt to decrease energy usage by taking into account two main terms
of heating/cooling load. The proposed framework of a predictive model is illustrated
in Figure 1. Some procedures were followed in the current investigation. The factors of
the residential building layout were first discovered. The buildings in Dhahran, Saudi
Arabia, were chosen for the data collection on design characteristics. The initial step in data
preparation is to filter the data. Furthermore, by obtaining relevant features for validation,
feature extraction methods may be utilized to improve the prediction performance of the
proposed model. A prediction model for the cooling and heating load of the development
of a domestic structure’s energy usage uses SSRD-SsIF-NN. Following that, the proposed
models anticipate the study’s outputs of heating and cooling demand. In the last phase,
the suggested models’ error efficiency is measured using the leftover 30% of the test data
depending on the discrepancies between the true calculated data and the anticipated values
derived from the developed model. Then, the performance analysis is performed for the
effective measurements.

Figure 1. Proposed framework of the predictive model.
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4.1. Pre-Processing and Feature Extraction

Filtering the data is the initial step in data preparation. The information is organized by
the date-time index in order of decreasing importance. Data that are erroneous, anomalous,
or duplicated are found and deleted. The missing data are again filled using knowledge-
based interpolation. The method of translating raw information into information features
that can be examined while keeping the information from the source dataset is carried out
by feature extraction. It produces better outcomes than applying prediction techniques to
raw information automatically. By splitting the inputs and predicting the aim, a singular
sample is produced after the feature extraction procedure.

The acquired dataset of the heating and cooling loads is arbitrarily split into two
different portions—the training data and the testing data—in this stage. Additionally,
70% of the entire data are utilized for building the model in order to develop a good
prediction model and to develop the link across both the heating and cooling objectives and
their significant components, according to a well-delivered train/test database selection. In
order to test and validate the model, the other 30% of the information would be employed.

4.2. SSRD-SsIF-NN-Based Prediction

A quantitative performance indicator is assessed for validity. SSRD-SsIF-NN is the
combination of a self-systematized intelligent fuzzy reasoning-based neural network and a
hybrid meta-heuristic optimization approach. The parameters of SsIF-NN are tuned by the
SSRD optimization technique.

4.2.1. SsIF-NN Methodology

These tools are frequently used to represent difficult engineering problems. By gener-
ating non-linear relationships, this artificial intelligence (AI)-based approach will attempt
to build a link between a sequence of given input layers and one or more output neurons.
A fuzzy inference system layer, four hidden layers, and a defuzzification layer make up
the SsIF-NN structure. Figure 2 depicts the suggested predictive model. The fuzzifica-
tion layer transforms the feature selection’s sharp input into a fuzzy collection of values.
Floors Area, Number of flats, Gross Area, Roof Area (m2), Study Area, Module Orienta-
tion, Parapet Wall Height (m), Annual Consumption (kWh), and Utilization Factor are
the inputs of the SsIF-NN structure. The heating and cooling load is the output of the
proposed approach. The input activation function and layer result were both specified in
Equations (1) and (2), correspondingly.

Input = a
[
z(s)1 , z(s)2 , . . . z(s)n ; b(s)1 , b(s)2 , . . . .b(s)n

]
(1)

Output = F(s)
o = fa(input) = f (a)

a (2)

where the inputs to this unit are z(s)1 , z(s)2 , . . . . . . ..z(s)n and the link weights are b(s)1 , b(s)2 , . . . . . . b(s)n .

The layer number is denoted by f (.)a and the superscript in the overhead equation is denoted
by (s). The activation function is described as follows: each node’s second function is to
create an activation value based on its primary input.

The following six stages of the prediction model are explained. There are no computa-
tions performed by this layer. This layer’s terminals, each of which corresponds to a certain
input factor, only transmit data to the following layer. This is accurate, and the first layer
connection weight factor is

[
b(1)i

]
one, according to Equation (3).

a = z(s)1 and f (1)a = aa = z(s)1 and f (1)a = a (3)
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Figure 2. The proposed model of the SsIF-NN method.

Fuzzification is achieved in the second layer by finding the membership function
parameters of an input to a group of Gaussian MFs. Each component in this provided a
good one to one of the linguistic values of the input variables in the first layer (medium,
small, large, etc.). This research makes use of a Gaussian membership characteristic, which
has been proved to be a global prediction technique of any dynamic function on the basis
of Equation (4).

a
[
z(2)iu

]
= −

[
z(2)i − fiu

]2

σ2
iu

and f (2)a (a) = ta (4)

where the Gaussian MF of the uth element of the ith input factor has a mean and variance of
fiu and σiu, respectively. As a solution, the weight of a second-layer link may be expressed
as fiu. Equation (5) may be used to compute the normalized fuzzy closeness between a
fresh fuzzy sample z1f and uth the stored characteristic L1(u),

Nu =
‖z1 f − L1(u)‖g

∑n
u=1 ‖z1 f − L1(u)‖g

(5)

Here, g-norm is the abbreviation for ‖.‖g. The g-norm ‖d‖g+z ≤ ‖d‖g for d ∈ <n,
u ≥ 1, g ≥ 0 of each given vector ‖d‖g does not expand with g; all other norms are lower-
bounded by the 1-norm. As a consequence, the Euclidean system was implemented g = 2
Radial basis models may also be used to determine rule neuron activation thresholds.
Equation (6) is used in this section.

f 1i = 1− Nu (6)

where f 1i, Nu ∈ [0, 1]. This threshold controls the model’s sensitivity to the generation
or modification of rule neurons q ∈ [0, 1]. With higher scores, larger numbers of hidden
neurons and attributes are feasible. Assume that the threshold value is set at 0.3 by default,
which was created in each of the iterations. If the number of neurons develops at a faster
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pace than the set rate, the number of neurons grows at a slower rate F > ε, and the number
of neurons increases at F > ε

If F > ε , q is reduced, q(n + s) =
[

1 +
F− ε

s

]
q(n) (7)

If w < β, q is increased, q(n + s) =
[
1 +

ε

s

]
q(n) (8)

This layer’s nodes also each have one fuzzy inference system rule and execute prereq-
uisite testing. For the third layer part, the AND function was utilized, as seen below

a
[
z(3)i

]
= ∏

i z(3)i = t−[Ri(z− fi)]q[Ri(z− fi ] and f (3)a (a) = ta (9)

The number of second layers is stated as being engaged in the IF component of the
fuzzy rule, and the diagonals are written as

Ri = d
(

1
σi1

,
1

σi2
, . . . . . . . . .

1
σin

)
and fi = d( fi1, fi2, . . . . . . . . . fin)

T

In the third layer, there is just one weight connection,
[
b(3)i

]
. The firing intensity of

the connected fuzzy rule is reflected in the third layer consequences. The subsequent layer
has the same number of components as the third layer, the firing strength estimated in the
third layer is normalized in this layer by Equation (10), and the weighted link in the fourth
layer is also one

[
b(4)i

]
.

a
[
z(4)i

]
= ∑i z(4)i and f (4)a (a) =

z(4)i
ta (10)

A discriminative method that estimates the probability and a sample from training
data rather than the prediction model delivers superior results that accurately depict the
data distribution. The purpose of generative training is to reduce the chances of people
making poor decisions. The second MF layer has two distinct modes, which are shown
in Figure 2 as blank and shaded circles, respectively. The basic node, denoted by empty
circles, is a fuzzy set specified by the Gaussian membership degree of the outcome variable.
In the local mean of maximum (LMOM)-based defuzzification approach, the center of each
Gaussian membership value is simply relayed to the next layer, while the width is just
employed for output grouping. The activation of the winning neuron is propagated by
Equation (11), using a saturated scaling factor of the type

Gmax =


0 i f G(Fmax)B2 < 0
1 i f G(Fmax)B2 > 1

G(Fmax)B2 otherwise
(11)

Furthermore, Gmax is the neuron with the highest membership value and G(Fmax) is the
activation. The error e* among the actual fuzzy outcome vector z1f and G(Fmax) is contrasted
to a threshold q. If the mistake exceeds the threshold, a rule neuron is formed. Meanwhile,
the leading neuron weight parameters w1 and w2 are generated from Equation (12) for the
shaded and blanked portion,

B1n(s + 1) = B1n(s) + µ1(zi − B1n) (12)

B2n(s + 1) = B1n(s) + µ2Gmaxe∗ (13)

Here, µ1 and µ2 are the constant learning values, and zi is the ith input vector. The
same fuzzy numbers can be given for various rules if many fourth-layer terminals are
linked to the same fifth-layer empty element. By integrating these two components in the
fifth layer, the whole function provided by this layer can be explained.
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f (5)a (a) =
(
∑i ziuzu + fa0j + B1n(s + 1) + B2n(s + 1)

)
z5

j (14)

The mean of the Gaussian MF is expressed. Only when the shaded element is necessary
is it produced. The summing is over the important phrases associated with the darkened
node alone, and qxj is the relevant variable. This layer’s nodes each relate to a single output
variable. The node collects all fifth-layer ideas and functions as a defuzzifier, predicting the
proper outcomes.

a
[
z(6)i

]
= ∑i z(6)i and f (6)a (a) = a (15)

The output of the proposed algorithm provided the consequences of the heating and
cooling load in residential buildings.

4.2.2. SSRD of Parameter Tuning

The SSRD optimization algorithm is a combination of the shuffled shepherd and red
deer optimization algorithms. The fitness of both algorithms is considered for the parameter
tuning of the proposed SsIF-NN predictive model in the residential building energy load.
The purpose of optimization is to create a global solution that takes into account all of the
problem’s factors. Figure 3 also displays the flowchart for the suggested prediction system.
The values of the fuzzy variable and ta parameters are to be optimized in this case.

Figure 3. The flowchart of the proposed SSRD for SsIF-NN parameter optimization.

Initialization: The algorithm is initialized; the parameters in the array form Equation (16):

p(r) = f (t1, t2, . . . . . . ..tn) (16)

In the solution space, the mathematical analysis initiates SSRD with a randomly
determined beginning population parameter:
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T0
q,w = Tmin + ran× (Tmax − Tmin); q = 1, 2, . . . . . . . . . x and w = 1, 2, . . . . . . y (17)

where Tmin and Tmax are the lowest and maximum fuzzy model parameter bounds, respec-
tively; ran is a random variable formed between 0 and 1 for each element; x is the number
of persons in each parameter group; and y is the total number of parameters in the groups.

Shuffling: According to their goal features, the initial point x of each population is
randomly placed in the first column of the cross conditions (Equation (18)), as between
members of each population. The subsequent members x are chosen in the same way
as the previous step and are organized in a random order in the section to create the
second column of the multi-community parameter. This procedure is continued y until the
following multi-community matrix is created:

Tp =


T1,1 T1,2 T1,y T1,y
T2,1
Tq,1
Tx,1

T2,2 T2,y T2,y
Tq,2 Tq,w Tq,y
Tx,2 Tx,w Tx,y

 (18)

It is worth noting that each row of the multi-community parameter reflects an in-
dividual from each group, with the top column being the best values from each group.
Furthermore, the persons in the last segment are the weakest variables in the group.

Optimal value selection: After shuffling the variables, the best and worst values are
selected for the finest tuning of the SsIF-NN model. Equations (18) and (19) are used to
calculate the worst and best functions of the step size for adjusting the parameter

Sw
q , w = α× ran1 ×

(
Tq,w − Tq,w

)
(19)

S f
q , w = β× ran2 × (Tq, f − Tq,w) (20)

Compared to Tq,w, ran1 and ran2 are random variables, with each component formed
between 0 and 1, respectively; Tq,f and Tq,w are the superior and worse variables in terms of
optimal value. To establish a specific step size for each member of the group, two factors
are utilized. The functional form for the step size is as follows:

S
q,w=Sw

q,w+S f
q,w

. . . .q = 1, 2, . . . . . . . . . x and w = 1, 2, . . . . . . y (21)

The potential to explore more areas of the solution space is shown by the first variable
Sw

q , w. The capacity to explore the surroundings of previously visited prospective solution

space portions of the intensification approach is the second variable S f
q , w.

It is worth noting that the xth community’s initial parameter Tq,1 lacks an affiliate that

is superior to it. As a result, S f
q , w has the same value as 0. As a result of the xth group’s

final parameters, Tq,y does not have a worse parameter than itself. As a result, Sw
q , w is

also zero. Furthermore, α and β are the variables that have an impact on both exploration
and exploitation.

New Tuning Position: If the neighbors’ objective functions are better than the attained
fuzzy values, the fuzzy values are replaced with the preceding ones. Allow all fuzzy values
to modify their positions in reality. The following equation is presented to update the
location of the fuzzy value:

Snew =

{
Sold + t1 × ((U − L) ∗ t2) + L) i f t3 ≥ 0.5
Sold − t1 × ((U − L) ∗ t2) + L) i f t3 < 0.5

(22)

Limit the search field to where and when older value neighborhood responses are
appropriate. As a result, they are the upper and lower boundaries of a random search, U
and L. Sold denotes the current fuzzy scenario, whereas Snew denotes the modified position.
Homogeneity between 0 and 1 is employed to develop t1, t2 and t3 for the randomization
of nature’s tuning mechanism.
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Normalized Energy variables: The following expression can be used to calculate the
general normalized power.

Ek =

∣∣∣∣∣ Pk

∑N
i=C1

Pi

∣∣∣∣∣ (23)

where pk is the energy of the kth main node and Nc is the number of variables. To find the
nearest hind, divide the distance among an MF, which is estimated with the ith dimension.

Termination: After a chosen maximum iteration, the optimization procedure will be
completed. If it is not, it goes back to step one for another round of repetitions.

5. Results and Discussion

The proposed prediction models were developed using the MATLAB 2019b software
program and settings on a desktop PC with an Intel Core i-7 9700K processor, 16 GB RAM,
and a 3.6 GHz clock speed, as well as the Windows 10 64-bit operating platform.

5.1. Case Study

The district meteorological station has been established in Al-Dhahran. The research
employed the use of climatic variables from Al-Dhahran. In the Saudi Arabian metropolis
of Al-Dhahran, the study area covers more than 100 km2 and includes 33,000 residential
properties. For more than a 38-year span, the average global temperature data were
obtained. The hottest month is July, with the maxima reaching 49 ◦C and a mean high
temperature of 43 ◦C. The coldest month is January, with a mean low temperature of 11 ◦C.
Summers in Al-Dhahran are hot and muggy, with an estimated average of 100% relative
humidity (RH) ranging between 61 and 90 percent and the daily total minimum RH ranging
between 15 and 46 percent over the year. During the year, the area features clear skies with
rare sandstorms that reduce sun irradiation. With a total surface area of 254 m2, a 1.7 m-high
parapet wall, and a PV utilization ratio of 0.13, the roof is rectangular. In addition, site
inspections were made to further understand the roof’s qualities and the nearby regions of
70 model buildings. To understand the differences in building features, specimens from
several residential districts around the city were tested. The database includes 70 samples,
each with nine characteristics, namely, z1, z2, z3, z4, z5, z6, z7, and z8, along with b1 and b2
as objective functions (see Table 1). Using the preceding properties as objective functions,
this study tries to predict y1 as the heating load and y2 as the cooling load.

Table 1. Description of the case study’s input and output data.

Variables Symbols Values

Floors Area z1 504 m2

Number of Flats z2 14
Gross Area z3 254 m2

Roof Area (m2) z4 254
Study Area z5 100 m2

Module Orientation z6 Main elevation facing east
Parapet Wall Height (m) z7 1.7

Annual Consumption (kWh) z8 188,740
Utilization Factor, UF z9 0.3

Cooling Load b1 -
Heating Load b2 -

5.2. Performance Analysis

The NMAE and NRMSE are context-independent and may be used to compare the
performance of the model on building heating and cooling load strength with various input
ranges. Smaller numbers for RMSE, like MSE, imply a better performance of the model.
The correlation between the actual and predicted variables is measured by the R value.
The nearer the R value is to 1, the greater the association is and the better the model’s
effectiveness is. R2 measures how much variance in the relying factor can be anticipated



Buildings 2022, 12, 1677 12 of 18

from the independent factors. The nearer the R2 number is to 1, the greater the relative
value is and the better the model’s performance is. The preceding formulae are used to
compute each of the categories referenced, where ap and bp are the actual and anticipated
values for sample p, respectively. Furthermore, a and b show the average of the actual and
desired heating/cooling load intensity for a building, where M is the representative sample
and A is a simulation run in MATLAB that represents the average of the building’s initial
heating and cooling load strength.

R =
∑M

p=1
(
ap − a

)
(bp − b)√

∑M
p=1
(
ap − a

)2
∑M

p=1(bp − b)2
(24)

R2 = 1−
∑M

p=1
(
ap − bp

)2√
∑M

p=1(ap − b)2
(25)

RMSE =

√
1
M ∑M

p=1

(
ap − bp

)2 (26)

MSE =
1
M ∑M

p=1

(
ap − bp

)2 (27)

MAE =
1
M ∑M

p=1

∣∣ap − bp
∣∣ (28)

NRMSE =
RMSE

A
(29)

NMAE =
MAE

A
(30)

During the training stage, Figure 4 shows a good correlation coefficient between the
actual values and the projected value for the presented approach. Considering the massive
correlation between the goal data and each channel’s outcome, it is evident that all of these
systems survived the training phase with excellent grades. Great training implies that the
system can recognize statistical properties in the types of information and forecast new data
using the learned structures, allowing each system to learn how much cooling and heating
load is necessary for every building with unique features. Each model can anticipate the
quantity of cooling and heating loads based on the test stage’s data input with some of
this training.

Each model is verified by early test data once it has been trained (30 percent of
100 percent). This is a form of a practice run for the training stage, which is handled entirely
by the system. Figure 5 shows the forecast error in the testing or validation stage, which is
one of the foremost essential metrics in assessing the outcomes, in a histogram manner, for
the SSRD-SsIF-NN. The minimal and largest prediction errors are indicated by the error
histogram framework’s error. This indicates that the number of inaccuracies that all of the
trained systems can have in forecasting the cooling and heating loads for such a testing set
is equivalent to the quantity stated in the statistics.

It can be inferred by examining and analyzing each of the above statistics, which reflect
the effectiveness of each system throughout the first training stage as well as the testing
stage, that the suggested techniques’ training has been well verified using the needed data.
It is worth mentioning that, whenever a model is trained with extreme accuracy, it is well
built, and the number of failures in the validation as well as the first testing procedure
is more dependent on the data quality. It also indicates that the system will be able to
examine and forecast new and untested data with accuracy. During training, each system
is preserved as a black box. During the training stage, the system was able to recognize
trends inside this black box. New and untested data must first be utilized to evaluate these
systems and forecast cooling and heating loads for buildings. To accomplish this, 15% (five
samples) of the information, which was preserved as unidentified and unique data, was
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employed. Figure 6a,b demonstrate the outcomes of predicting heating and cooling loads
for updated information by trained SSRD-SsIF-NN models.

Figure 4. The training and testing phases of the proposed model’s correlation coefficient. (a) Heating
load, (b) cooling load.

Figure 5. Heating load and cooling load histogram testing error. (a) Heating load, (b) cooling load.
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Figure 6. Forecasting heat load and cooling load using the proposed method. (a) Heating load,
(b) cooling load.

In the log scale, Figure 7 shows the MSE effectiveness of the proposed models for
the training, validation, and test datasets. The best performing network on the validation
dataset is the completed system. As a result of training, the system can now predict simul-
taneous heating and cooling needs. The MSE of the developed framework reduced quickly,
resulting in lower error levels. Using the validation sample, the suggested framework
predicted the heating load with an MSE of 0.01530 at epoch 115 (Figure 7a) and the cooling
load with an MSE of 0.148 at epoch 110 (Figure 7b).

Figure 8 depicts the forecasting accuracy of models tuned using training/testing sets
with various sample sizes. When the sample size is increased from 50 to 250, the criteria for
evaluating prediction performance drop considerably. When the sample size exceeds 250,
meanwhile, the process of diminishing prediction standard evaluation metrics decreases or,
indeed, reverses.

Table 2 shows the R, R2, RMSE, MSE, MAE, NRMSE, and NMAE performance evalua-
tions of the proposed approaches. The best prediction was connected to the forecast of the
heating load by the suggested technique, which had the greatest value of R (0.9998) and
the lowest errors of MSE (0.01530), RMSE (0.21), MAE (0.2), NRMSE (1.5), and NMAE (0.2).

The suggested strategy in the prediction of the cooling load was likewise linked to
the best ratings of MSE & RMSE prediction errors. The kind of data input has a significant
impact on the application of proposed algorithms and the outcomes. There is indeed a
difference in the outcomes of each platform’s prediction of cooling and heating loads, and
the heating load is anticipated with a high degree of accuracy. This disparity arises from a
lack of connection between the data input and the degree of cooling load in comparison to
the number of the heating load.

5.3. Comparative Analysis

It is vital to compare the findings acquired with the findings of earlier research to
assess the usefulness of the offered approaches in this study. Using identical datasets,
comparisons must be conducted with caution. For that purpose, some studies with similar
findings for estimating cooling and heating loads were chosen for comparison. The findings
of numerous tests conducted to estimate cooling and heating loads by relevant metrics were
compared with the experimental results obtained in this paper to represent the efficacy of
the data structure in the accuracy of the results. This comparison is made in Table 3.
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Figure 7. Analysis of the best performing model in terms of prediction using the MSE metric. (a)
Heating load, (b) cooling load.

Figure 8. (a,b) Developed model performance using varying sample sizes in the training and
testing sets.

Table 2. The suggested approach results in terms of predicting heating and cooling loads.

Loads
Performance Metrics

R R2 RMSE (kWh/m2) MSE (kWh/m2) MAE (kWh/m2) NRMSE (%) NMAE (%)

Heating load 0.9998 0.9987 0.21 0.01530 0.2 1.5 2.5
Cooling load 0.999 0.9978 0.4 0.148 0.25 3.5 0.2

The comparison in Table 3 demonstrates the precision and robustness of the proposed
approaches in this research for projecting a building’s cooling and heating demands. In
residential structures, the use of the proposed SSRD-SsIF-NN methods and the choice of
the most appropriate approach for energy prediction and energy-efficient technologies are
highly beneficial in reducing energy consumption. With their great accuracy, the chosen
approaches were able to accomplish the objective of the study and achieve this key goal.
Finally, it is worth noting that the presented techniques may be applied to real-world data as
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well. The SSRD-SsIF-NN approach was used to forecast the yearly spatial heating/cooling
of load intensities in individual groups in this study. Meanwhile, the database of annual
residential heating and cooling load intensities created in this study will be a useful resource
of household energy statistics for traditional research on WDO-ANN [27], RF-IPWOA-
ELM [31], and SVR [32] approaches. Compared to conventional methods, the developed
model has achieved much fewer errors of MSE, RMSE, and other significant metrics. The
MATLAB simulation is used to create the information on the building structures’ heating
and cooling of load intensities for this study.

Table 3. Comparative analysis of the proposed method and conventional approaches.

Loads Performance
Evaluation

Model

WDO-ANN [27] RF-IPWOA-ELM [31] SVR [32] Proposed
SSRD-SsIF-NN

Heating load

R 0.99 0.9978 0.997 0.9998
R2 0.97 0.987 0.991 0.9987

RMSE (kWh/m2) 0.2476 0.146 0.3458 0.21
MSE (kWh/m2) 0.1459 0.01597 0.26 0.01530
MAE (kWh/m2) 0.28 0.39 0.85 0.2

NRMSE (%) 1.16 2.04 1.89 1.5
NMAE (%) 2.92 3.18 2.987 2.5

Cooling load

R 0.9987 0.99 0.9912 0.999
R2 0.8931 0.928 0.948 0.9978

RMSE (kWh/m2) 0.599 0.492 0.643 0.4
MSE (kWh/m2) 0.234 0.285 0.68 0.148
MAE (kWh/m2) 0.396 0.46 0.26 0.25

NRMSE (%) 4.2 4.6 3.9 3.5
NMAE (%) 0.39 0.52 0.4 0.2

6. Conclusions

The necessity of energy protection and sustainability has created several obstacles in
predicting a building’s heating and cooling needs. Numerous strategies and techniques
for estimating heating and cooling loads are offered by most experts in this subject to
improve predictive performance. In this research, SSRD-SsIF-NN is offered as a method for
predicting a residential structure’s cooling and heating demands. In this work, considerable
improvements can be made by including additional values in constructing structural
features and switching from a shallow to a profound design-based forecasting model.
During the training stage, after developing each of the proposed frameworks, the essential
features of a residence were utilized as sources, and the heating/cooling loads were utilized
as the output results of each system. To validate the trained networks and anticipate
the heating and cooling needs, unique and unidentified information was employed. In
forecasting the heating load, this proposed model had an MSE of 0.01530, an MAE of 0.2,
an RMSE of 0.21, and an R and R2 both as great as 0.998, and in forecasting the cooling
load, it had an MSE of 0.148, an MAE of 0.25, an RMSE of 0.4, and an R and R2 both as
great as 0.99. Because the generated prediction methods were dependent on the building
attributes, the findings of the study may be useful for developers during the pre-design
phase of the energy-efficient heating/cooling of residential buildings.
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