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Abstract: The purpose of this study is to investigate the attenuation effect of the pile barrier in
blocking seismic surface waves by using theoretical and numerical methods. First, we derive the
dispersion characteristics of pile barriers embedded in soil from the perspective of periodicity theory
to explain that such periodic barriers can attenuate seismic surface waves when the main frequencies
fall into the band gaps of the pile barrier. Second, the dispersion characteristics of periodic barriers
composed of different inclusions are discussed, and it is suggested preliminarily that scatters with
low stiffness and low density are more conductive to mitigate low-frequency surface waves. Third, a
three-dimensional transmission calculation model is also developed to illustrate that the attenuation
zone of a finite number of piles is consistent with the surface wave band gap. Finally, transient
analysis of the periodic pile barriers is performed to validate the block effects on seismic surface
waves. The numerical results show that the frequency band gaps of multi-row pile barriers are in
accordance with the frequency band gaps of the surface wave in theory, which can greatly mitigate
surface ground vibration. The pile spacing, number of piles, and pile length are the key parameters
that can affect the width of attenuation zones of the periodic barriers by an appropriate design.

Keywords: frequency band gap; isolation effect; seismic surface waves; pile barrier; transient analysis

1. Introduction

The vibrations propagating in the underground and at the ground surface are gener-
ally classified into body waves and surface waves [1]. A large number of measured seismic
records indicate that the predominant frequencies of surface waves range from 1 to 20 Hz.
Generally, surface waves carry most of the vibration energy, with exponentially decaying
amplitudes along the free surface in an elastic semi-infinite space, and travel slower than
body waves, which may cause more damage to surrounding buildings [2–7]. Simultane-
ously, surface energy reflection and redirection may further lead to a more intense impact
than bulk waves (BWs). Thus, it is necessary to develop new techniques to mitigate the
ground vibration caused by surface waves, mainly Raleigh waves.

In fact, various wave barriers, including open and infilled trenches [8], rows of holes [9],
and pile barriers [10], have been experimentally and numerically investigated in manipu-
lating and attenuating the propagation of elastic waves. The results show that such passive
isolation devices, periodically constructed between the source of the vibration and the
protected buildings, are expected to be an effective technique to reduce the undesired
ground motions and prevent considerably the structure from the threat of strong vibra-
tions. Based on a series of experiments, Wood et al. [11] proposed the basic principle of
using rows of piles for seismic isolation design, and assessed the isolation performance
of the wave barriers. In the following decades, many researchers conducted numerous
experiments to study the shielding effect of wave barriers. Celebi et al. [12] carried out
field tests on foundation vibrations to evaluate the isolation effectiveness of various types

Buildings 2022, 12, 1488. https://doi.org/10.3390/buildings12101488 https://www.mdpi.com/journal/buildings

https://doi.org/10.3390/buildings12101488
https://doi.org/10.3390/buildings12101488
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/buildings
https://www.mdpi.com
https://doi.org/10.3390/buildings12101488
https://www.mdpi.com/journal/buildings
https://www.mdpi.com/article/10.3390/buildings12101488?type=check_update&version=1


Buildings 2022, 12, 1488 2 of 19

of wave barriers including open and infilled trench barriers. Naggar et al. [13] used an
experimental method to examine the attenuation effectiveness of open and geofoam-filled
trenches and discussed the influence of exciting frequency and source distance on the
attenuation effects. Additionally, Huang et al. [14] applied the large-scale field test to
evaluate the isolation effect of both empty trenches and periodically arranged continuous
walls, and the results showed that three types of excitation inputs yielded similar results,
namely, the performance of periodic barriers depends on the attenuation frequency range
generated by different excitation directions.

After that, numerical methods were used to investigate the protective effectiveness
of wave barriers. For instance, Saikia et al. [15] numerically presented a two-dimensional
(2D) plane strain model to analyze the blocking efficiency of open trenches on the surface
of linear elastic soil media subjected to vertical harmonic excitation. The numerical results
showed that the shielding effect was determined by the normalized depth of the open
trenches and independent of width in most cases. Celebi and Kırtel [12,16] investigated the
blocking performance of trench-type barriers in reducing the ground vibration induced by
trains. Subsequently, Zoccali et al. [8] presented a 3D FE model to evaluate the screening
effectiveness of trenches vibrations caused by railway traffic both in time and frequency
domain and found that the attenuation efficiency is closely related to the trench length and
infilled material types.

Some researchers have proposed the possibility of using various new periodic structures
to shield bulk waves and surface waves in civil engineering. Zhao and Witarto et al. [17–20]
constructed a new kind of 1D layered periodic foundation using rubber and concrete,
and studied experimentally and numerically the isolation effectiveness of the periodic
foundation on blocking longitudinal and shear waves in the frequency range of 0–50 Hz.
Brule et al. creatively proposed a real-size experiment with periodic cylindrical bore holes
at meter-size to block the seismic surface waves around 50–100 Hz [9]. Huang et al. [21]
verified that the simulated vibration reduction frequency segments are consistent with
the theoretical surface-wave attenuation zones through a 3D FE transmission model. Pu
and Shi also studied the surface wave isolation of a pile barrier, and the effects of soil
property, pile spacing, and pile length on the attenuation zone of the wave barriers were
also considered [10]. Moreover, Palermo et al. proposed a method where resonant barriers
buried under the soil surface could manipulate the band gap below 10 Hz and isolate the
seismic surface waves effectively [22].

Although some works have focused on the isolation effectiveness of the wave bar-
rier in blocking surface waves in the past, the isolation performance of the periodic pile
barriers deserves further investigation. First, little work has been focused on the isolation
performance of multi-row pile barriers based on the dispersion properties of Rayleigh wave
propagation in periodic piles. Second, the time history analyses of pile barriers have been
rarely conducted to verify the attenuation characteristics. Therefore, this work aims to
investigate surface wave mitigation by using multi-rows of pile barriers.

The rest of the work is arranged as below. The dispersion equation of an elastic wave
is derived using the wave governing equation and Floquet–Bloch boundary conditions in
Section 2. The attenuation characteristics of surface waves are discussed in detail, including
the identification method of Rayleigh modes and the isolation performance of a finite
array of piles in Section 3. In Section 4, the effects of pile geometry, number of piles,
and focal distance on the surface wave band gap are studied parametrically. In Section 5,
transient analyses of an artificial wave and seismic wave are adopted to verify the attention
performance of the periodic pile barriers for surface wave mitigation. Last of all, in Section 6,
the conclusions are provided.
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2. Theoretical Framework for Periodic Structures
2.1. Wave Equation

For wave propagation in an isotropic, homogeneous linear elastic medium, the vibra-
tion modes of the material conform to the following governing equation:

ρ
∂2u
∂t2 = ∇[(λ + 2µ)(∇ · u)]−∇× [µ∇× u] (1)

where u = u(r) is the displacement vector, ρ represents the material density, λ and µ are
Lame parameter functions of the medium, which can be expressed by Young’s modulus E
and Poisson’s ratio υ, respectively, as follows:

λ =
υE

(1 + υ)(1− 2υ)
(2)

µ =
E

2(1 + υ)
(3)

It is well known that Equation (1) can be decoupled into two sets of mutually in-
dependent equations describing out-of-plane (Equation (4)) and in-plane fluctuations
(Equations (5) and (6)), when the elastic wave propagates only in the xOy plane. Here, we
mainly consider surfaces waves propagating along with elastic semi-infinite space, so the
governing equation should be based on Equations (5) and (6).
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2.2. Periodic Boundary Conditions and Eigen Equation

Figure 1a shows the schematic representation of the pile barriers embedded peri-
odically in elastic half-space. The multi-row of embedded piles can be assumed as a
two-dimensional periodic pile configuration. For a two-dimensional (2D) periodic pile-soil
configuration, the dispersion relations can be calculated by a unit cell, periodic bound-
ary conditions (PBCs) are used as the lateral boundaries, as depicted in Figure 1b. To
minimize computation, it is assumed that piles and soil are homogeneous, isotropic, and
perfectly bonded at the interface. As shown in Figure 1c, the pile radius, pile length, and
soil thickness can be expressed as r, h1, and h0, respectively. The displacement vector u in
Equation (1) can be expressed as

u(r, t) = ei(k·r-ωt)uk(r) (7)

where, r is the position vector, i =
√
−1, ω and uk(r) represent the angular frequency

and a modulation function of the displacement vector, k is the Bloch wave vector. The
modulation function can be written as:

uk(r) = uk(r + R) (8)

where R represents the lattice constant vector, R = (Rx, Ry). For the 2D periodic piles
arranged in the quadrate configuration, Rx = Ry = R.
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Submitting Equation (8) into Equation (7), the PBCs can be represented in the form

u(r + R, t) = eik·Ru(r, t) (9)

Additionally, it should be noted that the motion of Rayleigh waves decays rapidly
with depth and the displacement and surface wave energy are mainly concentrated within
the 1.5 wavelength range. Based on these features, soil with finite depth and clamped
bottom boundary conditions is considered to simulate semi-infinite space. After referring
to the previous works [10,23], the unit cell with a height h0 = 20a is adopted in this paper,
which ensures capture of the Rayleigh modes around the resonance frequency, a is the
length of unit cell. The validity of this method is verified in Section 3.

By substituting the PBCs of Equation (9) into Equation (1), we can obtain the dispersion
relation of an infinite periodic structure and the eigenvalue equation can be expressed
as follows (

K−ω2M
)

u = 0 (10)

In which K and M represent the stiffness and mass matrices of the unit cell, respectively.
It is worth noting that the eigenvalue equation can be considered mathematically as
an implicit function between the wave vector k and angular frequency ω, where the
corresponding frequency zones of the wave vector do not exist are frequency band gaps.

COMSOL Multiphysics software is used to calculate the dispersion relation of the
periodic structure. A single pile embedded in portion soil is assumed as a typical unit cell,
which can be simulated by 4-node tetrahedral elements. A fixed boundary is applied at
the bottom surface of the unit cell and the Floquet PBCs in Equation (9) are adopted at its
vertical sides. Consequently, all the propagating modes can be obtained along the Γ- X- M-
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Γ in the irreducible Brillouin zone (see in Figure 1d) and thus the dispersion curves can
be plotted.

3. Attenuation Properties of Surface Waves

This section is divided by subheadings. It should provide a concise and precise
description of the experimental results, their interpretation, as well as the experimental
conclusions that can be drawn.

3.1. The Identification Method of Rayleigh Modes

It should be noted that the dispersion relations calculated by COMSOL above include
both surface modes and bulk modes polarized along all directions. To identify the Rayleigh
wave modes from the bulk wave modes, we used the post-processing method proposed
by Huang [21] to calculate the surface wave attenuation zone of the layered periodic
structures. As described in their previous works, the modes of the surface wave can
be easily distinguished from all the mixed eigenmodes because the elastic strain energy
of Rayleigh is mainly concentrated near the surface. After identifying all surface wave
modes within the frequency range of interest, the dispersion laws of Rayleigh waves can
be obtained by plotting the corresponding relation between wave vector and frequency.

Here, an energy distribution parameter ξ is defined based on the strain energy center
with the depth of the unit cell, indicating the energy distribution of a considered eigenmode
along the depth. In particular, the energy distribution function of the unit cell can be written
as follows:

ξ =

∫ h0
0 z ·WsdV

h0
∫ h0

0 WsdV
(11)

where the integral region is limited to the unit cell volume V, h0 represents the unit
cell height, and Ws represents the elastic strain energy density. It can be found from
Equation (11) that the distribution parameter varies from 0 to 1. What is more, a larger mag-
nitude of distribution parameter indicates that the corresponding mode energy localizes
near the free surface. In this paper, Rayleigh wave modes are assumed on the condition of
ξ ≥ 0.9, while the other modes with a distribution parameter less than 0.9 are eliminated.

3.2. Comparision and Verification

The accuracy of the aforementioned criterion for identifying surface waves is verified
by comparing the numerical results with the previous studies [24,25]. Figure 2 shows
the dispersion relations of surface waves and bulk waves for the layered Cu-Al periodic
structure. The dispersion curves of Longitudinal waves (P waves) and Rayleigh waves
(R waves) are calculated by the transfer matrix method and a post-processing technique
using COMSOL respectively. The P waves are represented by black dotted lines and
R waves by solid brown lines. It is observed that the dispersion curves are in accordance
with the results calculated by previous works, which indicates that the present method has
good accuracy in calculating the dispersion curves for surface waves and bulk waves.

The right panel of Figure 2 demonstrates the vibration modes of a typical unit cell
obtained from the correlation dispersion curves. Obviously, it can be found that the ampli-
tudes of the displacement for the two surface modes are concentrated on the near free sur-
face. Additionally, it can be seen that the normalized displacement field of modes A and B
are of sin-like symmetry, which is a typical characteristic of Rayleigh waves. The first
two surface wave band gaps (SWBGs) are also plotted in Figure 2, showing that the de-
signed layered periodic structure can be expected to block the surface waves within the
band gaps.

Taking another example published in related research [24], a 3D numerical model
can be established to investigate the dispersion relations of a surface wave (SW) in a foam
pile-soil system. In the model, the parameters of density, Young’s modulus, and Poisson
ratio of soil are 1800 kg/m3, 46 MPa, and 0.25, and the corresponding parameters for foam
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are 60 kg/m3, 37 MPa, and 0.32, respectively. The values of a = 0.8 m and r = 0.3 m represent
the periodic constant and the radius of the pile. Figure 3 shows the dispersion curves of
SWs in the periodic structure and its transmission loss spectrum. The results from the
present model are denoted by a black solid line and the reference results are represented by
pink solid circles. As expected, the results are highly consistent, which again proves the
reliability of the surface wave recognition criterion.
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Considering the unique properties of SW propagation, some scholars proposed distin-
guishing SWs by using the acoustic cone criterion [26,27]. The sound lines are a function
of the wave vector and phase velocity obtained by scanning the wave vector in the first
Brillouin zone. Therefore, the SW modes only occur in the dispersion curves below the
acoustic cone of the substrate, which can be used as the basis for identifying the SW
bandgaps (SWBGs).

To this aim, Figure 3 also superimposes the acoustic cone as a continuous cyan line.
The results show that all SW modes occur above the sound line, which means that the
sound cone criterion cannot recognize the SW modes with piles embedded under the soil
surface. Additionally, as shown in the transmission analysis on the right of Figure 3, the
frequency zone in which the output surface displacement amplitude decreases significantly
is consistent with the SWBG in the Γ-X direction. The FE model for transmission analysis of
finite unit cells is provided in the following paragraphs. In summary, the above two cases
fully demonstrate that the method based on strain energy distribution parameters can
accurately identify all Rayleigh modes, which is more reliable for calculating the dispersion
curve of surface waves of scattered periodic structures.

3.3. Dispersion Analysis for Surface Waves in Periodic Pilers

It has been shown that the mechanical properties and geometry dimensions have a
strong influence on the attenuation zones of Bragg scattering periodic structures [28,29].
Only a reasonable periodic structure design can obtain low initial frequency and broadband
attenuation. In previous research, Huang [21] and Achaoui et al. [30] investigated the
shielding effect of 1D periodic trench barriers and 2D piles with different inclusions on
surface waves, respectively. Consequently, these inclusion materials are also applied to
simulate the periodic piles in this paper, as shown in Table 1.

Table 1. Mechanical properties of piles and soil.

Material Young’s Modulus (MPa) Density (kg/m3) Poisson Ratio

Soil 46 1800 0.25
Polyfoam 11.8 80 0.4

EPS geofoam 37 60 0.32
Concrete 11,316 2400 0.25
Fly ash 25 500 0.35

Steel 200,000 7850 0.33

To study the influence of different inclusions on the initial frequency and bandwidth
of the first SWBG, the low and high bound frequencies of the first SWBG are defined as the
lower bound frequency (LBF) and upper bound frequency (UBF), respectively. The width
of the SWBG is represented by WBG, which is equal to the value of the UBF minus LBF.
The physical model in Figure 1c is reconsidered in this section.

Taking the lattice constant, a = 3 m, pile radius r = 1.2 m, pile length h1 = 2a, and soil
column height h0 = 20a as an example, Table 2 shows the first SWBG of periodic piles with
five different configurations. It should be noted that the band gap characteristics obtained
in Table 2 are only the results of wave vector scanning along the Γ-X direction, which is the
focus of this paper. When the incident surface waves propagate in a periodically arranged
pile barrier, destructive interference leads to the SWBGs, which greatly attenuates the wave
amplitude. As pointed out by Huang et al. [28], the frequency components of SWBGs are
mainly dominated by the stiffness and density of the inclusion materials. It is indicated in
Table 2 that the different inclusion materials can produce various SWBGs and WBGs; the
inclusion material polyfoam can generate the smallest LBF (12.91 Hz) while the inclusion
material of concrete in pile barriers has the widest WBG (17.78 Hz). Considering the low
initial frequency and broadband attenuation, polyfoam of the same radius is more suitable
as a periodic barrier to block seismic surface waves. Therefore, the polyfoam is applied
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as inclusion material in the following dispersion analysis of unit cell and transmission
analysis of finite rows of pile respectively.

Table 2. The first surface wave band gaps of different inclusions.

Inclusion LBF (Hz) UBF (Hz) WBG (Hz)

EPS geofoam 17.41 22.76 5.62
Polyfoam 12.91 18.39 5.48
Concrete 31.23 49.01 17.78
Fly ash 14.68 18.54 3.86

Steel 36.24 49.16 12.82

Figure 4 illustrates the first SWBG and dispersion relation of Rayleigh waves in
polyfoam pile barriers. The yellow shaded areas correspond to the frequency range of
SWBG. It is found that two directional SWBGs appear in the direction of ΓX and MΓ,
which is different from the all-directional SWBG of periodic piles arranged on the soil
surface [31]. Analogously, the four eigenmodes denoted as points A, B, C, and D are
presented in Figure 5. It indicates that the normalized displacement fields corresponding
to all these eigenmodes are focused on a significant thin region near the free surface. The
vibration modes A and B also exhibit sin-like and cos-like characteristics similar to the
Rayleigh mode of layered periodic structure mentioned above. The modes C and D also
show similar results.
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To get further insight on the decaying characteristics of SWs, Figure 6 shows the
distribution of normalized elastic strain energy and displacement amplitude of surface
modes along the depth. It is observed that all the energy and displacement of surface
modes at points A, B, C and D rapidly decay to zero when the pile barrier depth ratio (z/h)
approaches 0.2, which indicates that the identified modes are indeed SW modes.
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3.4. Vibration Mitigation Efficiency of Finite Unit Cells

In theory, a periodic structure with infinite unit cells possesses a perfect attenuation
performance for the vibrations. In practical engineering, the periodic structure consists
of finite unit cells. To demonstrate the effectiveness of the finite number of unit cells on
mitigation of the SWs, a 3D transmission model with six rows of piles is used to verify the
vibration mitigation effectiveness of surface ground vibration. Since the pile barriers are also
periodically arranged along the y-direction, a pair of PBCs can be applied perpendicular
to the y-axis to save calculation cost. The front view and top view of the 3D FE model is
shown in Figure 7. All the geometrical features of the numerical model are l0 = 27a, l1 = 10a,
l2 = 3a, h0 = 20a, and h1 = 2a. The pile line spacing is equal to the periodic constant a, the
output zone with an area of a is located behind the last pile barrier with a distance of l2.
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In the numerical model, a vertical harmonic line source P(t) is triggered with a distance l1
away from the first line of piles which may generate both BWs traveling in the soil substrate
and SWs propagating along the surface. In the region far from the source, the surface
displacement is mainly caused by SWs and the influence of the BWs is negligible. Perfect
matched layers (PMLs) with thickness 2a are applied to the two ends and bottom of the
numerical model, which can eliminate the effect of the reflected waves [32–34]. Additionally,
an identical transmission model without pile barriers is adopted to obtain the reference
displacement field.

An average amplitude reduction factor AR is defined to assess the attenuation effec-
tiveness of the pile barriers.

AR =

∫ S
0 u0dS∫ S
0 u1dS

(12)

where u0 and u1 represent the vertical displacement with and without barriers in the
output area, respectively. Further, the amplitude attenuation function (AAF) can be written
as follows:

AAF = 20 log10(AR) (13)

In fact, the AAF has an explicit mathematical meaning. Its magnitude represents the
attenuation capacity of the pile-soil barrier system. Taking AAF = −20 as an example, it
indicates that the displacement amplitude of the periodic barrier system in the output area
is about 1/10 of that without the periodic barrier system.

Figure 8 shows the transmission attenuation curves as well as the dispersion curves
for six rows of polyfoam pile barriers. As shown in Figure 8, the frequency region in which
the surface displacement amplitude decreases significantly (AAF ≤ −10), is consistent with
the SWBG of the ideal periodic pile barrier. Simultaneously, the transmission spectrum
shows that six rows of polyfoam pile barriers generate an expected significant reduction of
SWs in its SWBG.
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To highlight the generation mechanisms of SWBGs, Figure 9 depicts the normalized
vertical displacement response uz at the free surface and the color-coded wave field distri-
bution of six rows of polyfoam pile barriers under harmonic excitation of 10 Hz and 15.6 Hz
respectively. When the incident SW frequency is 10 Hz, the displacement amplitude does
not attenuate significantly along the x-axis and even amplifies between pile barriers, which
indicates that the incident wave energy outside the SWBG continues to propagate through
pile barriers as in Figure 9b. On the contrary, the incident SW with an excitation frequency
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of 15.6 Hz has almost total reflection (see in Figure 9d), which can be observed from the s
standing wave pattern formed on the overlap of the incident wave and reflection wave. In
addition, a strong exponential decay is observed (see Figure 9c) within the pile array due
to the characteristics of Bragg destructive interference. In short, when the frequency zones
of the incident waves fall into the SWBG of the ideal periodic structure, the finite arrays of
the pile barrier can also effectively prevent the propagation of SWs.
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4. Parametric Investigation

To evaluate the attenuation effect of the periodic piles, parametric analyses are con-
ducted to study the key parameter which controls the SWBGs of periodic piles. In principle,
our works adopt the method of univariate parameter analysis, i.e., only a single variable to
be varied while the other parameters remain stable.

Consequently, the influences of pile spacing and pile radius on LBF, UBF, and WBG are
performed through the dispersion analysis of unit cell, and the influences of pile number,
pile length, and source distance on isolation efficiency are investigated by transmission anal-
ysis of a finite array of piles. Detailed analysis results are shown in the subsequent sections.

4.1. Influence of Pile Spacing

Taking pile radius r = 1.2 m and pile length h1 = 2a as an example, Figure 10 presents
the variation trend of LBF, UBF, and WBG at the boundary point X in the first Brillouin zone
with pile spacing. It is obvious that both LBF and UBF of the SWs decrease monotonically
with the pile spacing increases, and the first SWBG, namely, WBG of the pile barrier also
decreases as the pile spacing increases. Simultaneously, it should be noted that the center
frequency of the first band gap of Bragg scattering periodic structure is generally located
near c/2a, that is, the wavelength corresponding to the center frequency of the first band
gap is about two times that of the lattice constant. Increasing pile spacing is equivalent to
increasing the periodic constant. The Bragg scattering condition is also confirmed by the
phenomenon in Figure 10. Thus, the SWBG at low frequencies can be realized by increasing
the periodic constant but the bandwidth is also limited.
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4.2. Influence of Pile Radius

Keeping a = 3 m and h1 = 2a unchanged, the influence of pile radius on LBF, UBF,
and the first SWBG is shown in Figure 11. Parameter β in Figure 11 represents the ratio
of pile diameter to periodic constant. It is observed that the UBF and WBG increase
monotonically with the pile radius increase, inversely, the LBF of 1st SWBG decreases with
the pile radius increase. This means that increasing pile radius is beneficial to vibration
reduction. In other words, a larger pile radius could widen the WBG of SWBG and thus
take more broadband characteristics of the periodic pile barriers. Without changing the
lattice constant, increasing the pile radius corresponds to increasing the volume of the
scatterer, which is more conducive to the occurrence of destructive interference.
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Figure 11. Influence of pile radius. (a = 3 m, h0 = 20a, h1 = 2a).

4.3. Influence of the Number of Piles

The influence of the number of piles on the attention performance for SWs is studied
by using a transmission model. The geometrical parameters of the pile barriers are as
follows: a = 3 m, r = 1.2 m, l1 = 10a, h0 = 20a, and h1 = 2a. Figure 12 demonstrates the effect
of the number of piles on AAF. Herein, the averaged AAF is suggested for evaluating the
mitigation capability in the SWBG, which can be expressed as follows:

AAF =

∫ f2
f1

AAFd f

f1 − f2
(14)
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where f 1 and f 2 are the LBF and UBF of the first SWBG, respectively. Similar to the AAF,
the larger the amplitude of AAF, the more obvious the isolation effect. As shown in
Figure 12a–d, increase in the number of piles triggers a significant increase of AAF when
the number of piles varies from 2 to 8, which indicates that the increase of the number
for piles is beneficial for improving screening efficiency. This phenomenon can be well
explained by the PBC in Equation (9), that is, the displacement vector is reduced by e−Im(k)a

when the SWs propagate one unit cell, where Im(k) indicates the imaginary part of the
corresponding wave vector at a certain frequency inside the SWBG. It can be found that
when the number of piles reaches 6, AAF is about −20, which means that the displacement
amplitude of the output area within the SWBG is 1/10 of the reference model. Considering
the isolation performance of SWs and the economic benefit, it is advisable to choose six
rows of piles as wave barriers. Additionally, increasing the number of piles has little
improvement on the WBG, as shown in the yellow shadow in Figure 12.
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4.4. Influence of Pile Length

Keeping other parameters unchanged, Figure 13 shows the influence of pile length on
the AAF. The same averaged AAF is also defined to evaluate the mitigation capability in
the SWBG. As depicted in Figure 13, increasing pile length from 0.5a to 2a can significantly
improve the attenuation effectiveness. However, with the pile length increased from 2a
to 5a, the AAF is stable. In other words, when the pile length reaches the attenuation
expectation, i.e., AAF = −20 dB, increasing the pile length has little influence on the
shielding effect. The reason is that the SW motions mainly concentrate in the thin layer of
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soil near the free surface. Therefore, for periodic polyfoam-filled piles, increasing the pile
length to a certain extent (h = 2a in this study) could significantly improve the attenuation
performance of SWs, but increasing pile length unlimitedly, namely, h > 2a, has no further
isolation effect.
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4.5. Influence of Focal Distance

The influence of focal distance l1 of the pile barriers on the AAF is shown in Figure 14.
In this section, the source distance l1 is assumed to be varied from 6a to 12a, and the
geometrical parameters of the periodic structure are selected as a = 3 m, r = 1.2 m, h0 = 20a,
and h1 = 2a. As shown in Figure 14, an increase in source distance cannot improve the
average AAF, which indicates that the source distance has little effect on reduction of SWs
in SWBG. The reason for the phenomenon is that the localized effects of surface waves, in
other words, the elastic strain energies of surface waves, mainly focus on the thin layer.
Simultaneously, the conclusions also indicate that the SW intensity is caused by a vertical
harmonic load in the far-field basically, which also confirms the attenuation of SWs as the
reason for the existence of SWBG.
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5. Transient Analysis

In this section, transient analysis of the periodic pile barriers on isolation effect is
conducted by using COMSOL software. The model setup and mesh quality used for
transient analysis are similar to that of the transmission analysis model depicted in Figure 7.
In addition, Low-reflective-boundary (LRB) conditions are used as the lateral boundaries
of the model in place of PML to prevent wave reflections. As aforementioned, the LBF,
UBF, and WAZ of the periodic polyfoam pile barriers are 14.68 Hz, 18.54 Hz, and 3.86 Hz,
respectively. The artificial wave and seismic wave are used as the vertical excitation load
to carry out the analysis. After that, the accelerations at the output area with or without
pile barriers are obtained and compared to verify the SW attenuation performance of the
periodic barriers.

5.1. Harmonic Wave

Harmonic waves with natural frequencies of 10 Hz (outside of SWBG) and 15.6 Hz
(inside of SWBG) are applied as incident SW acting on the free surface. ω is the angular
frequency, which can be calculated by equation ω = 2π f . Figure 15 shows the vertical
acceleration response at the output areas with and without six rows of fly ash pile barriers.
From 15a, the dominant frequency of the incident SW is 10 Hz and out of the range of SWBG,
which is inconsistent with the AZ frequency range of the periodic fly ash pile barriers.
Thus, the normalized vertical acceleration at the output area with the periodic barrier is
nearly the same as the results without periodic pile barriers. Conversely, Figure 15b shows
the normalized acceleration response with and without periodic pile barriers when the
predominant frequency falls into the frequency band gap of the pile barrier. It can be seen
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that the results of the pile barriers can significantly attenuate the acceleration response
corresponding to the case without pile barriers when the main frequency falls into the AZ.
As mentioned above, the periodic pile barriers can significantly reduce the acceleration
response when the predominant frequency falls into the frequency band gap.
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5.2. Artificial Wave

To verify the attenuation performance, an artificial wave is generated by using the nor-
malized combined frequency displacement time history which can be expressed as follows:u(t) = 1

umax

n
∑

i=1
ui sin(2π fit + φi), i = 1, 2, · · · , 30

fi ∈ (12.91, 18.39)Hz
(15)

where the amplitude of single-frequency displacement ui represents a random number
between 0 and 1, the phase φi is a random number between 0 and 2π, and umax indicates
the maximum value of the combined displacement time history.

Then, the artificial wave produced by Equation (15) is used as a vertical displacement
applied at the excitation source, as shown in Figure 16a. As expected, the dominant
frequency of this SW is in the range of the SWBG (12.91–18.39 Hz) in the pile barriers.
Figure 16b shows the normalized acceleration at the output area with and without six rows
of polyfoam pile barriers. From Figure 15b, one can find that the SW at the output area
without the periodic barrier is larger than that of the structure with a periodic pile barrier,
which obviously indicates that the periodic pile barrier is capable of mitigating the surface
waves significantly when the domain frequency of the waves falls into the SWBG. Especially,
it can be found that the maximum value of the normalized acceleration is reduced by 60.3%
compared to that of the model without periodic barriers.
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5.3. Seismic Wave

A seismic wave record obtained from the Whittier Narrows earthquake event is also
used to investigate the isolation effect of the finite number of pile barriers. The acceleration
history, Fourier spectra, and corresponding displacement history of the seismic record are
presented in Figure 17. It can be seen from the Fourier spectra in Figure 17c that the main
frequencies of incident signals are distributed at 6.3–8.4 Hz and 11.7–15.4 Hz, among which
the second frequency band is located inside the first SWBG.
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Figure 17. Seismic records. (a) Acceleration history; (b) the corresponding displacement history, and
(c) Fourier spectra.

Subsequently, Figure 18 shows the transient response of the model with (black lines)
and without (red lines) of six rows of pile barriers subjected to seismic waves. The results
show that the seismic response is mitigated to some extent with the presence of pile barriers.
What is more, the reduction of the peak acceleration with six rows of pile barriers is about
45.4% compared with that without pile barriers. From the Fourier spectra, as shown in
Figure 18b, the frequency ranges of seismic reduction agree well with the first SWBG of the
periodic pile barriers.
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Figure 18. Transient response of the model subjected to the seismic waves. (a) Vertical acceleration
response at the output areas with and without six rows of fly ash pile barriers; (b) the corresponding
Fourier spectra. (a = 3 m, r = 1.2 m, l1 = 10a, h0 = 15a, and h1 = 2a).
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As aforementioned, the results of surface wave reduction confirm the presence of SWBG
in periodic pile barriers and the potential application of SW attenuation in civil engineering.

6. Conclusions

In this work, a post-processing technique is introduced to distinguish the Rayleigh
modes from all the mixed eigenmodes. A 3-D transmission calculation model is also
developed to illustrate that the attenuation zone of a finite number of piles is consistent
with the SWBG. Subsequently, the influences of different parameters for pile barriers are
parametrically analyzed and discussed. Finally, transient analysis of the periodic pile
barriers on isolation effect is performed. Some important conclusions were obtained
as follows:

1. For the Bragg scattering periodic structure, such as the buried pile barrier, the energy
distribution parameters method can effectively identify all the SW modes while the
acoustic cone criterion fails, which may be due to the leakage of some SWs into BWs,
resulting in evanescent waves.

2. By comparing the dispersion curves of periodic piles composed of different inclusions,
it can be found that lower stiffness and density are more conducive to the generation
of low-frequency SWBG. Appropriate design of pile barriers is expected to obtain
low-frequency and broadband attenuation.

3. Pile spacing has a strong influence on LBF, UBF, and WBG of the periodic pile
barriers. Both LBF and UBF of the first SWBG decrease monotonically with pile
spacing increase, narrow pile spacing can widen the WAZ and results in more
broadband performance.

4. A certain number of piles results in a significant increase in the periodic pile barriers.
However, a further increase in the number of piles cannot widen the WBG and the
isolation effect obviously cannot improve.

5. Due to the unique properties of Rayleigh waves, obvious attenuation effect can be
observed only when the pile length is increased within a certain range.
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