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Abstract: Crack detection on bridges is an important part of assessing whether a bridge is safe for
service. The methods using manual inspection and bridge-inspection vehicles have disadvantages,
such as low efficiency and affecting road traffic. We have conducted an in-depth study of bridge-crack
detection methods and have proposed a bridge crack identification algorithm for Unet, called the
CBAM-Unet algorithm. CBAM (Convolutional Block Attention Module) is a lightweight convolu-
tional attention module that combines a channel attention module (CAM) and a spatial attention
module (SAM), which use an attention mechanism on a channel and spatially, respectively. CBAM
takes into account the characteristics of bridge cracks. When the attention mechanism is used, the abil-
ity to express shallow feature information is enhanced, making the identified cracks more complete
and accurate. Experimental results show that the algorithm can achieve an accuracy of 92.66% for
crack identification. We used Gaussian fuzzy, Otsu and medial skeletonization algorithms to realise
the post-processing of an image and obtain a medial skeleton map. A crack feature measurement
algorithm based on the skeletonised image is proposed, which completes the measurement of the
maximum width and length of the crack with errors of 1–6% and 1–8%, respectively, meeting the
detection standard. The bridge crack feature extraction algorithm we present, CBAM-Unet, can
effectively complete the crack-identification task, and the obtained image segmentation accuracy and
parameter calculation meet the standards and requirements. This method greatly improves detection
efficiency and accuracy, reduces detection costs and improves detection efficiency.

Keywords: U-net; attention mechanism; bridge crack; crack feature measurement

1. Introduction

Crack detection and prevention are critical for bridge maintenance, and the demand for
crack detection increases as the service life of a bridge increases [1]. If cracks can be detected
at an early stage and their development can be tracked in real-time, the maintenance costs
of the bridges will be greatly reduced, and the safety of traffic will also be ensured. Concrete
structures are commonly used in bridge construction, as they are made from a wide range
of materials, are relatively inexpensive, and have high strength, durability and plasticity
to meet the needs of construction projects. However, due to environmental factors, their
shrinkage, and other factors, the bridge itself is subject to varying degrees of disease.
Cracking is one of the most common forms of concrete bridge disease and is also the most
harmful. Reinforced concrete bridge defects can take many forms and occur in a variety
of locations. Any damage to the concrete structure generally begins with cracks in the
concrete, and adverse weather conditions can cause rainwater to penetrate the cracks and
come into contact with the reinforcements, resulting in varying degrees of corrosion of
the reinforcements, leading to a shortened service life and increased risk. It is therefore of
great importance to carry out regular inspection and health assessments of bridges and to
maintain and strengthen them following the assessment results to ensure that cracks are

Buildings 2022, 12, 1561. https://doi.org/10.3390/buildings12101561 https://www.mdpi.com/journal/buildings

https://doi.org/10.3390/buildings12101561
https://doi.org/10.3390/buildings12101561
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/buildings
https://www.mdpi.com
https://orcid.org/0000-0001-8396-3758
https://doi.org/10.3390/buildings12101561
https://www.mdpi.com/journal/buildings
https://www.mdpi.com/article/10.3390/buildings12101561?type=check_update&version=2


Buildings 2022, 12, 1561 2 of 18

detected and repaired at the earliest stage, to reduce the risk factor significantly, reduce the
capital investment and prevent the problems before they occur.

Traditional bridge crack detection is mainly based on manual measurements, which
are inefficient, have a high miss rate and are time-consuming and costly. Furthermore, the
calculation and processing of parameters such as crack width and length are relatively slow.
Therefore, automatic and efficient crack detection is essential for bridge structural health
assessments [2–9].

In recent years, image-based crack detection has received increasing attention in the
field of non-destructive testing. The main advantage of image-based crack detection is the
use of image processing methods [10], which can provide accurate results compared to
traditional manual detection methods. Deep convolutional neural networks (DCNN) have
been shown to be competitive with and sometimes superior to humans in solving many
computer vision problems, such as image recognition [11], target detection [12] and seman-
tic image segmentation [13]. For different cases of cracks, scholars have proposed a series
of neural network-based crack detection and recognition algorithms. Eisenbach et al. [14]
proposed a road disease dataset for training deep learning networks and provided the
first evaluation of the latest techniques for road disease detection. Xu et al. [15] proposed
a Faster R-CNN and Mask R-CNN joint training strategy that can achieve better results
than YOLOv3 with few training images. Fan et al. [16] proposed a deep-learning-based
supervised method. The method can effectively detect pavement cracks in different envi-
ronments by varying the positive and negative ratios of the samples. Long J. et al. [17] were
the first to propose a fully convolutional network (FCN) for semantic image segmentation,
and various semantic segmentation networks have subsequently emerged. Among them,
Ronneberger et al. [18] proposed a U-net semantic segmentation network for biomedical
image segmentation, which has a multidimensional feature in the upper sampling layer.
The shallow layer is used to solve the pixel localization problem, while the deep layer
is used to solve the pixel classification problem. It requires only one training session to
complete an image segmentation task. Unlike CNNs, the biomedical image segmentation
results are more accurate when U-net contains fewer training images. Conventional U-net
neural network structures generally contain both encoder and decoder components, and
both are built from similar modules [19]. Liu [20] used a U-net network to detect concrete
cracks and found that the trained U-net could identify the crack location from the input
original image under various conditions, with high effectiveness and robustness. Shankara-
narayana et al. [21] combined the residual module and U-net to propose Res-Unet, which
deepened the network structure, enhanced the fusion of shallow and deep features and
accelerated the convergence of the network while avoiding the gradient disappearance
and explosion problems. Oktay et al. [22] applied the attention mechanism to the U-net
segmentation network and proposed a U-net based on attention, which can better capture
prominent features and suppress irrelevant background areas. Fan et al. [23] proposed an
improved U-net remote sensing classification algorithm that fuses attention and multiscale
features. It connects spatial pyramidal pooling with the convolutional units of the original
U-net in the form of residuals, enhances the expression of shallow features and uses a
spatial attention mechanism to combine spatial information with semantic information,
enabling the decoder to recover more spatial information. Ma [24] proposed joint-attention
feature fusion to enhance object detection performance. To exploit dependencies, channel
attention and position attention modules are used for different scales, which are implanted
in order.

The above work provides implications for the research and development of crack
image segmentation. In order to enhance the segmentation capability of the network
and improve the segmentation effect of the detailed regions of an image, we applied the
semantic segmentation idea to multiscale concrete crack detection and propose a concrete
crack detection method based on the U-net model (CBAM-Unet) with a two-channel
attention mechanism with channel attention and spatial attention. Figure 1 shows the
general flowchart for extracting crack features based on CBAM-Unet. The addition of
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channel attention and spatial attention to each max-pooling process increases the integrity
of feature extraction during the max-pooling process, thereby making the training results
more accurate and improving the accuracy of multi-scale crack identification. Using on the
CBAM-Unet algorithm to complete the crack image segmentation task, the crack image
is post-processed with digital image processing methods to extract the crack morphology,
length and width information with specific steps, including binarization, Gaussian blurring,
Otsu threshold segmentation, crack skeletonization, crack length, width measurement, etc.
The experimental results demonstrate that the CBAM-Unet model further improves the
segmentation capability of complex bridge cracks compared to the original U-net algorithm,
and the method used in this paper can accurately extract information such as crack length
and maximum width.

Buildings 2022, 12, x FOR PEER REVIEW 3 of 18 
 

 

crack detection method based on the U-net model (CBAM-Unet) with a two-channel at-
tention mechanism with channel attention and spatial attention. Figure 1 shows the gen-
eral flowchart for extracting crack features based on CBAM-Unet. The addition of channel 
attention and spatial attention to each max-pooling process increases the integrity of fea-
ture extraction during the max-pooling process, thereby making the training results more 
accurate and improving the accuracy of multi-scale crack identification. Using on the 
CBAM-Unet algorithm to complete the crack image segmentation task, the crack image is 
post-processed with digital image processing methods to extract the crack morphology, 
length and width information with specific steps, including binarization, Gaussian blur-
ring, Otsu threshold segmentation, crack skeletonization, crack length, width measure-
ment, etc. The experimental results demonstrate that the CBAM-Unet model further im-
proves the segmentation capability of complex bridge cracks compared to the original U-
net algorithm, and the method used in this paper can accurately extract information such 
as crack length and maximum width. 

 
Figure 1. Extraction of fracture features based on CBAM-Unet. 

2. U-Net Methods and Channels, Spatial Attention Mechanisms 
2.1. U-Net 

U-net is a U-shaped symmetrical structured network. The network consists of two 
parts, a compressed path and an extended path. The compressed path consists of four 
coding blocks, each of which contains two convolutional layers and a maximum pooling 
layer, and the convolutional layer extends the channel. The maximum pooling layer com-
presses the size of the feature map, reducing the size of the feature map to half of the 
original size and doubling the number of feature maps after each coding block. Each de-
coding block contains two convolutional layers and one deconvolutional layer. The con-
volutional layer compresses the channel, and the deconvolutional layer restores the fea-
ture map size, expanding the feature map to twice the original size and reducing the num-
ber of feature maps by half for each encoding block. In the jump–join stage, the output of 
each encoding block is spliced with the input feature map of the decoding block of the 
same level to recover some of the semantic information lost during the encoding process, 
thereby ensuring the accuracy of the segmentation. Finally, the number of channels is 

Figure 1. Extraction of fracture features based on CBAM-Unet.

2. U-Net Methods and Channels, Spatial Attention Mechanisms
2.1. U-Net

U-net is a U-shaped symmetrical structured network. The network consists of two
parts, a compressed path and an extended path. The compressed path consists of four
coding blocks, each of which contains two convolutional layers and a maximum pooling
layer, and the convolutional layer extends the channel. The maximum pooling layer
compresses the size of the feature map, reducing the size of the feature map to half of
the original size and doubling the number of feature maps after each coding block. Each
decoding block contains two convolutional layers and one deconvolutional layer. The
convolutional layer compresses the channel, and the deconvolutional layer restores the
feature map size, expanding the feature map to twice the original size and reducing the
number of feature maps by half for each encoding block. In the jump–join stage, the output
of each encoding block is spliced with the input feature map of the decoding block of the
same level to recover some of the semantic information lost during the encoding process,
thereby ensuring the accuracy of the segmentation. Finally, the number of channels is
compressed to the number of classifications performed. The U-net model structure is
shown in Figure 2.
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Figure 2. U-net structure.

2.2. Design of CBAM-Unet Based on an Attention Mechanism

In computer vision, the ability to focus attention on important areas of an image
and discard irrelevant ones is known as an attention mechanism. In the human visual
cortex, attention mechanisms are used to analyse complex scene information quickly
and efficiently. This mechanism was later introduced into computer vision to improve
performance. Attention mechanisms can be thought of as dynamic selection processes for
important information from an image, which is achieved by the adaptive weighting of
features. Attention mechanisms have greatly improved the performance of computer vision
tasks. An attention mechanism in the field of deep learning filters irrelevant information
from a large number of deep learning samples and selects information that is more critical
to the current task, and is widely used in various types of tasks, such as natural language
processing, image recognition and speech recognition.

The structure of the proposed algorithm is shown in Figure 3. The improved model still
uses the encoder–decoder architecture and adds a CBAM module to the encoder network
for adaptive feature refinement of the input feature map at each max-pooling layer.

The convolutional block attention module (CBAM) used in this paper is a lightweight
attention module. Given a feature map, the CBAM module can serially generate attention
feature map information in both channel and spatial dimensions, and then multiply the two
sets of feature map information with the original input feature map for adaptive feature
correction to produce the final feature map [25–27].
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The overall process of CBAM is as follows:
Given an intermediate feature map (F ∈ RC×H×W) as input, the overall CBAM op-

eration process is divided into two parts—firstly, global maximum pooling and average
pooling of the input by channel, and the two pooled one-dimensional vectors are fed into
the fully connected layer operation and then summed to generate one-dimensional channel
attention (MC ∈ RC×1×1). Then, it multiplies the channel attention with the input elements
to obtain the channel attention adjusted feature map F′. Global maximum pooling and
average pooling of F′ by space are performed. The two pooled two-dimensional vectors
are stitched together and then convolved to finally generate a two-dimensional spatial
attention (MS ∈ R1×H×W). Then, it multiplies the spatial attention with F′ by elements. The
exact process is shown in the diagram above. The CBAM process of generating attention
can be described as the following equation:

F′= MC(F)⊗ F, (1)

F′′= MS
(
F′
)
⊗ F′, (2)

where ⊗ represents element-level multiplication with a broadcast mechanism for dimen-
sional transformation and matching in between.

The max-pooling process of the encoding part is first performed in the channel atten-
tion module [28]; the input feature map size is H ×W × C, and two 1 × 1 × C feature
maps are first obtained by MaxPool and AvgPool, respectively. Then, these two feature
maps are fed into the two fully connected layers. Then, the two feature maps are added
together, and then the weight coefficients between 0 and 1 are obtained by the sigmoid
function. Then, the weight coefficients are multiplied with the input feature map to obtain
the final output feature map.

The formula for the channel attention module is as follows.

MC(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F))) = σ(W1(W0(FC
avg))+W1(W0(FC

max ))) (3)

In the above equation, MLP (Multilayer Perceptron) represents the shared MLP module
in the channel attention module. In this module, the number of channels is first compressed
and then extended to the original number of channels. The result of the two activations is
obtained by the ReLU activation function.

After the output of the channel attention module, the spatial attention module is then
introduced to focus on which part of the space has meaningful features [29]; the input is
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H ×W × C. The maximum pooling and average pooling of one channel dimension are
performed to obtain two feature maps of H ×W × 1, and then the two feature maps are
stitched together in the channel. Next, the two feature maps are stitched together in the
channel dimension, and now the feature map is H × W × 2. Then, after a convolution
layer, it is reduced to 1 channel, and the convolution kernel is 7 × 7. While keeping HW
unchanged, the output feature map is H ×W × 1. The final feature map is obtained by
multiplying the sigmoid function with the input feature map.

The formula for the spatial attention module is as follows.

MS(F) = σ( f 7×7([AvgPool(F); MaxPool(F)]) = σ( f 7×7(FS
avg; FS

max) (4)

The structure of the CBAM module is shown in Figure 4a–c.
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3. Crack Geometry Measurement Algorithm

In the actual bridge-crack-detection process, the information on cracks includes infor-
mation such as the maximum width and length of the crack, among which the measurement
of the maximum crack width value is the most important point in the actual inspection.
For regular cracks, the crack length needs to be calculated as a secondary reference in order
to better describe the extent of the crack damage.

After CBAM-Unet image crack identification and localization are completed, the
crack image is post-processed using digital image processing methods to extract crack
morphology, length and width information, with specific steps such as binarization, Gaus-
sian blurring, Otsu threshold segmentation, crack skeletonization, crack length and width
measurement, as shown in Figure 5.
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Figure 5. The process of digital image processing methods.

(1) Image binarization. The maximum inter-class variance method is used to convert
each pixel of the grey-scale image to 0 or 255, reducing the number of image data and
highlighting the target contours.

(2) Gaussian blur (GB) [30]. Blur in an image means that the pixel value of the central
pixel is the average of the sum of the pixel values of the surrounding pixels, as shown
in Figure 6.
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Figure 6. Gaussian Blur. (a) Raw image (b) after blurring.

The first image is the raw image with a pixel value of 2 for the central pixel, and
the second image is the image after blurring the central pixel, with the pixel value being
the average of the sum of the surrounding pixel values. The Gaussian blurring process
uses a two-dimensional normal distribution, with the central pixel as the origin and the
other points assigned weights according to their positions on the normal curve, to obtain
a weighted average, and each point is multiplied by its own weight to obtain a weighted
average of the Gaussian blurred value of the central point.

(3) Otsu threshold segmentation

Otsu is a method for automatically determining thresholds using the maximum inter-
class variance [31–33]. It is a global binarization-based algorithm that divides an image
into two parts, foreground and background, based on the grey-scale characteristics of
the image. When the optimal threshold is taken, the difference between the two parts
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should be the maximum, and the measure of difference used in the Otsu algorithm is the
more common maximum interclass variance. The larger the interclass variance between
foreground and background, the greater the difference between the two parts of the image.
When part of the target is misclassified into the background or part of the background is
misclassified into the target, the difference between the two parts becomes smaller, and
when the segmentation of the chosen threshold maximises the interclass variance, it means
that the probability of misclassification is minimal.

Set T to be the segmentation threshold of foreground and background. The proportion
of foreground points in the image is ω0, and the average grey level is µ0; the proportion
of background points in the image is ω1, and the average grey level is µ1; and the total
average grey level of the image is µ. For the variance g of the foreground and background
images, the formulae are as follows.

µ = ω0 × µ0 +ω1 × µ1 (5)

g = ω0 × (µ0 − µ)2 +ω1 × (µ1 − µ)2 (6)

The above two equations are combined:

g = ω0 ×ω1 × (µ0 − µ1)
2 (7)

When the variance g is maximum, it can be assumed that the difference between
foreground and background is greatest at this point, and the grey level T at this point is the
optimal threshold. The interclass variance method is very sensitive to noise and target size,
and it only produces better segmentation results for images where the interclass variance is
a single peak. The results of the segmentation using Otsu thresholding in this paper are
shown in Figure 7.

Buildings 2022, 12, x FOR PEER REVIEW 8 of 18 
 

 

Otsu is a method for automatically determining thresholds using the maximum inter-
class variance [31–33]. It is a global binarization-based algorithm that divides an image 
into two parts, foreground and background, based on the grey-scale characteristics of the 
image. When the optimal threshold is taken, the difference between the two parts should 
be the maximum, and the measure of difference used in the Otsu algorithm is the more 
common maximum interclass variance. The larger the interclass variance between fore-
ground and background, the greater the difference between the two parts of the image. 
When part of the target is misclassified into the background or part of the background is 
misclassified into the target, the difference between the two parts becomes smaller, and 
when the segmentation of the chosen threshold maximises the interclass variance, it 
means that the probability of misclassification is minimal. 

Set T to be the segmentation threshold of foreground and background. The propor-
tion of foreground points in the image is ω0, and the average grey level is μ଴; the propor-
tion of background points in the image is ω1, and the average grey level is μଵ; and the 
total average grey level of the image is µ. For the variance g of the foreground and back-
ground images, the formulae are as follows. 

µ=ω0×µ0+ω1×µ1 (5) 

g = ω0×(𝜇଴ − 𝜇)ଶ ൅ω1×(𝜇ଵ − 𝜇)ଶ (6) 

The above two equations are combined: g = ω0 ×ω1 × (𝜇଴ − 𝜇ଵ)ଶ (7) 

When the variance g is maximum, it can be assumed that the difference between fore-
ground and background is greatest at this point, and the grey level T at this point is the 
optimal threshold. The interclass variance method is very sensitive to noise and target 
size, and it only produces better segmentation results for images where the interclass var-
iance is a single peak. The results of the segmentation using Otsu thresholding in this 
paper are shown in Figure 7. 

   

(a) (b) (c) 

Figure 7. Otsu threshold segmentation results. (a) Image after Gaussian blur, (b) threshold distribu-
tion of images, (c) Otsu image after threshold segmentation. 

(4) Morphological fracture skeletonization 
Crack skeletonization is the acquisition of the central axis of the image, and it uses a 

morphological approach to change the width of the crack image to a unit pixel value by a 
limited number of open operations and erosion operations. The formula is as follows. 

A·B=(A⊖B) ⊕ B (8) 

In the equation, A ⊖ B represents the erosion operation on image A with convolution 
kernel B; ⊕ represents the expansion operation. The results of the skeletonization of the 
central axis are shown in Figure 8.  
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tion of images, (c) Otsu image after threshold segmentation.

(4) Morphological fracture skeletonization

Crack skeletonization is the acquisition of the central axis of the image, and it uses a
morphological approach to change the width of the crack image to a unit pixel value by a
limited number of open operations and erosion operations. The formula is as follows.

A·B = (A 	 B)⊕ B (8)

In the equation, A 	 B represents the erosion operation on image A with convolution
kernel B; ⊕ represents the expansion operation. The results of the skeletonization of the
central axis are shown in Figure 8.
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Figure 8. Crack skeletonization.

(5) Calculation of fracture geometry parameters.
1© Calculation of crack length.

The smooth skeleton diagram is obtained after processing by the previous four algo-
rithms, and the straight mode instead of curved was used, as the cracks have a curved
course. The principle is to calculate the length of each segment in the skeleton diagram and
add them up; the result is then the crack length. The crack length calculation schematic is
shown in Figure 9.
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The calculation process is as follows:

(1) Iterate through the debranching skeleton to obtain the coordinates of the n sets of
target points between the start and end points (xi, yi), i = 1, 2, . . . , n;

(2) Calculate the straight-line distance between adjacent points. The formula is as follows.

di =

√
(xi+1 − xi)

2 + (yi+1 − yi)
2, i = 1, 2, . . . , n; (9)

(3) Add up the straight-line distance each time:

sum =
n−1

∑
i=1

di (10)

(4) Continue the above steps until the end of the calculation of the distance between the
last two points.
2© Calculation of the maximum width of cracks.
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Find a point in the crack skeleton, draw the normal using the direction of the tangent
to that point as the direction of the pixel, find a point on the central axis that intersects
the normal and calculate the distance between that point and the edge point, twice the
value of which is the crack pixel width. The width of each crack in the skeleton diagram is
calculated and compared to the maximum value, the result of which is the maximum crack
width. The maximum width of the crack is calculated as shown in Figure 10.
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The calculation process is as follows:

(1) Iterate through the debranching skeleton to obtain the coordinates of the n sets
of target points between the start and end points (xai, ybi), i = 1, 2, . . . , n; a, b =
1, 2, . . . , n.

(2) From the coordinates of the points on the skeleton, the orientation of the skeleton
can be obtained—i.e., its normal can be determined—and according to the method
described above, the coordinates of the corresponding points on the central axis can
be found. The coordinates of the target point are (xi, yi), i = 1, 2, . . . , n.

(3) At this point, twice the distance between the two points is the width of the crack:

di =

√
(xai − xi)

2 + (ybi − ybi)
2, i = 1, 2, . . . , n; a, b = 1, 2, . . . , n (11)

(4) Compare the maximum crack width at each location:

max(d) = 2max{d(i)+. . . + d(j)} (12)

(5) Repeat until the width of the crack at the last point has been calculated.

The maximum widths of the cracks are visualized in Figure 11.
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4. Model Training

Experiments were carried out on the SDNET2018 crack dataset in order to evaluate the
detection performance of the proposed attention mechanism and crack geometry parameter
calculation method [34]. Specifically, we first present the experimental setup and the
algorithm evaluation metrics. The performances of our proposed module and network
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variants are then discussed. Finally, we compare their performances with some standard
methods. The configuration of the experimental environment in this paper is shown in
Table 1 below.

Table 1. Experimental environment and configuration.

Environment Configuration

Operating system Windows10
CPU Intel i5 12400F @ 2.5 GHz
GPU Nvidia GeForce RTX3060
RAM 16 G

Memory 500 G
Programming language Python3.8

Deep learning framework Pytorch

4.1. Datasets

We used the SDNET2018 crack dataset as a training sample. (SDNET2018 is an
annotated image dataset for training, validation and benchmarking of artificial-intelligence-
based crack detection algorithms for concrete. SDNET2018 contains over 56,000 images of
cracked and non-cracked concrete bridge decks, walls and pavements. The dataset includes
cracks as narrow as 0.06 mm and as wide as 25 mm. The dataset also includes images with
a variety of obstructions, including shadows, surface roughness, scaling, edges, holes and
background debris.) Each image was annotated using Labelme to mark the areas where
the cracks are located. Figure 12a–f show the original and manually labelled images at
different locations. During training, all layers of the entire network were tuned using the
RMSprop algorithm to optimise the problem of excessive oscillations in the loss function in
updates and to further accelerate the convergence of the function. The learning rate was
set to 1 × 10−4, and the number of training sessions (epoch) was set to 100. The training
process used a migration learning method, using the pre-trained network as the initial
model and setting training parameters such as learning rate, weight decay and number
of iterations to construct the crack recognition model. The high-definition images (test set
images) collected from the field were imported into the crack recognition model to locate
the cracks in the images.
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4.2. Loss Function

Due to the superior performance of the cross-entropy loss function, the cross-entropy
loss function is usually chosen as the loss function for multi-classification tasks. The cross-
entropy loss function compares the prediction class and the target class for each pixel point,
which is denoted as:

L = − 1
N ∑i ∑

M
c=1 yic log (pic), (13)

In the formula, M denotes the number of classes. yic is the sign function (0 or 1): yic
takes 1 when the true class of sample is equal to c; otherwise, it takes 0. pic is the predicted
probability that the observed sample i belongs to class c.

4.3. Evaluation Indicators

The model was evaluated by four metrics: the pixel accuracy (PA), category pixel
accuracy (CPA), recall and IoU. The specific calculation formula is shown in Table 2. PA can
be used to represent the accuracy of the model, i.e., the number of correct pixels identified
by the model as a proportion of the total number of pixels. CPA represents the proportion
of true positive samples among the samples identified as positive by the model. IoU is
the ratio of the intersection of true and predicted values to the concatenation of true and
predicted values. TP represents the number of pixels correctly identified as positive, TN
represents the number of pixels correctly identified as negative, FP represents the number
of pixels identified as positive that are in fact negative, and FN represents the number of
pixels of negative samples identified as positive.

Table 2. Calculation formula for evaluation indicators.

Evaluation Index Computational Formula

PA TP+TN
TP+TN+FP+FN

CPA TP
TP+FP

Recall TP
TP+FN

IoU TP
TP+FP+FN

4.4. Evaluation Indicators

To verify the feasibility of the CBAM attention mechanism, a comparison between the
method of this paper (CBAM-Unet) and U-net was carried out. As can be seen in Figure 13,
both methods can detect crack locations, but CBAM-Unet has higher detection accuracy. To
further verify the applicability of the algorithm, experiments were conducted under dark
conditions (Figure 14) and fine crack conditions (Figure 15). Based on the experimental
results, it can be concluded that the CBAM-Unet algorithm in this paper, which adds an
attention mechanism to identify the detailed information of cracks, is more accurate.
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According to the above experiments, CBAM-Unet has the highest detection accuracy
in different environments, and it has higher robustness. The experimental comparison
results are shown in Table 3.

Table 3. Accuracy of crack detection.

Methods PA CPA Recall IoU

U-net 87.32% 84.96% 96.26% 82.16%

CBAM-Unet 92.66% 92.20% 97.13% 89.53%

On the basis of U-net, the channel and spatial attention modules improve the repre-
sentation ability of network feature extraction. Compared with the reference network, the
accuracy of the improved network has been significantly improved.
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5. Verification Experiments on the Accuracy of Calculating Crack Geometry Parameters

To verify the accuracy of the orthogonal skeleton line method for extracting crack
geometry parameters, the output of the binary images from the CBAM-Unet algorithm
in Section 4 of this paper was calculated and compared with that of the manual detec-
tion method.

The experimental object was a cable tower of a cross-sea bridge in Qingdao, China,
and a high-definition camera was used for image acquisition, as shown in Figure 16. In
order to improve the detection accuracy and speed, we pre-processed the collected image
and divided it into several 256 ∗ 256 pictures, making it the same format as the dataset
used in this paper.

Buildings 2022, 12, x FOR PEER REVIEW 15 of 18 
 

 

5. Verification Experiments on the Accuracy of Calculating Crack Geometry Parame-
ters 

To verify the accuracy of the orthogonal skeleton line method for extracting crack 
geometry parameters, the output of the binary images from the CBAM-Unet algorithm in 
Section 4 of this paper was calculated and compared with that of the manual detection 
method.  

The experimental object was a cable tower of a cross-sea bridge in Qingdao, China, 
and a high-definition camera was used for image acquisition, as shown in Figure 16. In 
order to improve the detection accuracy and speed, we pre-processed the collected image 
and divided it into several 256 ∗ 256 pictures, making it the same format as the dataset 
used in this paper. 

  
Figure 16. Images of bridge towers. 

5.1. Pixel Calibration 
The physical size corresponding to each pixel in the image was calculated through 

pixel calibration, and the physical size can be calculated through the camera pinhole 
model. 

Lpp=
10Ld

LfPC
 (14)

In the formula, Lpp is the physical size corresponding to each pixel, Ld is the shoot-
ing distance, Lf is the focal length of the camera, and PC is the number of pixels corre-
sponding to the camera’s photosensitive element of 1 cm. 

5.2. Experimental Results 
The manual width measurement method uses a crack width tester and a crack detec-

tor, and the length is measured by fitting a thin line to the crack alignment, straightening 
it and then using a ruler to measure the length of the thin line. The results of the compar-
ison are shown in Tables 4 and 5. 

Table 4 shows that the absolute error of the maximum crack width of the regular 
sample is small and meets the detection requirements. However, the smaller the crack 
width, the larger the relative error, which may be due to the inaccuracy of the calculation 
results due to the lack of accuracy of the measurement results when performing manual 
measurements or the misprocessing of some crack information during image processing. 

  

Figure 16. Images of bridge towers.

5.1. Pixel Calibration

The physical size corresponding to each pixel in the image was calculated through
pixel calibration, and the physical size can be calculated through the camera pinhole model.

Lpp =
10Ld
LfPC

(14)

In the formula, Lpp is the physical size corresponding to each pixel, Ld is the shooting
distance, Lf is the focal length of the camera, and PC is the number of pixels corresponding
to the camera’s photosensitive element of 1 cm.

5.2. Experimental Results

The manual width measurement method uses a crack width tester and a crack detector,
and the length is measured by fitting a thin line to the crack alignment, straightening it and
then using a ruler to measure the length of the thin line. The results of the comparison are
shown in Tables 4 and 5.

Table 4. Comparison of measured values of maximum crack widths.

Number
Crack Width (mm) Inaccuracy

Calculated Values
(mm)

Measured Values
(mm)

Absolute
Values/mm Relative Values/%

1 0.612 0.630 −0.018 2.9
2 0.962 0.980 −0.018 1.8
3 1.448 1.360 0.088 6.5
4 1.560 1.620 −0.060 3.7
5 1.208 1.260 −0.052 4.1
6 0.826 0.840 −0.014 1.7
7 2.244 2.200 0.044 2.0
8 1.762 1.720 0.042 2.4
9 1.706 1.620 0.086 5.3
10 2.248 2.160 0.088 4.1
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Table 5. Comparison of crack length measurements.

Number
Crack Length (mm) Inaccuracy

Calculated
Values (mm)

Measured
Values (mm)

Absolute
Values/mm

Relative
Values/%

1 39.308 39.940 −0.632 1.58
2 36.600 38.368 −1.768 4.61
3 38.256 39.572 −1.316 3.33
4 36.272 38.224 −1.952 5.11
5 38.400 39.658 −1.258 3.17
6 32.068 34.720 −2.652 7.64
7 34.496 35.970 −1.474 4.10
8 37.568 35.980 1.588 4.41
9 34.884 36.234 −1.350 3.73

10 36.544 37.896 −1.352 3.57
Each pixel corresponds to physical size of 0.293 mm.

Table 4 shows that the absolute error of the maximum crack width of the regular
sample is small and meets the detection requirements. However, the smaller the crack
width, the larger the relative error, which may be due to the inaccuracy of the calculation
results due to the lack of accuracy of the measurement results when performing manual
measurements or the misprocessing of some crack information during image processing.

From Table 5, we can see that the relative error data of crack length is distributed in
the range of 1% to 8%—relatively high accuracy—but some of the data show large errors,
which were caused by the loss of some information when denoising the crack images.

6. Conclusions

The main aim of this study was to improve the expression of shallow features in crack
images and to improve the crack segmentation effect. Based on the principle of image
detection, the CBAM-Unet bridge crack segmentation algorithm was proposed, which
contains a dual attention mechanism. The bridge crack image is extracted by an extraction
algorithm, an image processing algorithm, and a geometric parameter measurement al-
gorithm to obtain the binary image, maximum width and length of the crack, and other
parameters to meet the needs of engineering inspection. In this study, the channel attention
module and the spatial attention module were added to the max-pooling process of the
U-net network. Spatial attention allows the neural network to focus more on the pixel
regions of the image that are decisive for classification and ignore the insignificant regions,
and channel attention is used to deal with the assignment relationship of the feature map
channels. The experimental results show that CBAM-Unet is more accurate than U-net for
bridge crack segmentation, having an accuracy of 92.66%. The maximum crack width error
calculated based on this method was between 1% and 6%, and the crack length error was
between 1% and 8%, which meets the detection requirements.

There are certain limitations to this paper. We only extracted features from cracks in
bridges and did not automatically count the cracks, and the impact of cracks on bridges
needs further evaluation. Therefore, a future research direction could be to perform an
automatic evaluation based on the extracted cracks, so as to accurately obtain the true
state of the bridge and provide a basis for decision-making for maintenance personnel. In
addition, the detection of other structural defects in bridges is also an important research
direction, which is of great significance for bridge maintenance.
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